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Abstract. We construct secret-key encryption (SKE) schemes that are
secure against related-key attacks and in the presence of key-dependent
messages (RKA-KDM secure). We emphasize that RKA-KDM security is
not merely the conjunction of individual security properties, but covers
attacks in which ciphertexts of key-dependent messages under related
keys are available. Besides being interesting in their own right, RKA-
KDM secure schemes allow to garble circuits with XORs very efficiently
(Applebaum, TCC 2013). Until now, the only known RKA-KDM secure
SKE scheme (due to Applebaum) is based on the LPN assumption. Our
schemes are based on various other computational assumptions, namely
DDH, LWE, QR, and DCR.
We abstract from Applebaum’s construction and proof, and formalize
three generic technical properties that imply RKA-KDM security: one
property is IND-CPA security, and the other two are the existence of
suitable oracles that produce ciphertexts under related keys, resp. of
key-dependent messages. We then give simple SKE schemes that achieve
these properties. Our constructions are variants of known KDM-secure
public-key encryption schemes. To additionally achieve RKA security,
we isolate suitable homomorphic properties of the underlying schemes in
order to simulate ciphertexts under related keys in the security proof.
RKA-KDM security for our schemes holds w.r.t. affine functions (over
the respective mathematical domain).
From a conceptual point of view, our work provides a generic and exten-
sible way to construct encryption schemes with multiple special security
properties.

Keywords: related key attacks, key-dependent message security, gar-
bled circuits.

1 Introduction

Motivation and overview. The standard notion of security for secret-key en-
cryption (SKE) is indistinguishability of ciphertexts (short: IND-CPA or IND-
CCA, depending on whether passive or active attacks are considered). However,
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in certain applications, ciphertext indistinguishability is not sufficient. For in-
stance, in harddisk encryption, encryptions of the secret key itself naturally
occur (see [25]). Security in the presence of such key-dependent messages (KDM
security [23]) is not implied by IND-CPA or IND-CCA security [23, 1]. There
are numerous other specialized notions of encryption scheme security, such as se-
curity under related-key attacks (RKAs [7]), leakage-resilience [35, 29], security
under bad randomness [10], security under selective openings [11], and others.

In this paper, we consider two such specialized notions of security for SKE
schemes in a combined fashion. In particular, we will derive SKE schemes that are
secure in the presence of key-dependent messages encrypted under related keys.
This notion, dubbed RKA-KDM security and already considered by Applebaum
[3] (as RK-KDM security), combines the notions of KDM and RKA security,
but is more than just their conjunction. RKA-KDM secure SKE schemes are of
course suitable for all applications in which RKA or KDM security is required. In
fact, there are even applications that explicitly require the combined RKA-KDM
notion: Applebaum [3] uses RKA-KDM secure SKE schemes in a garbled circuit
construction in which XOR gates can be garbled for free (in the sense that XOR
gates require no explicit encryption whatsoever). Besides, “aggregating” security
properties as in RKA-KDM security may eventually lead to more “ideal” and
universally useful security notions and encryption schemes.

RKA and KDM security. To give more details, we first recall the definitions
of IND-CPA, RKA, and KDM security. In a nutshell, an SKE scheme has indis-
tinguishable ciphertexts (or, is IND-CPA secure [30]3), if no efficient adversary
A can tell apart whether it is interacting with an oracle Real, or with an oracle
Fake. Here, upon input M , oracle Real returns an encryption Ek(M) of M , while
Fake returns an encryption Ek(0|M |) of a zero-string of the same length. (In other
words, A is asked to tell authentic encryptions from encryptions of meaningless
messages of the same length.)

For security under key-dependent messages (KDM security [23]), we require
the same, except that messages are now functions in the secret key. That is,
upon input a function ψ, Real returns Ek(ψ(k)), and Fake returns Ek(0|ψ(k)|).
Depending on the class of allowed functions Ψ , there are many constructions
of KDM-secure encryption schemes from various computational assumptions,
e.g. [23, 31, 33, 25, 5, 28, 6, 26, 27, 34, 8, 12, 4, 32]. However, most of these works
follow the design principle of Boneh et al. [25] (henceforth BHHO). Namely, it
should be publicly possible (or at least given some “harmless” extra information)
to construct key-dependent encryptions from regular ones. Intuitively, if this is
the case, then clearly the presence of key-dependent encryptions is no more
harmful than the presence of “regular”, key-independent encryptions.

