
Leakage-Resilient Signatures
with Graceful Degradation

Jesper Buus Nielsen1, Daniele Venturi2?, and Angela Zottarel1

1 Aarhus University
2 Sapienza University of Rome

Abstract. We investigate new models and constructions which allow
leakage-resilient signatures secure against existential forgeries, where the
signature is much shorter than the leakage bound. Current models of
leakage-resilient signatures against existential forgeries demand that the
adversary cannot produce a new valid message/signature pair (m,σ)
even after receiving some λ bits of leakage on the signing key. If |σ| ≤ λ,
then the adversary can just choose to leak a valid signature σ, and hence
signatures must be larger than the allowed leakage, which is impractical
as the goal often is to have large signing keys to allow a lot of leakage.
We propose a new notion of leakage-resilient signatures against existen-
tial forgeries where we demand that the adversary cannot produce n =
bλ/|σ|c+ 1 distinct valid message/signature pairs (m1, σ1), . . . , (mn, σn)
after receiving λ bits of leakage. If λ = 0, this is the usual notion of exis-
tential unforgeability. If 1 < λ < |σ|, this is essentially the usual notion
of existential unforgeability in the presence of leakage. In addition, for
λ ≥ |σ| our new notion still guarantees the best possible, namely that
the adversary cannot produce more forgeries than he could have leaked,
hence graceful degradation.
Besides the game-based notion hinted above, we also consider a variant
which is more simulation-based, in that it asks that from the leakage
a simulator can “extract” a set of n − 1 messages (to be thought of as
the messages corresponding to the leaked signatures), and no adversary
can produce forgeries not in this small set. The game-based notion is
easier to prove for a concrete instantiation of a signature scheme. The
simulation-based notion is easier to use, when leakage-resilient signatures
are used as components in larger protocols.
We prove that the two notion are equivalent and present a generic con-
struction of signature schemes meeting our new notion and a concrete
instantiation under fairly standard assumptions. We further give an ap-
plication, to leakage-resilient identification.

1 Introduction

The problem of message authentication is one of the most basic in cryptography.
Alice wants to transmit a message m to Bob via an insecure channel, with the
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guarantee that the message will reach the destination without any modification
by a third party on the communication channel. In a world where public-key
cryptography exists the latter can be achieved via a digital signature: Before
sending m, Alice computes a signature σ (via her signing key sk) of the message,
and transmits (m,σ) over the channel. The idea is that Bob can later verify
the signature using Alice’s verification key vk , and thus establish whether the
received message is consistent with the original.

Traditionally, security of signatures schemes (and other primitives) is mod-
eled in a black-box fashion where an adversary can only access the algorithms
underlying the scheme as a black-box. For instance, in the case of a signature
scheme, we require that no computationally bounded adversary is able to forge
a signature of a message (with respect to some verification key vk) even given
black-box access to an oracle returning signatures of arbitrarily chosen messages
(computed via the signing key corresponding to vk).3 However, as pointed out
by recent research, the model above might be too restrictive, in that in prac-
tice there are several ways by which an adversary can learn partial information
(a.k.a. leakage) on the secrets used within a cryptographic primitive, and thus
easily step out of the security model. This includes so-called side-channel attacks,
based on timings [27], power analysis [28] and electromagnetic radiation [35].

A large body of work has extended standard cryptographic definitions such
that they can capture different flavours of security against leakage, both in the
game-based setting (e.g. [13, 33, 1, 30, 24, 14, 8, 10, 11, 6]) and in the simulation-
based setting [17, 21, 4, 31]. In the case of a signature scheme, a simple extension
of the black-box setting requires that no computationally bounded adversary is
able to forge a signature of a message (with respect to some verification key
vk) even given black-box access to an oracle returning signatures on arbitrarily
chosen messages (computed via the signing key corresponding to vk) and to a
leakage oracle returning bounded (but otherwise arbitrary) information on the
signing key sk . This is often referred to as the bounded leakage model, and on
this we focus our work. See Section 1.2 for a discussion on other models.

The modeling above requires two necessary limitations. The first limitation
is that the total amount of leakage must be smaller than the length of the signing
key, as otherwise the entire key can be learned by the adversary, leaving no hope
for security. The second limitation is that a signature has to be longer than the
leakage bound, as otherwise a leakage query can just leak a forgery which is a
valid attack against the security definition. A similar issue was already observed
by Alwen, Dodis and Wichs [1], in their work on leakage-resilient public-key
cryptography in the so-called bounded retrieval model. In this setting, the secret
key is made intentionally large (say, 100 gigabytes) such that it may be infeasi-
ble/impractical for the attacker to download “too much” data (say, more than 1
gigabytes). Still, the length of the public key and the computational overhead are
essentially independent from the size of the secret key. For the very same reason
pointed out above, no signature scheme can be proven existentially unforgeable

3 The restriction is of course that the forgery should not correspond to one of the
messages asked to the oracle.



in the bounded retrieval model, as the leakage could simply consist of a forgery.
To tackle this issue the authors in [1] considered a weaker notion, which they
name entropic unforgeability, where, after the leakage phase, the adversary is
required to forge the signature of a message sampled from a (potentially adver-
sarially chosen) distribution of high enough min-entropy (given the entire view
of the adversary). [1] then shows that entropic unforgeability can be achieved in
the random oracle model [3], by applying the Fiat-Shamir transform [16] to a
certain class of interactive protocols.

