
Anonymous Transferable E-Cash

Foteini Baldimtsi1?, Melissa Chase2, Georg Fuchsbauer3??, and Markulf
Kohlweiss2

1 Boston University
foteini@cs.bu.edu
2 Microsoft Research

{melissac, markulf}@microsoft.com
3 Institute of Science and Technology Austria

georg.fuchsbauer@ist.ac.at

Abstract. Cryptographic e-cash allows off-line electronic transactions

between a bank, users and merchants in a secure and anonymous fashion.

A plethora of e-cash constructions has been proposed in the literature;

however, these traditional e-cash schemes only allow coins to be trans-

ferred once between users and merchants. Ideally, we would like users

to be able to transfer coins between each other multiple times before

deposit, as happens with physical cash.
“Transferable” e-cash schemes are the solution to this problem. Unfortu-

nately, the currently proposed schemes are either completely impractical

or do not achieve the desirable anonymity properties without compro-

mises, such as assuming the existence of a trusted “judge” who can

trace all coins and users in the system. This paper presents the first

efficient and fully anonymous transferable e-cash scheme without any

trusted third parties. We start by revising the security and anonymity

properties of transferable e-cash to capture issues that were previously

overlooked. For our construction we use the recently proposed malleable

signatures by Chase et al. to allow the secure and anonymous transfer

of coins, combined with a new efficient double-spending detection mech-

anism. Finally, we discuss an instantiation of our construction.

Keywords: Electronic payments, transferable e-cash, malleable signa-

tures, double-spending detection.

1 Introduction

Electronic payment systems are everywhere and average users take their two
main properties, security and privacy, for granted even though they may be built
on shaky foundations. Payments made with debit or credit cards do not provide
any privacy guarantee for users since the corresponding financial institution can

? Work done as an intern in Microsoft Research Redmond.
?? Supported by the European Research Council, ERC Starting Grant (259668-PSPC).



track all their transactions. Starting with Chaum [Cha83], the cryptographic
community has worked on electronic analogues to physical money (e-cash) that
guarantee secure and private payments [Cha83,CFN88,Bra93,CHL05,BCKL09].
A typical e-cash system consists of three types of entities: the bank, users and
merchants. Users withdraw electronic coins from the bank and spend them to
merchants, who then deposit them at the bank. E-cash systems should satisfy
two main properties (1) unforgeability : an adversarial user cannot spend more
e-coins than he withdrew; and (2) anonymity : nobody (including the bank) can
link spending transactions to each other or to specific withdrawal transactions.

Unlike physical cash, electronic coins are easy to duplicate, so a mechanism is
needed to ensure that a user cannot spend one coin multiple times. Two solutions
were proposed in the literature: the first is online e-cash [Cha83], in which the
merchants are constantly connected to the bank and can therefore check whether
a coin has already been deposited before accepting it. In order to overcome the
strong requirement of a permanent connection to the bank, a second solution is
to use a double-spending mechanism [CFN88]. As long as a user is honest, his
anonymity is guaranteed, but if he tries to cheat the system by spending one
e-coin multiple times then his identity is revealed.

Unfortunately, in traditional e-cash users can only transfer their coins to
merchants, who must then deposit them at the bank. It would be natural to
allow users to transfer coins to other users (or merchants), who should be able
to further transfer the received coins, and so on. Moreover, it would be desirable
if these transfers could be done without being connected to the bank, i.e., offline.
One of the main advantages of such a transferability property is that it would
decrease the communication cost between the bank and the users. Moreover,
it would allow for more real-world scenarios. Consider the example of coins of
different denominations. A store, which is offline, wants to give back change to
a customer, using coins previously received. In order to do so, coins need to be
transferable multiple times. Transferability of e-cash was proposed in the 1990s
and the desired security properties have been analyzed; however, all schemes
proposed so far do not satisfy the proposed security and privacy requirements,
or they are only of theoretical interest, such as [CG08].

Arguably, this was partly because e-cash fell out of fashion as it became
clear that traditional banks were unlikely to support cryptographic currencies
and that credit cards and centralized payment services offering little privacy are
broadly accepted for online payments. Recently, with bitcoin [Nak08] demon-
strating how to bypass the banks, there has been renewed interest in e-cash,
as existing techniques from anonymous e-cash are likely to be applicable to the
bitcoin world as well [MGGR13,BCG+14].

Related work. Transferable e-cash was originally proposed by Okamoto and
Ohta [OO89,OO91], who gave e-cash schemes that satisfy various properties
such as divisibility and transferability but only provide weak levels of anonymity.
While an adversary cannot link a withdrawal to a payment, he can link two pay-
ments by the same user, a property called weak anonymity (WA). Chaum and
Pedersen [CP92] proved that (1) transferred coins have to grow in size and (2)

2



an unbounded adversary can always recognize coins he owned when seeing them
spent later. Moreover, they extended the scheme due to van Antwerpen [vAE90]
to allow coin transfer. The resulting scheme satisfies strong anonymity (SA),
guaranteeing that an adversary cannot decide whether two payments were made
by the same user. However, he can recognize coins he observed in previous
transactions. Strong anonymity is also satisfied by the schemes constructed
in [Bla08,CGT08].

Anonymity for transferable e-cash has been a pretty subtle notion to define.
In 2008 Canard and Gouget [CG08] gave the first formal treatment of anonymity
properties for transferable e-cash. In addition to weak and strong anonymity,
which do not yield the guarantees one would intuitively expect, they defined full
anonymity (FA): an adversary acting as a malicious bank cannot link a coin pre-
viously (passively) observed to a coin he receives as a legitimate user (Observe-
then-Receive). They also define perfect anonymity (PA): an adversary, acting as
a malicious bank, cannot link a coin previously owned to a coin he receives and
showed that PA⇒FA⇒SA⇒WA. Chaum and Pedersen [CP92] showed that
perfect anonymity cannot be achieved against unbounded adversaries. Canard
and Gouget [CG08] prove that it cannot be achieved against bounded adversaries
either. They therefore introduce two modifications of perfect anonymity, which
are incomparable to FA, namely PA1: an adversary, controlling the bank, cannot
link a coin previously owned to a coin he passively observes being transferred be-
tween two honest users (Spend-then-Observe); and PA2 (Spend-then-Receive):
an adversary cannot link a coin previously owned to a coin he receives, assum-
ing the bank is honest. (If the adversary controls the bank, this notion is not
achievable due to the impossibility results mentioned above.) In the same paper
they present a construction which satisfies all achievable anonymity properties,
but is only of theoretical interest due to its inefficiency as it relies on metaproofs
and thus Cook-Levin reductions.

The first practical scheme that satisfies FA, PA1 and PA2 is the scheme due
to Fuchsbauer et al. [FPV09]; however, it has two main drawbacks: (1) the users
have to store the data of all transactions they were involved in to prove innocence
in case of fraud; and (2) when a double-spending is detected, all users up to
the double-spender lose their anonymity. Blazy et al. [BCF+11] addressed these
problems and propose a new scheme using commuting signatures [Fuc11], which
overcomes the above drawbacks by assuming the existence of a trusted entity
called the judge. This entity is responsible for the tracing of double-spenders,
but can also trace all coins and users in the system at any time. This clearly
contradicts one of the main goals of e-cash: as long as users do not double-
spend, they remain anonymous. (In addition, it is not clear whether their scheme
satisfies PA2; see Section 4.4.)

Our Contributions

We present the first transferable e-cash scheme that satisfies all of the anonymity
properties from the literature (FA, PA1, PA2) and a new anonymity notion that
we introduce. Moreover, it does not assume any trusted party and does not rely

3



on a Cook-Levin reduction or heuristics like the random-oracle model. Our con-
tributions include new definitions, a construction based on malleable signatures
and a double-spending detection mechanism potentially of independent interest.