For security under related-key attacks (RKA security [9]), we again require
the same as for IND-CPA security, except that an adversary A now specifies
a function ϕ on secret keys alongside each message M to be encrypted. Real

3 In the following, for ease of exposition, we describe a modified but equivalent version
of IND-CPA security.
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then returns an encryption Eϕ(k)(M) of M under the related key ϕ(k), and Fake

returns Eϕ(k)(0|M |). RKA security draws its motivation primarily from the wide
range of attacks that are known in this setting, e.g. [16, 17, 18, 19, 21, 20, 22].
There are also a number of constructions of RKA secure schemes, e.g. [7, 13,
36, 3]. As with KDM security, the main idea is to generate encryptions under
related keys from “regular” encryptions.

RKA-KDM security. It is of course easy to combine RKA and KDM secu-
rity into a combined notion, which we call RKA-KDM security here. Concretely,
RKA-KDM security is defined like IND-CPA security above, only that an ad-
versary supplies functions ϕ and ψ along with the message M to be encrypted.
Then, Real returns Eϕ(k)(ψ(k)), and Fake returns Eϕ(k)(0|ψ(k)|). This notion has
already been defined by Applebaum [3] (dubbed RK-KDM security there), who
used RKA-KDM secure schemes to garble circuits with XOR gates in a very
elegant and efficient way. As a proof of concept, Applebaum also constructed
an RKA-KDM secure encryption scheme, starting from the KDM-secure scheme
of Applebaum et al. [5] based on the LPN assumption. (Along the way, he also
shows that RKA-KDM security is strictly stronger than the conjunction of RKA
and KDM security.) Currently, no further RKA-KDM secure schemes are known.

Our contribution. In this work, we provide a generic framework to construct
RKA-KDM secure encryption schemes, and we instantiate this framework un-
der several computational assumptions. In particular, we provide RKA-KDM
secure schemes from the decisional Diffie-Hellman (DDH), learning with errors
(LWE), quadratic residuosity and decisional Diffie-Hellman (QR+DDH) 4, and
decisional composite residuosity (DCR) assumptions. Our constructions support
affine KDM and RKA functions in the “natural domain” of the respective se-
cret keys. Furthermore, with the exception of the DCR-based scheme, all of our
schemes can be directly used in the application of Applebaum [3]. Additionally,
they fit the construction of Bellare et al. [14], and thus can be extended from
projection-KDM security to bounded-KDM security while maintaining the same
level of RKA security.

Our approach. Based on an informal remark of Applebaum [3], Remark 3.6
in full version, we first reduce RKA-KDM security to three technical properties
of the scheme in question:
(a) IND-CPA security in the usual sense,
(b) the existence of an oracle (that itself has access to an Ek(·) oracle) that

generates ciphertexts Eϕ(k)(M) under related keys, and
(c) the existence of an oracle (with access to Ek(·)) that generates ciphertexts

Ek(ψ(k)) of key-dependent messages.
Intuitively, property (b) allows to reduce any RKA-KDM attack to a KDM
attack, which in turn can be reduced (using (c)) to an IND-CPA attack. We

4 Similar to Hofheinz [32], we have to use the DDH assumption in the group of
quadratic residues modulo N .
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note that it seems possible to add further oracles (e.g., for encryption queries
with leakage) to achieve even stronger combined security notions from individual
and isolated technical properties.

We then proceed to construct several RKA-KDM secure encryption schemes.
Our constructions are slight variations of the known KDM-secure schemes from [25,
5, 6, 26, 34]. For these schemes, properties (a) and (c) already follow (with slight
modifications) from the KDM security proofs of the underlying schemes. Show-
ing property (b) then boils down to showing suitable homomorphic properties
of the encryption, resp. decryption algorithm.