In this work we propose more granular ways to model (bounded) leakage
resilience for signature schemes where the length of the signature is smaller
than the length of the secret key. In a nutshell, our simplest notion says that
an adversary leaking λ bits will always be able to produce bλ/|σ|c forgeries,
but not more than that. At first glance it may seem that our notion gives a
weaker guarantee. However, the number of forgeries the adversary is required to
produce strictly depends on the actual leakage, so if an adversary asks for no
leakage (i.e. we are in the black-box model), our notion is equivalent to standard
existential unforgeability, as now bλ/|σ|c = 0. On the other hand, when leakage
does happen, our definition offers a graceful degradation of security and, as we
argue in more details below, still allows for interesting, non-trivial, applications.

1.1 Our Contribution

We investigate new models and constructions which allow leakage-resilient sig-
natures secure against existential forgeries, where the signature is much shorter
than the leakage bound. Our main contributions are discussed in detail below.

One-more unforgeability. As a first contribution, we state a variant of leakage
resilience for signature schemes where the length of the secret key is much larger
than the length of a signature.4 We name our notion one-more unforgeability,
since it has a similar flavour to the unforgeability notion for blind signatures [34].
The attacker (given the verification key vk) can access a signing oracle and a
leakage oracle; at the end he has to output n forgeries (m1, σ1), . . . , (mn, σn)
and wins the game if and only if all the forgeries are valid, the messages are
pairwise distinct, and n is strictly larger than the number of forgeries one could
have leaked via leakage queries. See Section 3 for a precise definition.

We also formulate a seemingly stronger variant, which we name constrained -
one-more unforgeability. Here we introduce a simulator S which first looks at the
state of the adversary A after the leakage phase ended and then defines a set of
messages Q∗ of size strictly smaller than n, as defined above. A signature scheme
is secure in this setting if, for all A, there exists such a simulator for which A is
not able to forge a message which is not contained in Q∗ (and was not already
asked to the signing oracle). This captures the intuition that the forgeries are

4 Note that this in general encompasses schemes with short signatures, and not nec-
essarily signature schemes in the bounded retrieval model.



already fixed after the leakage is ended, and the adversary is “constrained” in
the sense that those are the only messages for which he can forge.5

We show that one-more unforgeability and constrained-one-more unforge-
ability are equivalent. The tricky direction is to show that the former implies
the latter. The intuition is using an adversary breaking constrained-one-more
unforgeability and rewinding him to obtain a sufficiently large set of forgeries: if
at each rewinding we use a strictly larger set Q∗ (including all previous forgeries
output by the adversary), after n steps we end-up with n forgeries which allow
to break one-more unforgeability. The actual analysis is more involved, as we
need to take care of the fact that we are rewinding the adversary at the point
where he is already committed to the leakage.

A construction. As a second contribution we present a scheme achieving one-
more-unforgeability, based on a perfectly hiding (homomorphic) commitment
scheme and a non-interactive zero knowledge argument of knowledge system.

The secret key consists of the coefficients δi of a d-degree polynomial δ(·) over
a finite field, together with the openings ri for the commitments comi to δi. The
verification key consists of the set of all comi together with a common reference
string for the argument system. To sign a message m, we compute δ(m) and
we produce a zero-knowledge argument of knowledge that the evaluation of the
polynomial was performed correctly using the coefficients whose commitments
are in the verification key. The signature consists of such an argument.

We prove that the scheme is one-more unforgeable whenever the commit-
ment is perfectly hiding (and computationally binding), as long as the leakage
is smaller than (1/2− o(1)) · |sk |. We also show a particular instantiation, using
standard building blocks such as Pedersen commitments [32] and Groth-Sahai
proofs [19, 20]. Security follows from the DLIN assumption [5]. We remark that
for our concrete instantiation it is indeed the case that the length of a signature
is essentially independent of the length of the secret key.

Application to identification protocols. Besides being a notion of theoretical in-
terest, we also show that one-more unforgeability can be applied in the context
of identification protocols. We focus on the public-key setting, where a prover P
wants to be identified from a verifier V holding P’s public key.

Following [1], we define security in the presence of leakage by considering an
adversary having black-box access to the prover and to a leakage oracle (depend-

5 We note that constrained-one-more unforgeability is strictly stronger than entropic
unforgeability [1]. If a scheme is constrained-one-more unforgeable, then after the
leakage is done, a poly-sized set of messages Q∗ is defined and the adversary cannot
forge for a message outside Q∗, whereas a high entropy message will hit inside Q∗

with negligible probability. On the other hand consider a signature scheme where a
signature is given as σ = Π−1(m) for a one-way trapdoor permutation Π hard to
invert on high-entropy m. Such a scheme is entropic secure in the presence of λ = 0
bits of leakage, by definition, but is clearly not constrained-one-more unforgeable in
the presence of λ = 0 bits of leakage, as the adversary can always sample one more
random message/signature pair as m = Π(σ) for random σ.



ing on the prover’s secret key) in a first phase. In a second phase the adversary
is given one chance to convince the verifier. The above notion is reminiscent of
so-called active security [23, 25].

We show that the classical protocol for public-key identification, where the
verifier challenges the prover with a random message and the prover has to
respond with a signature on that message, achieves the above notion of ac-
tive security6 with leakage, provided that the underlying signature scheme is
constrained-one-more unforgeable.

1.2 Other Related Work

In this work (similarly to [1, 10, 15]) we focus on bounded leakage resilience, i.e.,
we assume that there is an a-priori upper bound on the length of the maximum
tolerated leakage. Furthermore, we consider a setting where the leakage can only
depend on the signing key and not on the full state of the signer (including, e.g.,
the signer’s random coins). A strictly stronger notion of fully leakage-resilient
signatures (where the leakage is bounded but can depend on the entire state of
the signer) was considered in [24, 6].