Definitions. We provide a formal treatment of the security and anonymity
properties of transferable e-cash in a game-based fashion, since many of the
previous definitions were informal and/or incomplete. Moreover, we define a
new anonymity requirement that was not captured before. Namely, we intro-
duce a strengthening of Spend-then-Receive anonymity (a.k.a. PA2), which offers
anonymity guarantees against a malicious bank. While it is unavoidable that an
adversary impersonating the bank can link a coin he previously owned to one he
receives, we require that he should not learn anything about which honest users
possessed the coin in between. This was not guaranteed in previous definitions.

Construction. In traditional e-cash systems a coin withdrawn from the bank
typically consists of the bank’s signature σ on a unique serial number, SN. When
spending the coin with a merchant, a double-spending tag DS is computed, which
encodes the identity of the spender. The merchant then deposits c = (SN, σ, DS) at
the bank. If two coins c, c′ with the same serial number but with different double-
spending tags DS, DS′ are deposited, these tags together will reveal the identity
of the user who double-spent. For transferable e-cash, the owner of a coin should
be able to transfer the coin/signature she received from the bank to another
user in such a way that the transferred coin is valid, carries all the information
necessary to detect double-spending, and preserves anonymity. Thus, we need a
digital signature scheme that allows a user to compute a “fresh” version of a valid
signature (unlinkable to the original one to ensure anonymity) and to extend the
current signature to include more information (such as a double-spending tag
for the new owner).

A recent proposal of a signature scheme that satisfies the above properties is
due to Chase et al. [CKLM14]. They propose malleable signatures, an extension
of digital signatures, where anyone can transform a signature on a messagem into
a signature onm′, as long as T (m) = m′ for some allowed transformation T . They
then use malleable signatures to construct delegatable anonymous credentials.
Our transferable e-cash scheme is inspired by their construction; however, the
security against double-spending required in offline e-cash and the subtleties
of the resulting anonymity guarantees introduce many technical challenges and
make our construction much more involved.

In our construction, a coin withdrawn by the bank is signed using a malleable
signature scheme. When a user wishes to transfer a coin to another user, he com-
putes a mauled signature on a valid transformation of the coin. A valid trans-
formation guarantees that the transferred coin is indeed owned by the sender
(i.e. the sender’s secret key corresponds to the information encoded in the coin)
and the new coin/signature created will encode the right information of the
receiver. The serial number and the double-spending tags are encrypted un-
der the bank’s public key, allowing it to check for double-spending on deposit.
Moreover, the encryptions are re-randomized in every transfer, which ensures

4



anonymity. We propose an instantiation, detailed in the full version [BCFK15],
that can be proved secure under standard assumptions: Decision Linear (DLIN)
and Symmetric External Decision Diffie-Hellman (SXDH).

Double-Spending Detection. Double-spending detection for transferable e-
cash is a complex issue: it needs to ensure that the right user is accused while
preserving the anonymity of honest owners of the coin. We propose an efficient
double-spending detection mechanism, which is independent of our scheme and
could be used by other transferable e-cash schemes, e.g., to provide an offline pay-
ment mechanism for users who have committed a sufficient quantity of bitcoins
as a deposit. Our mechanism allows us to satisfy the new Spend-then-Receive
anonymity property and still use an efficient proof mechanism. Ours is the only
construction that does so apart from [CG08], which is only theoretical.4

2 Definitions for Transferable E-Cash

We adapt the definitions for transferable e-cash given by [CG08,BCF+11] and
strengthen them in several aspects; in particular, we introduce an additional
anonymity notion. Following the paradigm of previous work, we present the
security and anonymity properties in a “game-based” fashion. This allows for
comparisons with older definitions and results in modular security proofs for
proposed schemes. We note that a simulation-based security definition for trans-
ferable e-cash that captures all properties considered so far is an interesting open
problem.

In a transferable e-cash scheme there are two types of parties: the bank B
and users Ui. Coins are denoted by c and each coin is uniquely identifiable via
a serial number SN, which will be retrieved by the bank during deposit to check
if the same coin was deposited twice. We let DCL denote the list of deposited
coins; if multiple coins with the same serial number were deposited, we keep all
of them in DCL.

We modify previous definitions in that we add a protocol for user registration5

and we merge the Deposit and Identify protocols. A transferable e-cash scheme
consists of the following algorithms (probabilistic unless otherwise stated):

ParamGen(1λ) on input the security parameter λ outputs the system parameters
par. (We assume that λ can be deduced from par.) par is a default input to
the remaining algorithms.

BKeyGen() and UKeyGen() are executed by B and a user U respectively and
output (skB, pkB) and (skU , pkU ). The bank’s key skB might be divided

4 The construction in [BCF+11] does not satisfy the new Spend-then-Receive property
if the judge is not assumed to be honest. If the judge is honest, it is not clear whether
the notion is satisfied, as is the case for the original Spend-then-Receive notion (a.k.a.
PA2); see Section 4.4.

5 For Identification to be meaningful, we must guarantee not only that we can iden-
tify a doublespender’s public key, but also that that public key corresponds to a
legitimate identity, i.e. that it has been registered with the bank.

5



into two parts: skW for registrations and withdrawals and skD for deposits.
During BKeyGen the list DCL is initialized to be empty.

Registration(B[skW , pkU ],U [skU , pkB]) is a protocol between the bank and a
user. At the end the user receives a certificate certU ; both parties output
either ok or ⊥ in case of error.

Withdraw(B[skW , pkU ],U [skU , pkB]) is a protocol between the bank and a user.
The user either outputs a coin c or ⊥. B’s output is ok or ⊥ in case of error.

Spend(U1[c, skU1 , certU1 , pkB],U2[skU2 , pkB]) is a protocol in which U1 spends/
transfers the coin c to U2. At the end, U2 either outputs a coin c′ and ok
or it outputs ⊥; U1 either marks the coin c as spent and outputs ok, or it
outputs ⊥ in case of error.

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]) is a protocol where a user U
deposits a coin c at the bank. We split the deposit protocol into three sub-
routines. First CheckCoin checks whether the coin c is consistent, and if not
outputs ⊥. Else, B runs CheckDS, which outputs the serial number SN of the
deposited coin. B checks whether DCL already contains an entry for SN. If
not, B adds SN to DCL, credits U ’s account and returns “success” and DCL.
Otherwise, the coin was double-spent: the subroutine DetectDS is run on the
two coins and outputs (pkU , Π), where pkU is the public key of the accused
user, and Π is a proof that the registered user who owns pkU double-spent
the coin. Note that Π should reveal nothing about the coin itself.

VerifyGuilt(pkU , Π) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if the proof verifies and 0 otherwise.

Notice that in our definition a transferable e-cash scheme is stateless since there
is no common state information shared between the algorithms. This means
that a coin withdrawn will not be affected by the order in which withdrawals
happen, i.e. whether it was the first or the n-th coin the bank issues to a specific
user. Moreover, when a user U2 receives a coin from a user U1, the transferred
coin will only depend on U1’s original coin (not on other coins received by U2
or transferred by U1). Thus, the bank and the users do not need to remember
anything about past transactions—for transfer the coin itself will be sufficient.

Global variables. In order to formally define the security properties of trans-
ferable e-cash, we first define some global variables and oracles which will be
used in the security games. In the user list, UL, we store all information about
users, keys and certificates. Its entries are of the form (i, pk , sk , cert , uds), where
uds indicates how many times user Ui double-spent (this counter is used in the
exculpability definition). If user i is corrupted (i.e. the adversary knows the se-
cret key of this user) then sk = ⊥; if it has not been registered then cert = ⊥.
We keep a counter, n, of the total number of generated/registered users which
is initialized to 0.

In the coin list, CL, we keep information about the coins created in the
system. For each original coin withdrawn we store a tuple (j, owner, c, fc, fd, cds,
origin), where j is its index in CL, owner stores the index i of the user who

6



withdrew the coin6 and c is the coin itself. The flag fc indicates whether the
coin has been corrupted7 and the flag fd indicates whether the coin has been
deposited. We also keep a counter, cds, of how many times this specific instance
of the coin has been spent, which is initialized as cds = 0. In origin we write
“B” if the coin was issued by the honest bank and “A” if the adversary issued
it when impersonating the bank.