Example: our DDH-based scheme. To give a taste of the proof, we out-
line our DDH-based scheme (which is based upon the DDH-based public-key
encryption scheme from [25]). In this scheme, a ciphertext is of the form

C = (gr11 , . . . , g
rλ
λ , g

M · g0),

where λ is the security parameter, g and the gi are uniformly random generators
of the underlying cyclic group, the ri are uniformly random exponents, and
g0 =

∏
i∈[λ](g

ri
i )−ki for the secret key k = (k1, . . . , kλ) ∈ {0, 1}λ. (In the original

public-key encryption scheme from [25], all ri are identical.)
We show property (b) for functions of the form ϕ∆ : {0, 1}λ → {0, 1}λ with

ϕ∆(k) = k⊕∆ for some ∆ ∈ {0, 1}λ. (This will be sufficient for the application
in [3].) To show (b), we only need to show that any given ciphertext C = Ek(M)
as above can be transformed into a ciphertext C ′ = Eϕ∆(k)(M). For simplicity,
assume that ∆ = (1, 0, . . . , 0). In this case, it is easy to see that

C ′ = (1/gr11 , g
r2
2 , . . . , g

rλ
λ , (g

M · g0) · gr11 )

is a perfectly distributed encryption of M under key k′ = k⊕∆ (with randomness
r′1 = −r1 and r′i = ri for i > 1). This shows property (b) – the other properties
follow as in [25].5

Our other constructions proceed similarly, starting from the schemes of Ap-
plebaum et al. [5], Brakerski and Goldwasser [26], and Malkin et al. [34]. The
latter is only contained in our full version [24].

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, λ ∈ N
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For a distribution X, we denote by
x ← X the process of sampling x from X. For a probabilistic algorithm A,

5 We note that our technical change to the scheme from [25] – namely, using different
ri – can be proven to be not crucial to its security (see Lemma 7). Instead, choosing
different ri simplifies expressing the scheme in our framework, and in particular
separating the KDM, RKA, and IND-CPA properties.
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we denote with y := A(x; r) the process of running A on input x and with
randomness r, and assigning y the result. We let RA denote the randomness
space of A; we require RA to be of the form RA = {0, 1}`. We write y ← A(x)
for y ← A(x; r) with uniformly chosen r ∈ RA. If A’s running time is polynomial
in λ, then A is called probabilistic polynomial-time (PPT). For a real number
x, let the floor function bxc denote the largest integer not greater than x. For a
vector v, vi denotes the ith element of v.

Two sequences of random variables X = (Xλ)λ∈N and Y = (Yλ)λ∈N are
computationally indistinguishable (denoted X

c
≈ Y ) iff for any PPT algorithm

D, the probability Pr
[
D(1λ, Xλ) = 1

]
−Pr

[
D(1λ, Yλ)

]
is negligible in λ. X =

(Xλ)λ∈N and Y = (Yλ)λ∈N are statistically indistinguishable (denoted X
s
≈ Y )

iff the same holds for any algorithm D with unbounded runtime.

SKE schemes. A secret-key encryption (SKE) scheme consists of four PPT al-
gorithms (Pg,Kg,E,D). Parameter generation Pg(1λ) outputs public parameters
π for the scheme. Key generation Kg(π) outputs a (secret) key k. Encryption
Ek(M) takes a key k and a message M , and outputs a ciphertext C. Decryp-
tion Deck(C) takes a key k and a ciphertext C, and outputs a message M or
⊥ if decryption fails. For correctness, we stipulate Dk(C) = M for all M , all
k ← Kg(Pg(1λ)), and all C ← Ek(M).

Definition 1 (RKA-KDM[Φ, Ψ ] Security.). Let Σ = (Pg,Kg,E,D) be a sym-
metric encryption scheme, π ← Pg(1λ) be public parameters and b← {0, 1} be a
bit chosen by the challenger. A key k ← Kg(π) is randomly chosen. Adversary A
makes encryption queries by submitting (ϕ ∈ Φ,ψ ∈ Ψ) and receives a response
from one of the following oracles, depending on the bit b.