In the continual leakage setting [7, 9, 29, 6], there is no a priori bound on the
length of the leakage. This requires an efficient procedure to update the secret
key (while leaving the public key unchanged), and to assume that the leakage is
bounded only between two updates (and during the update process itself).

An independent line of research (see, e.g. [22, 26]) aims at constructing sig-
nature schemes (in the black-box model) which are as short as possible. Even
though this is not our purpose, we believe that our notions could have interesting
implications in this setting, when studying leakage resilience of such schemes.

2 Preliminaries

2.1 Notation

For a, b ∈ R, we let [a, b] = {x ∈ R ; a ≤ x ≤ b}; for a ∈ N we let [a] =
{1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x← X . When A is an algorithm, we write y ← A(x) to denote a run of A on
input x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ denote the security parameter. We say that
a function ν : N→ R is negligible in the security parameter κ if ν(κ) = κ−ω(1).
For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y if they

6 In fact, as argued in [2], without leakage the signature based protocol is even secure
against man-in-the-middle attacks. It is not hard to see, however, that our result
does not extend to man-in-the-middle security.



are identically distributed and X ≈s Y to denote that the statistical distance
between the two distributions is negligible in the security parameter. We say that
X and Y are computationally indistinguishable if for all PPT distinguishers D
it holds that |P [D(1κ, X) = 1]− P [D(1κ, Y ) = 1]| is negligible in κ.

The min-entropy of a random variable X over a set X is defined as H∞(X) :=
− log maxx P [X = x] and represents the best chance of guessing X by an un-
bounded adversary. Average min-entropy captures how hard it is to guess X on
average, given some side information Z (possibly related to X):

H̃∞(X|Z) = − logEz
[
max
x

P [X = x|Z = z]
]
.

The min-entropy of a distribution conditioned to some side information cannot
decrease more than the bit-length of the side information itself:

Lemma 1 ([12]). For all random variables X ∈ X and Λ ∈ {0, 1}λ we have

that H̃∞(X|Λ) ≥ H∞(X)− λ.

We let O`(s) be an oracle parametrized by a value s, which takes as input
efficiently computable functions f : {0, 1}∗ → {0, 1}∗ and outputs f(s), returning
a total of at most ` bits.

2.2 Commitment Schemes

A (non-interactive) commitment scheme COM is a tuple of algorithms (Setup,
Commit), defined as follows: (1) Algorithm Setup takes as input the security
parameter and outputs a public key pk ; (2) Algorithm Commit takes as input
a message m ∈ M, randomness r ∈ R, the public key pk and outputs a value
com ∈ C. To open a commitment com we output (m, r); an opening is valid if
and only if com = Commit(m; r).

A commitment scheme has two properties, known as binding and hiding. In
Section 4 we need a scheme with the following flavour.

Computationally Binding : For any PPT adversary A, the following is neg-
ligible:

P
[
Commit(m0; r0) = Commit(m1; r1) :

pk ← Setup(1κ);
((m0, r0), (m1, r1))← A(pk)

]
.

Statistically Hiding : For all messages m0,m1 ∈M, we have that

{pk ,Commit(pk ,m0)}κ∈N ≈s {pk ,Commit(pk ,m1)}κ∈N,

where the two ensembles are considered as random variables over the choice
of the randomness to generate pk ← Setup(1κ) and to compute the com-
mitment. If the two ensembles are identically distributed, we say that the
commitment is perfectly hiding.



Whenever M and R are a finite field F, we say that COM is linearly homo-
morphic in the following sense: Given commitments com and com ′ and a field
element c ∈ F, one can compute commitments com∗ and com ′′ such that being
able to open com and com ′ to m and m′ (respectively) allows to open com∗ to
m + m′ and com ′′ to c ·m. We will write the mapping (com, com ′) 7→ com∗ as
com ·com ′ and the mapping (c, com) 7→ com ′′ as comc. Similarly, for the opening
information we will write the mappings as com∗ = Commit(pk ,m + m′; r + r′)
and com ′′ = Commit(pk , c ·m; c · r). The above can be generalized to abstract
operations over M, R and C, but for simplicity, and to be consistent with the
concrete instantiation given in Section 4.2, we stick to this formulation here.

2.3 Non-Interactive Zero-Knowledge Arguments of Knowledge

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the language associated with R is LR = {x :
∃w s.t. (x,w) ∈ R}. A non-interactive argument system NIZK for a relation R
is a tuple of algorithms (Init,Prove,Ver), defined as follows: (1) Algorithm Init
takes as input the security parameter and outputs a common reference string
crs← Init(1κ); (2) Algorithm Prove takes as input a pair (x,w) such that (x,w) ∈
R and outputs an argument π; (3) Algorithm Ver takes as input a pair (x, π)
and outputs a judgement in {0, 1}.

We require the following properties for NIZK [36, 10].

Completeness: For every (x,w) ∈ R we have that

Pr[Ver(crs, (x, π)) = 1 : crs← Init(1κ);π ← Prove(crs, (x,w))] ≥ 1− negl(κ).