When a coin is transferred to another honest user, we add a new entry to
CL as follows: (j, owner, c, cds, pointer), where j is the position in CL, owner
shows the current owner, c is the new, transferred coin and cds indicates how
many times the coin has been spent. In pointer we store a pointer j′ indicating
which original coin this transferred coin corresponds to. Once a transferred coin
is deposited or corrupted, we mark the original coin’s flags fc, fd appropriately.
The last list is the list of deposited coins, DCL. To make explicit the user or
coin to which a variable belongs, we write, e.g., pk i or pointerj respectively.

We now define oracles used in the security definitions. If during the oracle
execution an algorithm fails (outputs ⊥) then the oracle also stops. Otherwise
the call to the oracle is considered successful (for the deposit oracles a successful
call is one that also didn’t detect any double-spending). We define several oracles
for each operation, depending on which parties are controlled by the adversary.

Oracles for creation, registration and corruption of users. The adversary
can instruct the creation of honest users, corrupt users, and invoke or participate
in registration:

Create() sets n = n + 1, executes (skn, pkn) ← UKeyGen(), sets UL[n] =
(n, pkn, skn,⊥, 0) and outputs pkn.

BRegister(pk) plays the bank side of the Register protocol and interacts with
A. If pk 6∈ UL then set n = n+ 1 and UL[n] = (n, pk ,⊥,⊥, 0); else abort.

URegister(i), for i ≤ n, plays the user side of the Register protocol and adds
cert to the corresponding field of UL.

Register(i), for i ≤ n, simulates both sides of the Register protocol. If user
i was not registered then add cert to the corresponding field of UL.

Corrupt(i, S), for i ≤ n, allows the adversary to corrupt user i and a subset,
S, of his coins8. If sk i = ⊥ (i.e. this user is already corrupted) then abort.
The set S must consist of coin indices in CL. For every j ∈ S look up the
j-th entry of CL and if owner 6= i then ignore this coin and remove it from
S. The oracle first outputs sk i and then updates UL by setting sk i = ⊥ to

6 We do not store the coins withdrawn by the adversary.
7 A corrupted coin is defined as a coin that was under the adversary’s control at some

point. Once a coin is flagged as corrupted, it cannot be “un-flagged”, even if it is
later under the control of an honest user.

8 S allows us to capture the case, for example, where the honest user has not deleted
all of his spent coins. (Ideally all coins should be deleted immediately after spending,
but we want to define security even in the case where this does not happen.) S would
include the user’s unspent coins and any spent coins that have not been deleted.

7



mark this user as corrupted. Then, the coins in the set S are given to the
adversary A and are marked as corrupted i.e. the flag fc of the corresponding
original coin is set fc = 1. Note that if A tries to corrupt unregistered users,
this doesn’t give him any extra power. Also, once a user is corrupted he is
considered to be an adversarial user and thus A will be running in his place.
This means that A cannot run honest-user oracles on corrupted users, i.e.
oracles With, UWith, Rcv, S&R, URegister.

Withdrawal oracles.

BWith() plays the bank side of the Withdraw protocol. Note that coins belonging
to A are not added to the coin list CL.

UWith(i) plays user i in a Withdraw protocol, where the bank is controlled by
the adversary. Upon obtaining a coin c, it increases the current size ` of CL
by 1 and adds (`, owner = i, c, fc = 0, fd = 0, cds = 0, origin = A) to CL.

With(i) simulates a complete Withdraw protocol execution playing both B and
user i. It increases the current size ` of CL by 1, adds (`, owner = i, c, fc =
0, fd = 0, cds = 0, origin = B) to CL, and outputs the transcript.

Spend and deposit oracles.

Rcv(i) lets A spend a coin to honest user i. It plays the role of U2 with user i’s
secret key in the Spend protocol. A new entry (j, owner = i, c, fc = 1, fd = 0,
cds = 0, origin = A) is added to CL. Coins received from the adversary are
considered as original coins in CL.

Spd(j) enables A to receive coin number j in CL. If the coin belongs to a
corrupted user it aborts. Otherwise, it plays the role of user U1 in the Spend

protocol with the secret key of the owner i of coin j. It increases the coin
spend counter cds of entry j in CL by 1. If cds was already greater than zero
(i.e., this specific user has already spent this coin) then the double-spending
counter, uds, of the owner of coin j is increased by one. Finally, whenever a
coin is received by A, we mark the original instance of this coin as corrupted,
i.e., we set fc = 1.

S&R(i, j) is the Spend-and-Receive oracle that allows A to passively observe
the spending of coin j by its owner to user i (both of whom must not be
corrupted). It increases the current size ` of CL by 1 and adds (`, owner =
i, c, cds = 0, pointer) to CL, where pointer = j if j is an original coin and
pointer = pointerj if it is a transferred coin. It also increases the coin spend
counter cdsj in entry j by 1. If cdsj was already greater than zero then the
double-spending counter uds of the spender is also increased by 1.

BDepo() simulates the bank in the Deposit protocol interacting with A playing
the role of a user. It updates DCL accordingly, and in case of a double-
spending, outputs the resulting pk , Π.

UDepo(j) simulates the role of the owner (who must not be corrupted) of coin
j in the Deposit protocol, interacting with the adversary playing the bank.
It increases the spend counter cdsj in entry j in CL by 1. If cdsj was already

8



greater than zero then the double-spending counter uds of the owner of coin
j is increased by 1. It also marks fd = 1 for the original coin.

Depo(j) simulates a Deposit of coin j between an honest bank and the owner of
j (who must not be corrupted). It increases cdsj in entry j of CL by 1. If cdsj
was already greater than zero then uds of the owner of coin j is increased
by one. It also marks fd = 1 in the original coin and adds the coin to DCL,
and in case of a double-spending, outputs the resulting pk , Π.

Let size(c) be a function that outputs the size of a coin. A withdrawn coin
has size 1 and after a transfer the size increases by 1. We say that coins c1 and
c2 are compatible, (denoted comp(c1, c2) = 1), if size(c1) = size(c2). We need
this property, since transferred coins necessarily grow in size [CP92] and thus an
adversary may break anonymity by distinguishing coins of different sizes.

2.1 Security Properties

We define the security properties of transferable e-cash by refining previous
definitions by [CG08] and [BCF+11]. In the beginning of security games with an
honest bank the challenger typically runs par← ParamGen(1λ) and (skB, pkB)←
BKeyGen(), which we merge into one algorithm AllGen.

Unforgeability. This notion protects the bank in that an adversary should not
be able to spend more coins than the number of coins he withdrew. In [BCF+11]
an adversary can interact with honest users and wins the unforgeability game if
he withdrew fewer coins than he successfully deposited.

We simplify the definition noticing that it is not necessary for the adver-
sary to create or corrupt honest users (or instruct them to withdraw, spend,
receive and deposit), since the adversary could simulate these users itself. An
unforgeability definition without honest user oracles thus implies the definition
with these oracles given in [BCF+11]. This also captures the scenario of coin
theft in which the adversary steals coins of honest users, as he also has access to
these coins in the simulation. Note here that we can only require that the adver-
sary be caught if he spends more coins than he withdrew, and if those coins are
deposited. Without drastically changing the approach of offline ecash, it seems
impossible to catch a double-spending until the coins are finally deposited.

To define unforgeability we consider the following experiment:

Experiment ExptunforgA (λ);

(par, skB, pkB)← AllGen(1λ);
ABRegister,BWith,BDepo(par, pkB);
Let qW , qD be the number of successful calls to BWith, BDepo respectively;
If qW < qD then return 1;
Return ⊥.

Definition 1 (Unforgeability). A transferable e-cash system is unforgeable if
for any probabilistic polynomial-time (PPT) adversary A, we have Advunforg

A (λ),

defined as Pr[ExptunforgA (λ) = 1], is negligible in λ.