– If b = 1, oracle Realk takes as input (ϕ,ψ) and returns C ← Eϕ(k)(ψ(k)).
– If b = 0, oracle Fakek takes as input (ϕ,ψ) and returns C ← Eϕ(k)(0|ψ(k)|).

Scheme Σ is RKA-KDM secure w.r.t. Φ and Ψ if for all PPT adversaries A∣∣∣Pr[AReal(ϕ,ψ)(π) = 1]− Pr[AFake(ϕ,ψ)(π) = 1]
∣∣∣

is a negligible function in λ.

Throughout this paper each class of KDM functions Ψ implicitly contains
constant functions ψM (k) := M for all messages M ∈ M where M is the
message space of the encryption scheme at hand.

Further security definitions. The standard definition of RKA security fol-
lows from restricting the KDM function class Ψ to constant functions, and the
definition of KDM security follows from restricting the RKA function class Φ
to the identity function. IND-CPA security follows from applying both of these
restrictions at once.
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2.1 A generic approach

In this section we prove that an SKE scheme Σ is RKA-KDM[Φ, Ψ ] secure if
– Σ is IND-CPA secure,
– there is a so called RKA[Φ] oracle (defined below) for Σ that takes as input

Ek(M) and RKA function ϕ ∈ Φ, and returns something that is indistin-
guishable from Eϕ(k)(M) without knowledge of the key k,

– there is a so called KDM[Ψ ] oracle (defined below) for Σ that takes as input
Ek(M) and KDM function ψ ∈ Ψ , and returns something that is indistin-
guishable from Ek(ψ(k)) without knowledge of the key k (M is the constant
part of ψ here).

Definition 2 (RKA[Φ] oracle). Let Σ = (Pg,Kg,E,D) be a secret key encryp-
tion scheme with message space M. We say that a function FRKA[Φ](ϕ,C) is an
RKA[Φ] oracle for Σ iff for all PPT adversaries A that make queries (ϕ,M) for
ϕ ∈ Φ and M ∈M∣∣∣∣Pr

[
AFRKA[Φ](ϕ,Ek(·))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

]
− Pr

[
AEϕ(k)(·)(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

] ∣∣∣∣
is a negligible function in λ. Here, AFRKA[Φ](ϕ,Ek(·)) denote the interaction of A
with an oracle that, upon input M , outputs FRKA[Φ](ϕ,Ek(M)).

Definition 3 (KDM[Ψ ] oracle). Let Σ = (Pg,Kg,E,D) be a secret key encryp-
tion scheme with message space M. We say that a function FKDM[Ψ ](ψ,C) is
a KDM[Ψ ] oracle for Σ iff for all PPT adversaries A that make queries ψ for
ψ ∈ Ψ (where M denotes the constant part of ψ, i.e., ψ(0))∣∣∣∣Pr

[
AFKDM[Ψ](ψ,Ek(M))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

]
− Pr

[
AEk(ψ(k))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

] ∣∣∣∣
is a negligible function in λ.

Note that for constant functions ψ ∈ Ψ a sufficient behaviour of FKDM[Ψ ] is to
output the ciphertext it received without changes. All KDM[Ψ ] oracles presented
in this paper implicitly adopt this behaviour.

Theorem 4. Let Σ be an SKE scheme that is IND-CPA secure, FRKA[Φ] be
an RKA[Φ] oracle for Σ and FKDM[Ψ ] be a KDM[Ψ ] oracle for Σ. Then Σ is
RKA-KDM[Φ, Ψ ] secure.

Proof. We prove the theorem by a sequence of games.

Game 0 In Game 0 A plays the original RKA-KDM[Φ, Ψ ] experiment (see Def-
inition 1).
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Game 1 In Game 1, instead of computing Eϕ(k)(ψ(k)) the experiment computes
CKDM ← Ek(ψ(k)) and outputs FRKA[Φ](ϕ,CKDM) to the adversary. This game
is indistinguishable from Game 0 due to the indistinguishability of FRKA[Φ] (see
Definition 2).