Multi-theorem zero-knowledge: There exists a PPT simulator Sim = (Sim1,
Sim2) such that, for all PPT adversaries A, the ensembles {Real(κ)}κ∈N and
{Simu(κ)}κ∈N are computationally close, where

Real(κ) :=
{
crs← Init(1κ); out ← AProve(crs,·)(crs)

}
Simu(κ) :=

{
(crs, tk)← Sim1(1κ); out ′ ← AS̃im2(tk ,·)(crs)

}
and S̃im2(tk , (x,w)) outputs Sim2(tk , x) if (x,w) ∈ R, and ⊥ otherwise.

Simulation extractability: There exists a PPT algorithm Xtr = (Xtr1,Xtr2)
such that, for all PPT adversaries A, we have that

P
[

(crs, tk , xk)← Xtr1(1k); (x, π)← ASim2(tk ,·)(crs);
w ← Xtr2(xk , (x, π)); (x,w) 6∈ R ∧ (x, π) 6∈ Q ∧ Ver(crs, (x, π)) = 1

]
is negligible, where the list Q contains the successful pairs (xi, πi) that A
has queried to Sim2. We say that NIZK is true simulation-extractable if

oracle Sim2(tk , x) is replaced by S̃im2(tk , (x,w)) that outputs the same as
Sim2(tk , x) if and only if (x,w) ∈ R (and outputs ⊥ otherwise).



3 One-More Unforgeability

A signature scheme is a triple of algorithms SS = (KGen,Sign,Verify) defined as
follows: (1) The key generation algorithm takes as input the security parameter
κ and outputs a verification key/signing key pair (vk , sk)← KGen(1κ); (2) The
signing algorithm takes as input a message m ∈ M and the signing key sk and
outputs a signature σ ← Sign(sk ,m); (3) The verification algorithm takes as
input the verification key vk and a pair (m,σ) and outputs Verify(vk , (m,σ)) ∈
{0, 1}. We denote by |σ| the size of a signature output via Sign(sk , ·).

Given a signature scheme SS, consider the following experiment Expone−more
SS,A (κ,

`, γ) running with a PPT adversary A and parametrized by the security param-
eter κ ∈ N, the leakage bound ` ∈ N and the slack parameter γ ∈ (0, 1]:

1. Compute (vk , sk)← KGen(1κ) and give vk to A.
2. The adversary A can adaptively access oracles Sign(sk , ·) and O`(sk , ·), where
O`(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information returned
by O` (with λ ≤ `), and we write Q for the set of messages A forwarded to
the signing oracle.

3. A outputs n pairs (m1, σ1), . . . , (mn, σn).
4. The experiment outputs 1 iff if the following conditions are satisfied:

(a) Verify(vk , (mi, σi)) = 1 and mi 6∈ Q, for all i ∈ [n].
(b) The messages m1, . . . ,mn are pairwise distinct.
(c) n ≥ bλ/(γ|σ|)c+ 1.

Definition 1 (One-more unforgeability). We say that SS = (KGen,Sign,
Verify) is (`, γ, ε)-one-more unforgeable if for every PPT adversary A we have
that P[Expone−more

SS,A (κ, `, γ) = 1] ≤ ε. Whenever ε is negligible in the security
parameter, we simply say that SS is (`, γ)-one-more unforgeable.

Remark 1 (on γ). The parameter γ specifies how close to optimal security SS is.
In particular, in case γ = 1 one-more unforgeability requires that A cannot forge
even a single signature more than what it could have leaked via leakage queries.
As γ decreases, so does the strength of the signature scheme (the extreme case
being γ = |M|−1, where we have no security).

Note that the number of signatures the adversary has to forge depends on the
length of the leakage he asks to see. In particular (`, γ)-one-more unforgeability
implies standard unforgeability for any adversary asking no leakage (λ = 0).

Finally, we remark that for any γ ∈ (0, 1] we have that (`, γ)-one-more un-
forgeability implies (`′, γ)-one-more unforgeability for all `′ ≤ `.

3.1 An Alternative Definition

Definition 1 may seem a weak security guarantee for a signature scheme, as an
adversary is able to forge a certain number of signatures. If the messages to
forge could be chosen at will at any time, this would be a rather useless security
guarantee. Here, we state a seemingly stronger flavour of one-more unforgeability



where a simulator can look at the state of the adversary after he is done with
leakage queries and output a set Q∗ ⊂ M, of size less than n, thought of as
the messages corresponding to the forgeries leaked so far; now the adversary is
successful if he can produce a forgery for a message of his choice not contained
in Q∗ (and not already asked to the signing oracle). In a certain sense, we get a
notion that is similar to the standard unforgeability notion, with the twist that
the adversary can ask a few extra signing queries (via leakage queries, though).

Given a signature scheme SS, consider the experiment Exppoly−sim−one−more
SS,A,S (κ,

`, γ) below, running with a PPT adversary A = (A1,A2) and a PPT simulator
S and parametrized by the security parameter κ ∈ N, the leakage bound ` ∈ N
and the slack parameter γ ∈ (0, 1]:

1. Compute (vk , sk)← KGen(1κ) and give vk to A.
2. The adversary A1 can adaptively access oracles Sign(sk , ·) and O`(sk , ·),

where O`(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information
returned by O` (with λ ≤ `), and we write Q for the set of messages A1

forwarded to the signing oracle.
3. Let st be the state of A1 at the end of step 2 above, i.e., all his inputs, all his

random choices, and all replies from the oracles. The simulator is given st
and outputs Q∗ ← S(1κ, vk , st) such that Q∗ ⊂M and |Q∗| ≤ bλ/(γ|σ|)c.