9



Identification of double-spenders. No collection of users should be able to
spend a coin twice (double-spend) without revealing one of their identities along
with a valid proof of guilt. Consider the following experiment where, analogously
to the unforgeability definition, we do not give the adversary access to honest
user oracles since he can simulate them himself.

Experiment ExptidentA (λ)

(par, skB, pkB)← AllGen(1λ);
ABRegister,BWith,BDepo(par, pkB);
Let (pk i∗ , ΠG) be the output of the last call to BDepo to find a doublespending;
Return 1 if any of the following hold:

– VerifyGuilt(pk i∗ , ΠG) = 0;
– pk i∗ 6∈ UL;

Return ⊥.

Definition 2 (Double-spender identification). A transferable e-cash system
is secure against double-spending if for any PPT adversary A we have that
Advident

A (λ) :=Pr[ExptidentA (λ)=1] is negligible in λ.

Exculpability. Exculpability ensures that the bank, even when colluding with
malicious users, cannot wrongly accuse honest users of double-spending. Specif-
ically, it guarantees that an adversarial bank cannot output a double-spending
proof Π∗ that verifies for an honest user’s public key if that user never double-
spent. Our definition follows the one from [BCF+11], but we allow the adversary
to generate the bank keys himself, thus truly modeling a malicious bank. The
adversary must output the index of the user accused of double-spending and a
corresponding proof. The game is formalized as follows.

Experiment ExptexculA (λ)

par← ParamGen(1λ);
(pkB)← A(par);
(i∗, Π∗)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If VerifyGuilt(pk i∗ , Π

∗) = 1 and sk i∗ 6= ⊥ and udsi∗ = 0 then return 1;
Return ⊥.

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
for any stateful PPT adversary A, we have that Advexcul

A (λ) := Pr[ExptexculA (λ) =
1] is negligible in λ.

In the full version [BCFK15] we also discuss a stronger version of exculpa-
bility that guarantees that a user cannot be accused of double-spending more
coins than he did.

2.2 Anonymity Properties

We first consider the three anonymity notions given in [CG08,BCF+11]:

Observe-then-Receive Full Anonymity (OtR-FA). The adversary, controlling the
bank, cannot link a coin he receives as an adversarial user or as the bank to

10



a previously (passively) observed transfer between honest users. This covers
both the case where the adversary receives a coin as a user during a transfer
and the case where he receives a coin as the bank during deposit.

Spend-then-Observe Full Anonymity (StO-FA). The adversary, controlling the
bank, cannot link a (passively) observed coin transferred between two honest
users to a coin he has already owned as a “legitimate” user.

Spend-then-Receive Full Anonymity (StR-FA). When the bank is honest, the
adversary cannot recognize a coin he previously owned when he receives it
again.

These three notions are incomparable as proved in [CG08]. The games formal-
izing these notions are fairly similar to those in [BCF+11]. A difference is that
we define coin indistinguishability, which implies the user indistinguishability
properties considered in [BCF+11]. We also allow A to pick the secret keys him-
self, in particular that of the adversarial bank (in contrast to [CG08,BCF+11],
where the bank’s keys are created by experiment). We begin by defining the
appropriate experiment for each notion.

In the OtR game the adversary outputs two indices of coins owned by honest
users and receives one of them, either as a Spend (by setting v = 0) or as a
Deposit (setting v = 1). The adversary must not receive the coin a second time
(he could otherwise distinguish them as he controls the bank), which the game
ensures by resetting the flags fc, fd to 0 and checking that they remain that way.

Experiment ExptOtR-faA,b (λ)

par← ParamGen(1λ); pkB ← A(par);
(j0, j1, v)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If comp(j0, j1) 6= 1 or fcj0 = 1 or fcj1 = 1 or fdj0 = 1 or fdj1 = 1

then return ⊥;
If v = 0 then simulate Spd(jb) to A;
Else if v = 1 then simulate UDepo(jb);
Else return ⊥;
Reset the flags to fdj0 = 0, fdj1 = 0, fcj0 = 0, fcj1 = 0;
b∗ ← ACreate,URegister,Corrupt,With,Rcv,Spd,S&R,UDepo;
If fdj0 = 1 or fdj1 = 1 or fcj0 = 1 or fcj1 = 1 then abort;
Return b∗.

For the StO game we use a modified Spend&Receive oracle S&R∗: for the coin
c being transfered, it creates a new entry in CL in the form of an original coin
whose origin is marked to be Challenger while owner = i, fd = 0, and fc = 0. If
the adversary tries to corrupt, receive or deposit this coin (or a transferred coin
whose “original coin” in CL is this coin) then we abort.

11



Experiment ExptStO-faA,b (λ)

par← ParamGen(1λ); pkB ← A(par);
(j0, j1, i)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);
If comp(j0, j1) 6= 1 or skUj0 = ⊥ or skUj1 = ⊥ or sk i = ⊥ then return ⊥;

Run out← S&R∗(jb, i);
b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo(out);
If the coin with origin Challenger has fd = 1 or fc = 1 then abort;
Return b∗.

In the StR game we assume that the bank is honest, or at least that A does not
know the deposit key skD. The adversary picks two coins of the same size, with
indices j0, j1, whose owners are uncorrupted. We then transfer the coin jb to A
for a randomly selected bit b and his goal is to guess b. When he runs again, we
have to make sure that no one deposits j0 or j1; otherwise he could trivially win
by depositing his coin and checking whether a double-spending occurred. We
therefore use two modified oracles BDepo′ and Depo′, which check whether the
deposited coin collides with coin j0 or j1. If it does, we deposit j0, j1 and his
coin and return cumulative results so that the results will be independent of b.

BDepo′(j), Depo′(j) run the CheckCoin subroutine of Deposit as prescribed by
BDepo(j) and Depo(j) respectively. If OK, initialize DCL′ = ∅ and simulate
Deposit for coins j0, j1 and then CheckDS for the coin A deposits in both
cases using DCL′ instead.

If double-spending is detected then simulate Deposit for the coins j0, j1 and
CheckDS, DetectDS for A’s coin; each time reverting to the original DCL.
Only then add the three coins to DCL. Return the set of public keys returned
DetectDS for all three coins, together with one proof Π for each key. If there
are multiple proofs, use the one from A’s coin.

Else run CheckDS, DetectDS with DCL for A’s coin, add the coin to DCL,
and return the result of DetectDS if there was a double-spending.

Experiment ExptStR-faA,b (λ)

(par, skB = (skW , skD), pkB)← AllGen(1λ);
(j0, j1)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,BDepo,Depo(par, skW , pkB);
For β = 0, 1, let uβ be index of the owner of coin jβ (i.e., ownerjβ = uβ);
If comp(j0, j1) 6= 1 or sku0 = ⊥ or sku1 = ⊥ then return ⊥;
Simulate Spd(jb) to A;

b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,BDepo′,Depo′ ;
Return b∗.

In addition to these three notions, we introduce a new, strong, user-indistinguish-
ability notion of anonymity that we call Spend-then-Receive* : although the ad-
versary, when controlling the bank, can tell whenever he receives a coin he owned
before, he should not be able to learn anything about the identities of the users
that owned the coin in between. We define this as an indistinguishability game

12



in which the adversary picks a pair of users, to one of whom (according to bit
b) the coins are transferred. The goal is to guess this bit b.9

Experiment ExptStR*-faA,b (λ)

par← ParamGen(1λ); pkB ← A(par);

(i0, i1, 1
k)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;

If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;
Run Rcv(ib) with A;
Let c1 be the received coin and let j1 be its index in CL;
Repeat the following two steps for α = 1, . . . , k − 1:

(i0, i1)← A; If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;
Run S&R(ib, jα);
Let cα+1 be the received coin and let jα+1 be its index in CL;

Run Spd(jk) with A;
b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;
If for any of the coins c1, . . . , ck we have cds > 1 then output ⊥;
If any of the owners of c1, . . . , ck is corrupted then output ⊥;
Return b∗.