Game 2 In Game 2, instead of computing Ek(ψ(k)), the experiment com-
putes CCPA ← Ek(M) where M is the constant part of ψ and sets CKDM :=
FKDM[Ψ ](ψ,CCPA). Given a distinguisher D between this game and Game 1, we
can construct an adversary S, henceforth called simulator, on the indistinguisha-
bility of FKDM[Ψ ]. First, the simulator forwards the public parameters π to D
and picks a bit b ← {0, 1}. For b = 1 and each query (ϕ,ψ) from D, the sim-
ulator queries its oracle for ψ and either gets a response FKDM[Ψ ](ψM , CCPA) or
Ek(ψM (k)) (see Definition 3). It then applies FRKA[Φ] with ϕ to the response and
sends the result to D. The responses to the queries of the simulator are that of
Game 2 if itself gets responses of type FKDM[Ψ ](ψM , CCPA) and that of Game 1 for
responses of type Ek(ψM (k)). Analogously for b = 0, where the simulator queries
0|ψ(k)| instead of ψ. The advantage of S is that of D and must be negligible due
to the indistinguishability FKDM[Ψ ].

Game 3 In Game 3 we replace CCPA ← Ek(M) by CCPA ← Ek(0|M |). Analo-
gously to the indistinguishability of Game 1 and Game 2, we can easily transform
a distinguisher between this game and the previous game into an IND-CPA ad-
versary for Σ.

We observe that the advantage of any PPT adversary in Game 3 is 0 since
the behaviour of the oracle given to the adversary is is independent of the bit b
picked by the experiment. This concludes our proof since Game 3 and Game 0
are indistinguishable.

3 RKA-KDM-secure Encryption Schemes

3.1 Boneh et al. [25]

The PKE scheme of Boneh et al. [25] was the first construction provably KDM
secure under standard assumptions. In this section we detail a SKE analogue of
the ‘basic’ version of their scheme. We construct an RKA[Φ] oracle and a KDM[Ψ ]
oracle for the scheme. The class of RKA functions Φ allows for XOR operations
on the key while the class of KDM functions Ψ brings circular KDM security,
i.e., encryptions of the secret key are possible (as in the original paper). The
security of the scheme is based on the DDH assumption.

DDH assumption. The decisional Diffie-Hellman (DDH) assumption over a
group G (that may depend on the security parameter λ) stipulates that

(g, gx, gy, gxy)
c
≈ (g, gx, gy, gz),

where g ← G and x, y, z ← [|G|] are uniformly distributed.
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For the sake of readability we introduce the scheme Σ′BHHO with message
space {0, 1}. Canonical concatenation at the end will yield the scheme ΣBHHO

with message space {0, 1}λ.

The SKE scheme Σ′
BHHO. Let G be a group of prime order p and g be a

generator of G. The scheme Σ′BHHO for M ∈ {0, 1} is defined as follows:

– Pg(1λ) picks generators g1, . . . , gλ ← G\{1} and returns π := (G, g, g1, . . . , gλ).
– Kg(π) returns a random bitstring k ← {0, 1}λ.
– Ek(M) picks r1, . . . , rλ ← Zp. Sets g0 :=

∏
i∈[λ](g

ri
i )−ki and returns

C := (gr11 , . . . , g
rλ
λ , g

M · g0) ∈ Gλ+1.

– Dk(C) parses C as (x1, . . . , xλ, y). Computes M̃ := y ·
∏
i∈[λ] x

ki
i . Returns 0

if M̃ = 1, returns 1 if M̃ = g, otherwise returns ⊥.