4. A2 is given Q∗ and st and outputs a forgery (m∗, σ∗).
5. The experiment outputs 1 iff Verify(vk , (m∗, σ∗)) = 1 and m∗ 6∈ Q ∪ Q∗.

Definition 2 (Poly-constrained one-more unforgeability). We say that
SS = (KGen,Sign,Verify) is (`, γ, ε)-poly-constrained one-more unforgeable if
for every PPT adversary A there exists a PPT simulator S such that

P[Exppoly−sim−one−more
SS,A,S (κ, `, γ) = 1] ≤ ε.

Whenever ε is negligible in the security parameter, we simply say that SS is
(`, γ)-poly-constrained one-more unforgeable.

3.2 Yet Another Alternative Definition

Definition 2 requires that Q∗ can be computed in poly-time, effectively requiring
that the adversary knows the small set of forgeries he leaked. In most applications
we are aware of, it seems, however, enough that such a small set exists. And,
there seems to be a difference between these notions. Consider an adversary who
leaks a few values of the form vi = H(mi)⊕ σi, where H is a hash function, for
random messages mi (with i ∈ [n]) and σi a signature on mi. Given any mi as
input it can compute a “forgery” σi = vi⊕H(mi), but until it is given mi it does
not know the set of messages it can forge signatures on, at least it would be hard
to compute this set efficiently in a black-box manner. We formulate a security
notion which still considers leakage of a few such “unknown” σi as benign.

We simply restate Definition 2, but we now allow S unbounded computing
time. We can massage this relaxed definition a bit to get a simpler, equivalent
definition. Consider the following generic simulator Smin(1κ, vk , st): it iterates



over all Q∗ ⊂M with |Q∗| ≤ bλ/(γ|σ|)c and computes the probability pQ∗ that
A2(Q∗, st) outputs (m∗, σ∗) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ 6∈ Q∪Q∗.
It then outputs the Q∗ minimizing pQ∗ . It is clear that if for some adversary
A there exists an unbounded simulator S fulfilling Definition 2 for A, then also
Smin will fulfil Definition 2 for A. Hence we can equivalently hardwire Smin into
the definition. If we at the same time use that the expected value of a random
value over {0, 1} is equal to the probability that it is 1, we get the below more
compact definition. Consider the following experiment Expsim−one−more

SS,A (κ, `, γ):

1. Compute (vk , sk)← KGen(1κ) and give vk to A1.
2. The adversary A1 can adaptively access oracles Sign(sk , ·) and O`(sk , ·),

where O`(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information
returned by O` (with λ ≤ `), and we write Q for the set of messages A1

forwarded to the signing oracle.
3. Let st be the state of A1 at the end of step 2 above.
4. Output

min
Q∗⊂M:

|Q∗|≤bλ/(γ|σ|)c

(P[(m∗, σ∗)← A2(Q∗, st) : Verify(vk , (m∗, σ∗))∧m∗ 6∈ Q∪Q∗]) .

Definition 3 (Constrained one-more unforgeability). We say that SS =
(KGen,Sign,Verify) is (`, γ, ε)-constrained one-more unforgeable if it holds that
E[Expsim−one−more

SS,A (κ, `, γ)] ≤ ε for every PPT adversary A, where the expected
value is over the random choices used to generate (vk , sk) and the random choices
of A1. Whenever ε is negligible in the security parameter, we simply say that SS
is (`, γ)-constrained one-more unforgeable.

3.3 Equivalence of two Definitions

We argue below that one-more unforgeability and constrained-one-more unforge-
ability are equivalent. It is clear that security under Definition 2 implies security
under Definition 3. We conjecture that Definition 3 is strictly weaker than Def-
inition 2.

Theorem 1. Definition 1 and Definition 3 are equivalent up to a constant factor
4 in security.

Proof. For space reasons, we prove only that Definition 1 implies Definition 3;
the proof of the other direction can be found in the full version. We give a
proof by contradiction. Assume there exists a polynomial ε and PPT adversary
A′ = (A′1,A

′
2) such that E[Expsim−one−more

SS,A′ (κ, `, γ)] > ε for infinitely many values
of κ.

Since 0 ≤ E[Expsim−one−more
SS,A′ (κ, `, γ)] ≤ 1 this implies that P[Expsim−one−more

SS,A′ (κ,
`, γ) ≥ ε/2] ≥ ε/2 for infinitely many values of κ. Let E be the event that
P[Expsim−one−more

SS,A′ (κ, `, γ) ≥ ε/2].

We now describe A, running in experiment Expone−more
SS,A (κ, `, γ). When reading

the description keep in mind that it is defined to work when E occurs.



1. Receive the verification key vk and initialize Q∗ = ∅.
2. Run A′1(1κ, vk) and simulate leakage queries and signature queries using

oracles O`(sk , ·) and Sign(sk , ·). Let Λ ∈ {0, 1}λ be the overall information
retrieved by A′1.

3. Define n := bλ/(γ|σ|)c+ 1. Repeat the following steps, for i = 1, . . . , n:
(a) Run 8(log2(n) + κ)/ε copies of A′2(1κ, st ,Q∗) in parallel. If any of the

copies outputs (m∗i , σ
∗
i ) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ 6∈

Q ∪ Q∗, then go to the next step, otherwise give up and terminate.
(b) Set Q∗ := Q∗ ∪ {m∗i } for one of the forgeries from above.

4. Output (m∗1, σ
∗
1), . . . , (m∗n, σ

∗
n).