Definition 4. (Anonymity) A transferable e-cash scheme is fully anonymous if
for any stateful PPT adversary A we have that

AdvStR*-fa
A (λ) := Pr[(ExptStR*-faA,1 (λ) = 1]− Pr[(ExptStR*-faA,0 (λ) = 1]

is negligible in λ (and analogously for ExptOtR-faA,b , ExptStO-faA,b , and ExptStR-faA,b ).

3 Double-Spending Detection

In our construction every coin in the system contains a serial number SN =
SN1‖ . . . ‖SNk where SN1 was generated by the user who withdrew the coin, SN2
was generated by the second user who received the coin and so on. Moreover,
a coin contains a set of double-spending tags DS = DS1‖ . . . ‖DSk−1 which allows
the bank to identify the user that double-spent whenever a coin is deposited
twice. (To satisfy Spend-then-Receive anonymity, these values will be encrypted
so that only the bank can see them.)

We first describe the properties of serial numbers and double-spending tags
needed for our transferable e-cash construction. We then give concrete instanti-
ations in Section 3.2.

9 Note that it is important that the game below allows for many different values of k,
as it is not clear how security for an experiment where k = 1 would imply security for
higher values of k. To see this, consider the case where the adversary selects k = 2,
and then plays a game where he either gives a coin to U1, who gives it to U2, who
gives it back to A, or he gives a coin to U2, who gives it to U1, who gives it back to
A (i.e. he chooses (i0, i1) = (U1,U2) the first time, and (i0, i1) = (U2,U1) the second
time). Now, it is not at all clear how to reduce this game to a game where k = 1,
because any natural hybrid reduction would require the reduction to have control of
either U1 or U2.

13



3.1 Properties of Serial Numbers and Double-Spending Tags

As we will see in Section 3.2, for transferable e-cash it seems essential that the
generation of SNi uses both randomness chosen by the i-th receiver and the secret
key of that user. We thus define a serial-number function, fSN, which on input
a random nonce and a secret key (ni, sk i) outputs the serial-number component
SNi of the coin. We require a form of collision-resistance, which guarantees that
different (ni, sk i) generate different SN. Formally:

Definition 5 (Serial number function). A serial number function fSN for pa-
rameters GenSN takes as input parameters parSN ← GenSN , a nonce and a secret
key (ni, sk i), and outputs a serial number SNi. (We omit parSN when it is clear
from context.) It is called collision-resistant if given parSN ← GenSN , it is hard
to find (sk i, ni) 6= (sk ′i, n

′
i) such that fSN(parSN , ni, sk i) = fSN(parSN , n

′
i, sk ′i).

We also define a double-spending tag function, fDS, that takes as input the nonce
ni, that the coin owner Ui had picked when receiving the coin, Ui’s secret key sk i
and SNi+1, which was computed by the receiver of the coin. It might also take as
input some additional user identifying information, ID i. The output is a double-
spending tag that reveals nothing about the owner, Ui, unless she transfers the
same coin to more than one user (i.e. double-spends). In that case, the bank can,
given a database of public keys of all the users (and associated info ID for each
one) identify the user that double-spent and produce a proof accusing her.

Definition 6 (Double-spending tag). A double-spending tag function fDS for
parameters GenSN and key-generation algorithm KeyGen takes as input parSN
and (ID i, ni, sk i, SNi+1) and outputs the double-spending tag DSi.

– fDS is 2-show extractable if whenever we compute DSi and DS′i for the same
(parSN , ID i, ni, sk i) but different SNi+1 6= SN′i+1, there exists an efficient
function fDetectDS that on input DSi and DS′i and a list of identifiers I such
that (ID i, pk i) ∈ I for a pk i corresponding to sk i (according to KeyGen),
efficiently extracts (pk i, Π) where Π is an accepting proof for pk i.

– fDS is exculpable if, given a randomly generated public key pk i produced by
KeyGen, and parSN ← GenSN , it is hard to compute an accepting proof,
Π, for pk i. More formally, consider the following game: parSN ← GenSN ;
(pk i, sk i) ← KeyGen; Π ← A(parSN , pk i). The adversary wins if Π is an
accepting proof for pk i. Exculpability means that any PPT adversary wins
this game with at most negligible probability.

Finally, we want to be able to guarantee anonymity notions even against a
malicious bank who gets to see the serial numbers and double-spending tags
for deposited coins. Thus, we require that as long as the nonce ni is fresh and
random, these values reveal nothing about the other values, such as sk and ID ,
used to generate them.10

10 This means that fSN must be a commitment scheme. However the anonymity property
we require here is stronger than commitment hiding in that indistinguishability is
required to hold even given the additional double-spending value also computed
using the same random string ni.

14



Definition 7 (Anonymity of double-spending tags). A double-spending
tag function fDS and a serial number function fSN are anonymous if for all
ID i, sk i, SNi+1, ID ′i, sk ′i, SN

′
i+1 the following holds: If parSN ← GenSN and ni is

chosen at random then
(
parSN , fSN(parSN , ni, sk i), fDS(parSN , ID i, ni, sk i, SNi+1)

)
and

(
parSN , fSN(parSN , ni, sk ′i), fDS(parSN , ID ′i, ni, sk ′i, SN

′
i+1)

)
are computation-

ally indistinguishable.

3.2 A Double-Spending Detection Mechanism

Here we propose a concrete instantiation for the functions fSN, fDS used to gener-
ate the serial numbers and double-spending tags. To give some intuition, we first
consider the natural translation of traditional (non-transferable) e-cash double-
spending techniques [CFN88], and show why this is not sufficient in the trans-
ferable setting. Assume that Ui transfers a coin to Ui+1 executing Spend. Let
SNi+1 = ni+1 be the nonce that Ui+1 randomly picks and sends to Ui. Then Ui
would compute the double-spending tag as DSi = pk

ni+1

i F (ni), where F (ni) is
hard to compute, except for the user that has chosen ni.

Assume that Ui double-spends the coin by transferring it to users Ui+1 and
U ′i+1 and that both instances of the coin get eventually deposited at the bank.
The bank receives two coins starting with SN1, so it looks for the first difference
in the serial numbers SN and SN′, which is SNi+1 6= SN′i+1, pointing to Ui as
the double-spender. Using the tags DSi and DS′i, the bank can now compute

pk i = (DSi(DS
′
i)
−1)1/(ni+1−n′i+1). But what if a coin was double-spent and the

receivers picked the same nonce ni+1? We consider two cases:

Case 1: Ui double-spends the coin to the same user Ui+1 and in both transac-
tions Ui+1 picks the same nonce ni+1. When the coins are deposited the first
difference occurs at position i+ 2 and the bank will therefore accuse Ui+1 of
double-spending. However, user Ui+1 can easily avoid being wrongly accused of
double-spending by picking a fresh nonce each time he receives a coin.

Case 2: Ui transfers the same coin to different users with pk i+1 and pk ′i+1 who
pick the same nonce ni+1 when receiving the coin. As before, the bank’s serial
numbers will diverge at position i + 2. However, in this case computation of a
public key will fail, as DSi+1 and DS′i+1 contain different public keys.

The second scenario could be exploited by a collusion of Ui, Ui+1 and U ′i+1 to
commit a double-spending without being traceable for it. We therefore need to
ensure that different users cannot produce the same SNi+1 when receiving a coin.
We ensure this by making SNi+1 dependent on the user’s secret key, as formalized
in Definition 5. We could easily achieve this by using a collision-resistant hash
function, but in e-cash schemes users must prove well-formedness of SN and DS.
We therefore want to keep the algebraic structure of the above example in order
to use efficient proof systems.

Our construction. The parameters parSN describe an asymmetric pairing
group (q,G1, G2, GT , e) of prime order q and six random generators of G1:

15



(g1, g2, h1, h2, h̃1, h̃2). We assume that secret keys and the info ID are elements
of Zq. User Ui+1 chooses the nonce ni+1 randomly from Zq and computes SNi+1

as

fSN(ni+1, sk i+1) = {Ni+1 = g
ni+1

1 , Mi+1 = g
ski+1·ni+1

2 } .