The RKA[Φ] oracle. For the concrete class of RKA functions

Φ := {ϕ∆ : {0, 1}λ → {0, 1}λ, k 7→ k ⊕∆ : ∆ ∈ {0, 1}λ}

we find an RKA[Φ] oracle FRKA[Φ] for Σ′BHHO as follows: Given a ciphertext C =
(x1, . . . , xλ, y) and a function ϕ∆ it outputs

C ′ := (x′1, . . . , x
′
λ, y
′) := (x(−1)∆1

1 , . . . , x
(−1)∆λ

λ , y ·
∏
i∈[λ]

x∆ii )

To understand this better we assume that C is an honestly generated cipher-
text (as it will be in the indistinguishability experiment for FRKA[Φ]). Then we
have y = gM ·

∏
i∈[λ] x

−ki
i . We observe

y′ = gM ·
∏
i∈[λ]

x−kii ·
∏
i∈[λ]

x∆ii = gM ·
∏
i∈[λ]

x′i
(−1)∆i (−ki+∆i) (∗)

= gM ·
∏
i∈[λ]

x′i
−(ki⊕∆i)

and (∗) since

(−1)∆i(−ki +∆i) =

{
−ki if ∆i = 0

−(1− ki) if ∆i = 1

}
= −(ki ⊕∆i)

Therefore C ′ decrypts to M under key k ⊕∆.

Lemma 5. FRKA[Φ] is an RKA[Φ] oracle in the sense of Definition 2.

Proof. It is easy to see that the distributions of FRKA[Φ](ϕ∆,Ek(M)) and Ek⊕∆(M)
are perfectly indistinguishable (even for someone knowing k and ∆): The x′i just
look like r′i = (−1)∆iri was used as randomness for the ith component (which
yields the same distribution) and we have y′ = gM ·

∏
i∈[λ](x

′
i)
−(ki⊕∆i).
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The KDM[Ψ ′] oracle. For the class of KDM functions

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k 7→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}

we find the following KDM[Ψ ′] oracle FKDM[Ψ ′] for Σ′BHHO: Given a function ψi,b
and an honestly generated ciphertext of b (the constant part of ψi,b is b) denoted
C = (x1, . . . , xλ, y) it outputs

C ′ := (x′1, . . . , x
′
λ, y
′) := (x1, . . . , xi−1, xi · g(−1)b , xi+1, . . . , xλ, y)

We check that this ciphertext decrypts to ki ⊕ b:

y·
∏
j∈[λ]

x′j
kj (∗)

= y·

∏
j∈[λ]

xj
kj

·g(−1)b·ki = gb·

∏
j∈[λ]

xj
−kj · xjkj

·g(−1)b·ki = gki⊕b

(∗) since x′i = xi · g(−1)b and x′j = xj for j ∈ [λ] \ {i}.

Lemma 6. FKDM[Ψ ′] is a KDM[Ψ ′] oracle in the sense of Definition 3.

Proof. We show that the distributions of FKDM[Ψ ′](ψi,b,Ek(b)) and Ek(ψi,b(k))
are perfectly indistinguishable. First, we observe that xi = grii and g = gαi for
α := loggi(g), i.e., x′i = gri+(−1)b·α. Furthermore we have y = gb ·

∏
j∈[λ] xj

−kj =

gb ·
∏
j∈[λ] xj

−kjg−(−1)b·kig(−1)b·ki = gb+(−1)b ·
∏
j∈[λ] x

′
j
−kj . Hence the output

of the oracle looks like a normal encryption of ki ⊕ b where ri + (−1)b · α was
used as randomness in the ith component.

Lemma 7. The SKE scheme Σ′BHHO is IND-CPA secure if DDH is hard over
the underlying group G.

Proof. Intuitively, we first use the hardness of DDH over G to collapse the ran-
domness used by the encryption oracle to one random exponent per ciphertext,
so instead of r1, . . . , rλ all generators are taken to the same random exponent r.
This modified scheme is the ‘basic’ version of [25] with a smaller message space.
We can then simply reduce security to the IND-CPA security of Boneh et al’s
scheme.

More concretely, we prove the lemma with the following sequence of games.