Assume that E occurs. Then the probability that any copy A′2(1κ, st ,Q∗) in
Step 1 outputs (m∗i , σ

∗
i ) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ 6∈ Q ∪ Q∗ is

≥ ε/2. Hence one of the copies will output such (m∗i , σ
∗
i ), except with probability

2− log2(n)−κ, by construction. Thus, by a union bound, the probability that A
gives up in any of the iterations is at most n · 2− log2(n)−κ = 2−κ.

Clearly, when A does not give up in any of the iterations, we have that
Expone−more
SS,A (κ, `, γ) = 1. Hence P[Expone−more

SS,A (κ, `, γ) = 1] ≥ P[E](1 − 2−κ) =

ε(1− 2−κ)/2 > ε/4 for infinitely many values of κ. This concludes the proof as
A is PPT.

4 Construction

We give a construction of a one-more unforgeable signature scheme (cf. Defini-
tion 1) based on the following building blocks:

– A non-interactive zero knowledge argument of knowledge system NIZK =
(Init,Prove,Ver).

– A perfectly hiding and computationally binding, linearly homomorphic7 com-
mitment scheme COM = (Setup,Commit), with message and randomness
space equal to a finite field F.

Our scheme SS = (KGen,Sign,Verify) has message space equal to F and is de-
scribed below:

Key Generation. Run pk ← Setup(1κ) and crs ← Init(1κ). For some parame-
ter d ∈ N, sample δ0, . . . , δd and r0, . . . , rd uniformly from F, and compute
commitments comi = Commit(pk , δi; ri) for i = 0, . . . , d. Let δ = (δ0, . . . , δd)
and r = (r0, . . . , rd); output sk = (δ, r) and vk = (crs, pk , {comi}di=0).

Signature. To sign a message m ∈ F, let δ(X) be the degree d polynomial

having δi’s as coefficients, i.e. δ(X) =
∑d
i=0 δi · Xi. Consider the following

polynomial-time relation:

R := {(pk , com∗); (m̃, r̃) : com∗ = Commit(pk , m̃; r̃)} .
7 For notational convenience, we assume that the product of commitments give com-

mitments to the sum of messages using the sum of the randomness as randomness,
à la Pedersen [32].



Compute m̃ = δ(m) and r̃ =
∑d
i=0 ri · mi. Note that both values m̃, r̃

can be computed efficiently as a function of the signing key (δ, r) and the
message to be signed. Using crs as common reference string, generate a NIZK
argument π that (pk ,

∏d
i=0(comi)

mi

) ∈ LR, the language generated by the
above relation R. Output σ = π.

Verification. Given a pair (m,σ), parse σ as σ = π and compute com∗ =∏d
i=0(comi)

mi

. Output the same as Ver(crs, π, (pk , com∗)).

Let us first argue that the signature scheme satisfies the correctness property.
This follows from the fact that COM is linearly homomorphic (cf. Section 2.2):

com∗ =

d∏
i=0

(comi)
mi

=

d∏
i=0

Commit(δi·mi; ri·mi) = Commit
( d∑
i=0

δi ·mi

︸ ︷︷ ︸
m̃

;

d∑
i=0

ri ·mi

︸ ︷︷ ︸
r̃

)
.

We prove the following result:

Theorem 2. Assume that COM is perfectly hiding and computationally bind-
ing, and that NIZK is a NIZK argument of knowledge system for relation R.
Then the scheme SS described above is (`, γ)-one-more unforgeable, as long as

` = d log |F| and γ =
log |F|
|σ|

.

4.1 Proof of Theorem 2

To prove the theorem we will rely on the following property of any perfectly
hiding commitment scheme COM = (Setup,Commit). Define the following ex-
periment ExpguessCOM,A(κ, `, d), featuring an unbounded adversary A:

1. Run pk ← Setup(1κ) and sample x1, . . . , xd ∈ M uniformly at random.
Compute comi = Commit(pk , xi; ri) and give ({comi}di=1, pk) to A. Store
s = ({xi}di=1, {ri}di=1).

2. The adversary can access adaptively oracle O`(s, ·). Let Λ ∈ {0, 1}λ be the
overall information retrieved by A (with λ ≤ `).

3. The adversary can open a subset of size t of (x1, . . . , xd): Given a set of
indexes (i1, . . . , it) such that each ij ∈ [d], the values ({xij}tj=1, {rij}tj=1)
are forwarded to A.

4. The experiment returns 1 if A outputs the remaining values xi, for all i ∈
[d] \ {i1, . . . , it}.

Lemma 2. Let COM = (Setup,Commit) be a perfectly hiding commitment
scheme with message space M. Then for every computationally unbounded ad-
versary A we have that

P
[
ExpguessCOM,A(κ, `, d) = 1

]
≤ 2λ

|M|d−t
.



The proof of Lemma 2 appears in the full version of this paper.
We now prove Theorem 2. Let A be a PPT machine running in experiment

Expone−more
SS,A (κ, `, γ). We recall how the experiment is held for our scheme SS.

1. The signing key sk = (δ, r) and the verification key vk = (pk , {comi}di=0)
are computed. In particular, pk ← Setup(1κ) and crs ← Init(1κ). Here, δ =
(δ0, . . . , δd)← Fd+1, comi = Commit(δi; ri) and r = (r0, . . . , rd)← Fd+1.

2. The adversary A is given vk and can access oracles Sign(sk , ·) and O`(sk , ·).
– The signing oracle Sign(sk ,m) computes m̃ =

∑d
i=0 δi · mi and r̃ =∑d

i=0 ri · mi, together with an argument π that (pk , com∗) ∈ LR for
com∗ = Commit(m̃; r̃); hence, it returns σ = π.