When Ui receives SNi+1 = (Ni+1,Mi+1), she forms the double-spending tags as:

fDS
(
ID i, ni, sk i, (Ni+1,Mi+1)

)
=

{
Ai = N IDi

i+1 h
ni
1 , Bi = M IDi

i+1 h
ni
2

Ãi = N ski
i+1h̃

ni
1 , B̃i = M ski

i+1h̃
ni
2

}

We show that this construction satisfies the properties defined in Section 3.1.
First, the function fSN function is collision-resistant : in order to have Ni+1 =
N ′i+1 the adversary must pick ni+1 = n′i+1, but then Mi+1 = M ′i+1 can only be
achieved if sk i+1 = sk ′i+1.

Next we consider double-spending. The bank stores a database of pairs
(pk , ID) for all registered users with pk and ID unique to each user. When
a coin is deposited, the bank retrieves the serial number SN = SN1‖ . . . ‖SNk. If
a coin was deposited before with SN 6= SN′ but SN1 = SN′1, the bank looks for
the first pair such that SNi+1 = (Ni+1,Mi+1) 6= SN′i+1 = (N ′i+1,M

′
i+1) in order

to detect where the double-spending happened. Depending on whether the N -
values or the M -values are different, the bank checks for which ID ∈ DBB the
following holds:

(Ai(A
′
i)
−1)

?
= (Ni+1(N ′i+1)−1)ID or (Bi(B

′
i)
−1)

?
= (Mi+1(M ′i+1)−1)ID

This is a relatively cheap operation that can be implemented efficiently. (In our
e-cash construction in Section 4, ID will be the user’s position in the registered
user list.) In our scheme KeyGen outputs pk i = ĝski for a fixed generator ĝ of
G2. When the bank finds an ID that satisfies the equation above, it looks up in
its database the associated public key and checks whether the following pairing
is satisfied:

e(Ãi(Ã′i)
−1, ĝ) = e(Ni+1(N ′i+1)−1, pk i) (1)

or similar for B̃i, B̃′i,Mi+1,M
′
i+1 in case Ni+1 = N ′i+1 (in which case we must

have Mi+1 6= M ′i+1). If these checks fail for all pk , ID in the database, the bank
outputs (⊥,⊥), but this should never happen. The function fDetectDS on input
DSi, DS

′
i,DBB outputs pk and Π = (DSi, DS

′
i). The verification for this proof just

checks equation (1). Thus, our fDS function is 2-show extractable.
It remains to be shown that our system (fSN, fDS) is anonymous and excul-

pable. In the following lemma (whose proof is in the full version [BCFK15]) we
show that both properties follow from SXDH:

Lemma 1. The above constructions of a double-spending tag function fDS and
a serial number function fSN are anonymous as defined in Definition 7 assuming
that DDH holds in G1. Moreover, the double-spending function is exculpable if
DDH holds in G2.

16



Note that we could just use Equation (1) to detect double-spending (and discard
the values Ai, Bi in fDS). This would however be less efficient, since the bank
would have to compute one pairing for every database entry. On the other hand,
if exculpability is not required, we could discard the values Ãi, B̃i from fDS.

4 Transferable E-Cash Based on Malleable Signatures

We now describe a generic construction of a transferable e-cash scheme using
malleable signatures. Assume the existence of a malleable signature scheme
(MSGen, MSKeyGen, MSign, MSVerify, MSigEval) with allowed transformation
class T (as defined below), a signature scheme (SignGen,SKeyGen,Sign,Verify),
a randomizable public-key encryption scheme (EKeyGen,Enc,REnc,Dec), a com-
mitment scheme (ComSetup,Com), a zero knowledge proof system 〈P, V 〉 and a
hard11 relationRpk . We also assume the existence of the functions fSN, fDS, fDetectDS
for GenSN as defined in Section 3.1.

The bank’s withdrawal key consists of (vk
(MS)
B , sk

(MS)
B )← MSKeyGen(1λ) and

(vk
(S)
B , sk

(S)
B ) ← SKeyGen(1λ); the deposit key is (pkD, skD) ← EKeyGen(1λ).

Users have key pairs (pkU , skU ) ∈ Rpk and when registering they receive a
certificate certU = Sign

sk
(S)
B

(pkU , IU ), where IU is their joining order.

We recall the properties of malleable signatures, the central building block
for our construction, and refer to the full version [BCFK15] for the definitions
of commitment schemes and re-randomizable encryption.

4.1 Malleable Signatures

A malleable (or homomorphic) signature scheme [ABC+12,ALP12,CKLM14] al-
lows anyone to compute a signature on a message m′ from a signature on m as
long as m and m′ satisfy some predicate. Moreover, the resulting signature on
m′ reveals no extra information about the parent message m.

We adapt the definition by Chase et al. [CKLM14], who instead of a pred-
icate consider a set of allowed transformations. A malleable signature scheme
consists of the algorithms KeyGen, Sign, Verify and SigEval, of which the first
three constitute a standard signature scheme. SigEval transforms multiple mes-
sage/signature pairs into a new signed message: on input the verification key vk ,
messages ~m = (m1, . . . ,mn), signatures ~σ = (σ1, . . . , σn), and a transformation
T on messages, it outputs a signature σ′ on the message T (~m).

Definition 8 (Malleability). A signature scheme (KeyGen,Sign, Verify) is mal-
leable with respect to a set of transformations T if there exists an efficient
algorithm SigEval that on input (vk , T, ~m,~σ), where (vk , sk)

$←− KeyGen(1λ),
Verify(vk , σi,mi) = 1 for all i, and T ∈ T , outputs a signature σ′ for the message
m := T (~m) such that Verify(vk , σ′,m) = 1.

11 Informally, a relation R is said to be hard if for (x,w) ∈ R, a PPT adversary A
given x will output wA s.t. (x,wA) ∈ R with only negligible probability.

17



In order to capture strong unforgeability and context-hiding notions, [CKLM14]
provide simulation-based definitions for malleable signatures. Simulatability re-
quires the existence of a simulator, which without knowing the secret key can
simulate signatures that are indistinguishable from standard ones.12 Moreover,
a simulatable and malleable signature scheme is context-hiding if a transformed
signature is indistinguishable from a simulated signature on the transformed mes-
sage. A malleable signature scheme is unforgeable if an adversary can only derive
signatures of messages that are allowed transformations of signed messages. In
the full version [BCFK15] we present the corresponding formal definitions.

Chase et al. [CKLM14] describe a construction of malleable signatures based
on controlled-malleable NIZKs [CKLM12] which they instantiate under the De-
cision Linear assumption [BBS04].

4.2 Allowed Transformations

In a malleable signature scheme we define a class of allowed transformations,
and then unforgeability must guarantee that all valid signatures are generated
either by the signer or by applying one of the allowed transformations to another
valid signature. We will define two different types of transformations: TCWith is
used when a user withdraws a coin from the bank, and TCSpend is used when a
coin is transferred from one user to another.

Coin spend transformation. A coin that has been transferred i times (count-
ing withdrawal as the first transfer) will have the following format:

c = (par, (CSNi
, CDSi−1

), (ni, RSNi), σ) ,

where par denotes the parameters of the transferable e-cash scheme and CSNi
=

CSN1 ‖ · · · ‖ CSNi , CDSi−1
= CDS1 ‖ · · · ‖ CDSi−1

, for CSNj = Enc(SNj) and
CDSj = Enc(DSj) respectively (all encryptions are w.r.t. pkD). By DSi−1 we denote
the double-spending tag that was computed by user Ui−1 when she transferred
the coin to user Ui; ni is a nonce picked by Ui when he received the coin,and
RSNi is the randomness used to compute the encryption of SNi, i.e., CSNi =
Enc(SNi;RSNi). Finally, σ is a malleable signature on (CSNi

, CDSi−1
).

Assume now that user Ui wants to transfer the coin c to Ui+1. First, Ui+1

picks a nonce ni+1 and sends SNi+1 = fSN(ni+1, sk i+1) to Ui. Then, Ui computes
the new signature as (with T defined below):

σ′ = MSigEval(par, vk
(MS)
B , T, (CSNi

, CDSi−1
), σ) .