Game 0 In Game 0 A plays the original IND-CPA experiment.
Game 1 to Game λ − 1 form a hybrid argument to collapse the random-

ness used by the encryption oracle. In hybrid i (i ∈ [λ − 1]) we pick the same
randomness for the first i+ 1 components of the ciphertext. I.e., the format of a
ciphertext output by the encryption oracle in game i isgr1, . . . , gri+1, g

ri+2
i+2 , . . . , g

rλ
λ , g

M ·

 ∏
i∈[i+1]

g−rkii

 ∏
i∈[λ]\[i+1]

g−rikii
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Analysis. Each of the game hops above is indistinguishable due to the hardness
of DDH over G. The simulation for a hop from Game i−1 to Game i (i ∈ [λ−1])
works as follows: The simulator S gets a DDH challenge (g,X := gx, Y :=
gy, Z := gxy/z). For j ∈ [λ] \ {i+ 1} it picks αj ← Zp, sets gj := gαj and gi+1 :=
X. Subsequently it picks a key k ← {0, 1}λ and sends the public parameters
π := (G, g, g1, . . . , gλ) to A. If A requests an encryption of message M , S picks
randomness r, ri+2, . . . , rλ, a, b← Zp and sets Ŷ := ga · Y b and Ẑ := Xa · Zb to
re-randomize the DDH challenge. Finally, S sends(

Ŷ rα1 , . . . , Ŷ rαi , Ẑr, g
ri+2
i+2 , . . . , g

M · g0
)

to the adversary where g0 is computed as usual (S knows k). If Z = gz, the
output of S looks like that of game i − 1, otherwise (for Z = gxy) it looks like
that of game i. Any PPT distinguisher between those games with non-negligible
advantage can thus be used to break DDH.

Finally, only one fresh random exponent is used for each ciphertext in game
λ − 1. The output now looks like that of the BHHO (public key) cryptosystem
with message space {g0, g1}.

In Game λ, we replace the message with 0. The indistinguishability of game
λ − 1 and game λ can be reduced to the IND-CPA security of Boneh et al’s
original scheme in a straightforward way (using the generators from the public
key as public parameters). Hence IND-CPA security of Σ′BHHO follows.

The full scheme ΣBHHO. Finally, we assemble the SKE scheme ΣBHHO from
λ instances of Σ′BHHO that use the same public parameters π and the same key
k. A ciphertext under ΣBHHO is a matrix from Gλ×(λ+1) where each row is an
instance of Σ′BHHO (using π and key k). To encrypt a message M ∈ {0, 1}λ under
key k we encrypt Mi in row i (while picking fresh randomness ri, i ∈ [λ] for each
row). Decryption also works row-wise.

For the RKA[Φ] oracle we apply FRKA[Φ] to each row. The class of KDM
functions Ψ ′ changes to

Ψ := {ψi,∆ : {0, 1}λ → {0, 1}λ, k 7→ (ki1⊕∆1, . . . , kiλ⊕∆λ) : i ∈ [λ]λ, ∆ ∈ {0, 1}λ}

I.e., each bit of the message can be an arbitrarily picked key bit. For the KDM[Ψ ]
oracle provided with function ψi, we apply FKDM[Ψ ′] with function ψij ∈ Ψ ′ to
the jth row of the ciphertext where Ψ ′ is the class of KDM functions for Σ′BHHO.
Since the oracles work row-wise it is easy to check that the indistinguishability
results from Lemma 5 and Lemma 5 carry over to ΣBHHO. Analogously for the
IND-CPA security of ΣBHHO. Finally, by Theorem 4, we get

Theorem 8. The SKE scheme ΣBHHO is RKA-KDM[Φ, Ψ ] secure (for Φ and Ψ
as defined above in this section) if DDH is hard over the underlying group G.

3.2 Applebaum et al. [5]

In this section, we present a secret-key version of the PKE scheme of Applebaum
et al. [5] and prove it RKA-KDM secure. For compatibility with Applebaum’s
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application, however, we slightly change the space of secret keys from Zmp to
{0, 1}m. Our RKA and KDM oracles allow encryptions under keys k ⊕ ∆ (for
arbitrary ∆ ∈ {0, 1}m) of arbitrary components of the secret key. Security is
based on the LWE assumption.

For ease of exposition, we do not detail the choices of the following parameters
– these can occur as in [5] (with adaptations as in [2] due to the different choice of
secret key). Let q be a polynomial in the security parameter λ, and let m > n be
integers (that may also depend on λ). By χ, we denote a (discretized Gaussian)
error distribution with suitable parameters over Zq.