– The leakage oracle O`(sk , f) returns f(sk).
3. A outputs n pairs (m1, π1), . . . , (mn, πn).
4. The experiment outputs 1 iff the following conditions are satisfied:

(a) Verify(vk , (mi, σi)) = 1 and mi 6∈ Q, for all i ∈ [n].
(b) The messages m1, . . . ,mn are pairwise distinct.
(c) n ≥ bλ/(γ|σ|)c+ 1.

The proof proceeds by a series of games.

Game0. This is the real experiment, as described above.
Game1. This game is identical to Game0, but we replace the Init algorithm with

(crs, tk) ← Sim1(1κ). Moreover, each time a signing query for message m
is asked, we simulate the argument by running π ← Sim2(tk , (pk , com∗)).
Everything else remains the same.
By a standard argument, the multi-theorem zero-knowledge property of
the argument system implies that P [A wins Game0] is negligibly close to
P [A wins Game1].

Game2. This game is identical to Game1, but the common reference string is
sampled as (crs, tk , xk) ← Xtr1(1κ) and before outputting 1 we check that
all arguments contained in A’s forgeries can be extracted via Xtr2(xk , ·).
By a standard argument, (true) simulation extractability of NIZK implies
that P [A wins Game1] is negligibly close to P [A wins Game2].

Now, we show that P [A wins Game2] is negligible which proves the theorem.
Define the following event Bad in Game2: The event occurs whenever for at least
one of the forgeries (mj , σj) returned by A it holds that m̃′j 6=

∑d
i=0 δi · mi

j

for (m̃′j , r̃
′
j)← Xtr2(xk , πj). In other words, there exists a valid pair (mj , σj) for

which the extracted value m̃′j is not the evaluation of mj through the polynomial
δ(X) having δ as coefficients. We write

P [A wins Game2] ≤ P [A wins Game2 ∧ Bad ] + P
[
A wins Game2 ∧ Bad

]
≤ negl(κ),

where the last inequality comes from the two claims below.

Claim. P
[
A wins Game2 ∧ Bad

]
≤ 2λ/|F|n.



Proof. By contradiction, assume that P
[
A wins Game2 ∧ Bad

]
> 2λ/|F|n. We

build a PPT reduction B (running A) which wins the game of experiment
ExpguessCOM,B(κ, `, d+ 1) with at least the same advantage.

1. Given {comi = Commit(δi; ri)}di=0 as input, implicitly define sk := (δ, r),
where

δ = (δ0, δ1, . . . , δd) r = (r0, r1, . . . , rd).

Run (crs, tk , xk)← Xtr1(1κ) and give vk := (crs, pk , {comi}di=0) to A.
2. Whenever A asks a leakage query f to O`((δ, r), ·), forward the same query

to O`(s, ·) (where s = (δ, r)). Give to A the same value returned by O`(s).
3. Whenever A asks a signing query m to Sign(sk , ·), answer as follows. Simulate

an argument π ← Sim(tk , (pk , com∗)) where com∗ =
∏d
i=0(comi)

mi

. Give
σ = π to A.

4. Let (m1, σ1), . . . , (mn, σn) be the forgeries output by A. Ask to open the last
t := d+ 1−n values, i.e. ({δi}di=n, {ri}di=n). Set δ̃i = δi for each i = n, . . . , d.

5. For each of the values σi = πi returned by A compute (m̃′i, r̃
′
i)← Xtr2(xk , πi).

Solve the following linear system:1 m1 . . . m
n−1
1

. . .

1 mn . . . m
n−1
n

 ·
 δ0

...
δn−1

 =

 y0
...

yn−1

 , (1)

where each of the values yi is computed from known values as yi = m̃′i −∑d
j=n δ̃j ·m

j
i .

6. Output (δ1, . . . , δn).

Note that B perfectly simulates the environment for A in Game2. The choice of
the parameters γ = log |F|/|σ| and ` = d log |F| (as in the theorem statement),
ensures that 1 ≤ n ≤ d + 1. In particular, the total number of field elements

known by B is at most λ
log |F| +

(
d−

⌊
λ
γ|σ|

⌋)
< d + 1, and thus there is some

entropy left in the commitments.
Moreover, as the values (m1, . . . ,mn) are pairwise distinct, the matrix of

Eq. (1) has full rank and the linear system always admits a solution. Since the
event Bad does not happen, we have that m̃′i = m̃i = δ(mi) (for all i ∈ [n]), and
thus the solution (δ1, . . . , δn) corresponds to the same elements in the vector δ.
The above contradicts Lemma 2, as

P
[
ExpguessCOM,B(κ, `, d+ 1) = 1

]
≥ P

[
A wins Game2 ∧ Bad

]
>

2λ

|F|n
.

Claim. P [A wins Game2 ∧ Bad ] ≤ negl(κ).

Proof. Assume that P [A wins Game2 ∧ Bad ] > 1/poly(κ) for infinitely many κ.
We build an attacker C breaking the binding property of the commitment scheme
COM with non-negligible advantage. A description of C follows:



1. Receive the public parameter pk for COM. Choose δ0, . . . , δd ← F and
compute commitments comi = Commit(pk , δi; ri) for randomly chosen r0,
. . . , rd ← F. Generate (crs, tk , xk)← Xtr1(1κ).