The transferred coin that Ui+1 eventually obtains has the form:

c′ = (par, (CSNi+1
, CDSi

), (ni+1, RSNi+1), σ′) .

Note that the value ni+1 is only known to Ui+1 and he will have to use it when he
wants to further transfer the coin, while the randomness RSNi+1

, used to encrypt

12 This requires a trusted setup; for details see the full version [BCFK15].

18



SNi+1, was sent by Ui. What is left is to define the transformation T ∈ TCSpend,
which takes as input m = (CSNi

, CDSi−1
) and outputs T (m) = (CSNi+1

, CDSi
).

A transformation of this type is described by the following values: (i.e. this
is the information that one must “know” in order to apply the transformation)

〈T 〉 =
(
(sk i, Ii, cert i), (ni, RSNi , RSNi+1

, RDSi , R), SNi+1

)
,

where R is a random string that will be used to randomize (CSNi
, CDSi−1

) as
part of the computation of the new signature. The output of T , as defined by
these values, on input m = (CSNi

, CDSi−1
) is then computed as follows:

1. If SNi 6= fSN(ni, sk i) or Enc(SNi;RSNi) 6= CSNi then output ⊥.
2. The new part of the serial number is encoded using randomness RSNi+1 :
CSNi+1

= Enc(SNi+1;RSNi+1
).

3. The new part of the double-spending tag is first computed using fDS and
then encrypted: DSi = fDS(Ii, ni, sk i, SNi+1); CDSi = Enc(DSi;RDSi).

4. These encryptions are appended to the re-randomizations of CSNi
and CDSi−1

:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1 ;R′i−1) ‖ CDSi

where R1, . . . , Ri, R
′
1, . . . , R

′
i−1 are all parts of the randomness R included

in the description of the transformation.

We define TCSpend as the set of all transformations of this form such that:

1. The certificate cert i is valid (verifiable under the bank’s verification key) and
corresponds to the secret key sk i and some additional info Ii.

2. The random values RSNi ,RSNi+1
, RDSi , R picked by Ui belong to the correct

randomness space as defined by the encryption scheme.

Coin withdrawal transformation. A coin that was just withdrawn has a
different format from a coin that has already been transferred, as there is no
need to include double-spending tags for either the bank or the user (we en-
sure that each coin withdrawn is a different coin). While a transfer between
users requires that the user spending the coin apply a transformation (as de-
scribed above), in a withdrawal the user receiving the coin will be the one to
transform the signature. When a user Ui withdraws a coin from the bank, she
picks a nonce n1, computes a commitment com = Com(n1, sk i; open) on n1
and her secret key and sends it to the bank. (For the user to remain anony-
mous it is important that the bank does not learn n1.) The bank computes

σ = MSign(sk
(MS)
B , com) and sends it to the user. The latter computes SN1 =

fSN(n1, sk i), chooses randomness RSN1 , sets CSN1 = Enc(SN1;RSN1) and com-

putes a new signature σ′ = MSigEval(par, vk
(MS)
B , T, com, σ), which yields the

coin defined as c = (par, CSN1 , (n1, RSN1), σ′). A transformation T ∈ TCWith,

19



which takes as input m = com and outputs T (m) = CSN1 is described by
〈T 〉 = ((sk i, Ii, cert i), (n1, open), RSN1 , SN1). We define

T (com) =

CSN1 = Enc(SN1;RSN1) if Com(n1, sk i; open) = com
and SN1 = fSN(sk i, n1)

⊥ otherwise.

We define TCWith to be the set of all transformations of this form such that:

1. The certificate cert i is valid (i.e. it verifies under the bank’s verification key)
and correspond to the secret key sk i and Ii.

2. Randomness RSN1 belongs to the appropriate randomness space.

The class of allowed transformations Ttec: We allow users to apply a transfor-
mation in TCWith followed by any number of transformations in TCSpend. Thus,
we define the allowed class of transformations for the malleable signature scheme
used in our transferable e-cash to be the closure of Ttec = TCWith ∪ TCSpend.

4.3 A Transferable E-Cash Construction

Below we describe a transferable e-cash scheme based on malleable signatures.
For our construction we assume secure channels for all the communications, thus
an adversary cannot overhear or tamper with the transferred messages.

ParamGen(1λ): Compute parMS ← MSGen(1λ), parSN ← GenSN (1λ), parcom ←
ComSetup(1λ). Output par := (1λ, parMS , parcom, parSN ).

UKeyGen(par): Output a random pair (pkU , skU ) sampled from Rpk .

BKeyGen(par): Run (vk
(MS)
B , sk

(MS)
B ) ← MSKeyGen(1λ) and (vk

(S)
B , sk

(S)
B ) ←

SKeyGen(1λ) and define the bank’s withdrawal keys as pkW = (vk
(MS)
B , vk

(S)
B )

and skW = (sk
(MS)
B , sk

(S)
B ). Sample a deposit key (pkD, skD)← EKeyGen(1λ)

and output ((pkW , skW), (pkD, skD)). The bank maintains a list UL of all
registered users and a list DCL of deposited coins.

Registration(B[skW , pkU ],U [skU , pkW ]): If pkU ∈ UL, the bank outputs ⊥.
Otherwise, it computes certU = Sign

sk
(S)
B

(pkU , IDU ), where IDU = |UL|+ 1,

adds (pkU , cert , IDU ) to the user list UL and returns (certU , IDU ).

Withdraw(B[skW , pkU ],U [skU , pkW ]): The user picks a nonce n1 and sends

com = Com(n1, skU ; open). B computes σ ← MSign(parMS , sk
(MS)
B , com),

sends it to the user and outputs ok. If MSVerify(parMS , pk
(MS)
B , σ, com) = 0,

the user outputs ⊥; otherwise she sets SN1 = fSN(n1, skU ), chooses ran-
domness RSN1 and computes CSN1 = Enc(SN1;RSN1). Then she sets 〈T 〉 =
((sk i, cert i), (n1, open), RSN1 , SN1) and computes the new signature σ′ =

MSigEval(parMS , vk
(MS)
B , T, com, σ). The output is the coin c =

(
par, CSN1 ,

(n1, RSN1), σ′
)
.

20



Spend(U1[c, skU1 , certU1 , pkW ],U2[skU2 , pkW ]): Parse the coin as

c =
(
par, (CSNi

, CDSi−1
), (ni, RSNi), σ

)
.

U2 picks a nonce ni+1, computes SNi+1 = fSN(ni+1, skU2) and sends it to U1.
U1 computes the double-spending tag DSi = fDS(IDU , ni, skUi , SNi+1) and
defines the transformation

〈T 〉 =
(
(skU1 , certU1), (ni, RSNi , RSNi+1 , RDSi , R), SNi+1

)
.

Next, he computes CSNi+1
= Enc(SNi+1;RSNi+1

) and CDSi = Enc(DSi;RDSi),
which he appends to the randomized ciphertext contained in c:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1

;R′i−1) ‖ CDSi

U1 computes σ′ = MSigEval
(
par, vk

(MS)
B , T, (CSNi+1

, CDSi
), σ
)

and then sends
(σ′, Ri+1, (CSNi+1

, CDSi
)) to U2.

If MSVerify
(
parMS , pk

(MS)
B , σ′, (CSNi+1

, CDSi
)
)

= 0 then U2 aborts. Otherwise,

U2 outputs c′ =
(
par, (CSNi+1

, CDSi
), (ni+1, RSNi+1

), σ′
)
.