2. Run A with input vk := (crs, pk , {comi}di=0) and answer signing/leakage
queries from A as it would be done in Game2.

3. When A outputs (m1, π1), . . . , (mn, πn), extract the witness (m̃′i, r̃
′
i) from

each argument of knowledge πi, for i ∈ [n].
4. If there exists an index j ∈ [n] such that m̃′j 6= δ(mj), compute com∗j =∏d

i=0(comi)
mi

j , m̃j =
∑d
i=0 δi · mi

j and r̃j =
∑d
i=0 ri · mi

j and output
(com∗j , (m̃j , r̃j), (m̃

′
j , r̃
′
j)); otherwise abort and output ⊥.

Notice that if Game2 outputs 1 and event Bad occurs, then C outputs a valid
pair breaking the binding property of COM with non-negligible probability (a
contradiction). This is because both (m̃j , r̃j) and (m̃′j , r̃

′
j) are valid openings for

com∗j and moreover Bad implies that (m̃j , r̃j) 6= (m̃′j , r̃
′
j).

4.2 A Concrete Instantiation

In this section we show how to instantiate our signature scheme, reducing secu-
rity to the DLIN assumption [5]. For each of the building blocks we present an
instantiation and concrete parameters.

In the following let G be a cyclic group of order a prime number q. Before
introducing our concrete construction, let us recall the DLIN assumption:

Definition 4. The DLIN assumption states that for any PPT algorithm A it
holds that∣∣P [A(G, (g, g1, g2, ga1 , gb2, gc)) = 1

]
− P

[
A(G, (g, g1, g2, ga1 , gb2, ga+b) = 1

]∣∣ ≤ negl(κ),

where g, g1, g2 ← G and a, b, c← Fq.

COM : We use Pedersen commitments. The setup algorithm Setup outputs
public parameters pk = (h1, h2), where h1 is a generator for G and h2 =
ha1 for a random a ∈ Fq. The commitment to an element m ∈ Fq using
randomness r ← Fq is computed as com = Commit(pk ,m; r) := hm1 · hr2.
Whenever we want to open the commitment, we reveal (m, r).
Note that Pedersen commitment is linearly homomorphic: given com1 =
Commit(m1; r1) and com2 = Commit(m2; r2) it holds that

com1 · com2 = hm1+m2
1 · hr1+r22 = Commit(m1 +m2; r1 + r2).

Moreover, for all constants c ∈ Fq we have that comc = hc·m1 · hc·r2 =
Commit(c ·m; c · r).

NIZK : Recall that our relation is as follows:

R = {(pk , com∗); (m̃, r̃) : com∗ = Commit(pk , m̃; r̃)} .



When using Pedersen commitment, we get

com∗ =

d∏
i=0

(comi)
mi

=

d∏
i=0

(
hδi+ari1

)mi

= h
∑d

i=0 δim
i+arim

i

1 = hm̃+a·r̃
1 .

Thus, we can reduce the proof of knowledge of an opening for com∗ to the
proof of knowledge of a discrete logarithm. Groth [18] gives a simulation-
extractable NIZK for proving knowledge of discrete logarithms of a group
element. We remark that the length of a proof is constant, and in particular
independent of the degree d of the polynomial.
Alternatively, as true simulation-extractability is sufficient for our construc-
tion, one could instantiate the NIZK using the transformation of [10], which
requires a standard (non-simulation-extractable) NIZK and a labeled CCA-
secure encryption scheme.

5 Application to Leaky Identification

We show how to apply one-more unforgeability to the context of (leaky) identi-
fication protocols. In a public key identification scheme a prover with public key
vk attempts to prove its identity to a verifier holding vk . More formally, an iden-
tification scheme ID = (PGen,KGen,P,V) consists of four PPT algorithms de-
scribed as follows: (1) The parameters generation algorithm takes as input the se-
curity parameter and outputs public parameters params← PGen(1κ), shared by
all users.8 (2) The key generation algorithm takes as input the security parame-
ter and outputs a verification key/secret key pair (vk , sk)← KGen(1κ). (3) P and
V are probabilistic Turing machines interacting in a protocol (P(sk) � V)(vk);
at the end of the execution V outputs a judgment d ∈ {0, 1}, where d = 1 means
that the identification was successful.

Following [1], we define a leaky variant of the standard notion of active se-
curity (dubbed active `-security under pre-impersonation attacks with leakage),
where an adversary, in a first stage, is given black-box access to the honest
prover, and in a second stage is given one shot to convince the verifier. In the
leaky case, during the first phase, the adversary can also access adaptively a
leakage oracle O`(sk).

We then show that the below standard way (see [2]) of constructing an identi-
fication scheme ID from a signature scheme SS = (KGen′,Sign,Verify), achieves
active `-security under pre-impersonation attacks with leakage provided that SS
is one-more unforgeable.

– Parameters generation. Algorithm PGen samples the public parameters params
for the signature schemes (if any).

– Key Generation. Algorithm KGen runs the key generation algorithm of the
signature scheme, obtaining (vk , sk)← KGen′(1κ).

8 In what follows all algorithms take as input params, but we omit to explicitly write
this for ease of notation.



– Identification protocol. The interaction is as follows: (a) The verifier sends
a random m∗ ← M to the prover; (b) The prover replies with σ∗ ←
Sign(sk ,m∗); (c) The verifier outputs Verify(vk , (m∗, σ∗)).

Theorem 3. Assume that SS is (`, γ)-constrained-one-more unforgeable. Then
ID from above is actively `-secure under pre-impersonation attacks with leakage.

For space reasons, a formal definition and a proof of the above theorem are
deferred to the full version of this paper.
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