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]): First, U runs a Spend proto-
col with the bank being the receiver: Spend(U [c, skU , certU1 , pkW ],B[⊥, pkW ])
(the bank can set the secret key to ⊥, as it will not transfer this coin). If
the protocol did not abort, B holds a valid coin c =

(
par, (CSNi

, CDSi−1
), (ni,

RSNi), σ
)
. Next, using skD, B decrypts the serial number SNi = SN1 ‖ · · · ‖ SNi

and the double-spending tags DSi−1 = DS1 ‖ · · · ‖ DSi−1. It checks if in DCL
there exists another coin c′ with SN′1 = SN1; if not, it adds the coin to DCL.
Otherwise, a double-spending must have happened and the bank looks for the
first position d, where SN′d 6= SNd. (Except with negligible probability such
a position exists, since SNi was chosen by the bank.) It applies the double-
spending detection function fDetectDS on the corresponding double-spending
tags DSd−1 and DS′d−1. If fDetectDS outputs ⊥ then B aborts. Otherwise, it
outputs (pkU , Π) = fDetectDS(DSd−1, DS

′
d−1,UL).

VerifyGuilt(pkU , Π): it outputs 1 if the proof Π verifies and 0 otherwise.

The proof of the following can be found in the full version [BCFK15].

Theorem 1. If the malleable signature scheme (MSGen, MSKeyGen, MSign,
MSVerify,MSigEval) is simulatable, simulation-unforgeable and simulation-hiding
w.r.t. T , the signature scheme (SKeyGen,Sign,Verify) is existentially unforgeable,
the randomizable public-key encryption scheme (EKeyGen, Enc, REnc,Dec) is se-
mantically secure and statistically re-randomizable, and the commitment scheme
(ComSetup,Com) is computationally hiding and perfectly binding, then the con-
struction in Section 4.3 describes a secure and anonymous transferable e-cash
scheme as defined in Section 2.

21



4.4 Why Malleable Signatures

Let us discuss why our construction requires the use of this powerful primi-
tive. Malleable signatures satisfy a strong notion of unforgeability, called simu-
lation unforgeability (See the full version [BCFK15]). In brief, it requires that
an adversary who can ask for simulated signatures and then outputs a valid
message/signature pair (m∗, σ∗) must have derived the pair from received sig-
natures. This is formalized by requiring that there exists an extractor that from
(m∗, σ∗) extracts messages ~m that were all queried to the signing oracle and a
transformation T such that m∗ = T (~m).

Among the anonymity notions considered in the literature, Spend-then-Re-
ceive (StR) anonymity (defined on page 12) is the hardest to achieve. Recall
that it formalizes that an adversary should not be able to recognize a coin
he had already owned before. Intuitively, our scheme satisfies it, since a coin
only consists of ciphertexts, which are re-randomized, and a malleable signature,
which can be simulated. However, when formally proving the notion we have
to provide a Deposit oracle, which we have to simulate when reducing to the
security of the encryptions. Here we make use of the properties of malleable
signatures, which allow us to extract enough information to check for double-
spendings—even after issuing simulated signatures (see the proof of Theorem 1
in the full version [BCFK15]).

The scheme by Blazy et al. [BCF+11] also claims to achieve StR anonymity.
In their scheme a coin contains Groth-Sahai (GS) commitments ~c to the serial

number, additional (ElGamal) encryptions ~d of it and a GS proof that the val-

ues in ~c and ~d are equal. The bank detects double-spending by decrypting ~d.
In their proof of StR anonymity by game hopping, they first replace the GS
commitments and proofs by perfectly hiding ones and then simulate the proofs.
(Double-spending can still be checked via the values ~d.) Finally they argue that
in the “challenge spending via Spd in the experiment, we replace the commit-
ments/encryptions dni [. . . ] by random values.”

It is not clear how this can be done while still simulating the Deposit oracle,
which must check for double-spendings: a simulator breaking security of the
encryptions would not know the decryption key required to extract the serial
number from ~d. (One would have to include additional encryptions of the serial
number and use them for extraction—however, for this approach to work, the
proof guaranteeing that the encryptions contain the same values would have to
be simulation-sound (cf. [Sah99]), which contradicts the fact that they must be
randomizable.)

5 Instantiation

In order to instantiate our scheme we need to make concrete choices for a mal-
leable signature scheme which supports the allowable transformations TCSpend

and TCWith, a signature scheme for the signing of certificates, a randomizable
public-key encryption scheme, a commitment scheme (ComSetup,Com) and a
zero-knowledge proof system 〈P, V 〉.

22



Chase et al. [CKLM14] provide a generic construction of malleable signatures
based on cm-NIZKs [CKLM12], which suits our requirements. There exist two
constructions of cm-NIZKs, both due to Chase et al.: the first [CKLM12] is based
in Groth-Sahai proofs [GS08], the second [CKLM13] is less efficient but simpler
and is based on succinct non-interactive arguments of knowledge (SNARKs) and
fully homomorphic encryption. The SNARK-based construction directly gives a
feasibility result, as long as there is some constant maximum on the number of
times a given coin can be transferred. To achieve an efficient instantiation, one
could instead use the Groth-Sahai instantiation.

In the full version [BCFK15] we present an instantiation of our construc-
tion based on Groth-Sahai. We show that our relation and transformations are
CM-friendly, which means that all of the objects (instances, witnesses and trans-
formations) can be represented as elements of a bilinear group so that the system
is compatible with Groth-Sahai proofs. To achieve that we need to slightly mod-
ify our construction, in order to map elements of Zp (like ni, sk i, Ii) into the
pairing group for the transformation. (This can be done fairly simply, with-
out affecting security.) Finally, for the remaining building blocks, we use the
structure-preserving signature [AFG+10] due to Abe et al. [ACD+12] and El
Gamal encryption scheme [ElG85] for both encryption and commitments.

References

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi she-
lat, and Brent Waters. Computing on authenticated data. In TCC, 2012.

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. In ASIACRYPT,
2012.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In CRYPTO, 2010.

[ALP12] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing
on authenticated data: New privacy definitions and constructions. In ASI-
ACRYPT, 2012.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

[BCF+11] Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé
Sibert, and Jacques Traoré. Achieving optimal anonymity in transferable e-
cash with a judge. In AFRICACRYPT, 2011. Available at http://crypto.
rd.francetelecom.com/publications/p121.

[BCFK15] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf
Kohlweiss. Anonymous transferable e-cash. Cryptology ePrint Archive,
2015. http://eprint.iacr.org/.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In IEEE S&P, 2014.

[BCKL09] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact e-cash
and simulatable VRFs revisited. In Pairing, lncs. SV, 2009.

23



[Bla08] Marina Blanton. Improved conditional e-payments. In ACNS, 2008.
[Bra93] Stefan Brands. Untraceable off-line cash in wallets with observers (extended

abstract). In CRYPTO, 1993.
[CFN88] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In

CRYPTO, 1988.
[CG08] Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In

ACNS, 2008.
[CGT08] Sébastien Canard, Aline Gouget, and Jacques Traoré. Improvement of

efficiency in (unconditional) anonymous transferable e-cash. In FC, 2008.
[Cha83] David Chaum. Blind signature system. In CRYPTO, 1983.
[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-

cash. In EUROCRYPT, 2005.
[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. Malleable proof systems and applications. In EUROCRYPT, 2012.
[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. Succinct malleable NIZKs and an application to compact shuffles. In
TCC, 2013.

[CKLM14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meik-
lejohn. Malleable signatures: New definitions and delegatable anonymous
credentials. In IEEE CSF, 2014.

[CP92] David Chaum and Torben Pryds Pedersen. Transferred cash grows in size.
In EUROCRYPT, 1992.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO, 1985.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable
constant-size fair e-cash. In CANS, 2009.

[Fuc11] Georg Fuchsbauer. Commuting signatures and verifiable encryption. In
EUROCRYPT, 2011.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In EUROCRYPT, 2008.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-
coin: Anonymous distributed e-cash from bitcoin. In IEEE S&P, 2013.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash. bit-
coin.org/bitcoin.pdf, 2008.

[OO89] Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge authenti-
cations and their applications to untraceable electronic cash. In CRYPTO,
1989.

[OO91] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In
CRYPTO, 1991.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In FOCS, 1999.

[vAE90] H. van Antwerpen and Technische Universiteit Eindhoven. Off-line Elec-
tronic Cash. Eindhoven University of Technology, 1990.

24