LWE assumption. Let s ∈ Znq be uniformly chosen. Let LWEs be the oracle
that (on trivial input) returns (a, 〈a; s〉+x) ∈ Znq ×Zq for freshly chosen a← Znq
and x ← χ. Let RND be the oracle that returns a freshly and independently
chosen (a,b) ← Znq × Zq. The LWE assumption states that oracle access to
LWEs is computationally indistinguishable from oracle access to RND.

Applebaum et al. [5] show that the LWE assumption over Zq = Zp2 and with
s← Znp is equivalent to the LWE assumption as above (for q = p). Furthermore,
Akavia et al. [2] show that the LWE assumption with s ← {0, 1}n is implied
by the LWE assumption as above (for different parameters of n,m). In the
following, we will consider q = p2 and s ∈ {0, 1}n. Furthermore, for x ∈ R, we
write dxcp := dx+ 1/2e mod p for the nearest integer to x modulo p.

The SKE scheme Σ′
ACPS. The scheme Σ′ACPS (with M ∈ Zp) is defined as

follows:

– Pg(1λ) returns the empty bitstring.
– Kg(π) returns a random bitstring k := s← {0, 1}m.
– Ek(M) picks A← Zn×mq and r,x← χm, and returns

C := (A·r,−(sT ·A+xT )·r+p·M) = (A·r,−sT ·A·r−〈x; r〉+p·M) ∈ Zmq ×Zq
– Dk(C) parses C =: (y, z) and computes and returns M := d(〈s; y〉+ z)/pcp.

Compared to the PKE scheme of [5], we choose s slightly differently, and also
choose different A,x upon each encryption. We note that correctness holds only
with overwhelming probability over the choice of r and x. In particular, |〈x; r〉| <
p/2 with overwhelming probability.

The RKA[Φ] oracle. For the concrete class of RKA functions

Φ := {ϕ∆ : {0, 1}m → {0, 1}m, k 7→ k ⊕∆ : ∆ ∈ {0, 1}m},

we find an RKA[Φ] oracle FRKA[Φ] for Σ′ACPS as follows: Given a ciphertext C =
(y, z) and a function ϕ∆, it outputs

C ′ := (y′, z′) with y′i = (−1)∆iyi and z′ = z +
∑
i∈[m]

∆iyi

As with the BHHO scheme, a quick calculation shows that C ′ is a perfectly
distributed ciphertext of M under k ⊕∆. Thus:
Lemma 9. FRKA[Φ] is an RKA[Φ] oracle in the sense of Definition 2.
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The KDM[Ψ ′] oracle. For the class of KDM functions

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k 7→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}

and following [5], we find the following KDM[Ψ ′] oracle FKDM[Ψ ′] for Σ′ACPS: Given
a function ψi,b and an honestly generated ciphertext C = (y, z) of M = b, it
outputs

C ′ :=
(
y +

(
(−1)bp

)
ei, z

)
for the i-th unit vector ei.

We check that this ciphertext decrypts to ki ⊕ b:

Dk(C ′) =
⌈(〈

s; y +
(
(−1)bp

)
ei
〉

+ z
)
/p
⌋
p

=
⌈(
〈s; y〉+

(
(−1)bp

)
si + z

)
/p
⌋
p

=
⌈(

sTAr +
(
(−1)bp

)
si + z

)
/p
⌋
p

=
⌈((

(−1)bp
)
si − 〈x; r〉+ pb

)
/p
⌋
p
,= si⊕b.

In fact, it is easy to see that ciphertexts C ′ as produced by FKDM[Ψ ′] are perfectly
distributed ciphertexts of si ⊕ b. We get:

Lemma 10. FKDM[Ψ ′] is a KDM[Ψ ′] oracle in the sense of Definition 3.

Lemma 11. The SKE scheme Σ′ACPS is IND-CPA secure if the LWE assump-
tion holds for the respective parameters.

A sketch of the proof is contained in the full version of this paper [24].

The full scheme ΣACPS. As in the BHHO setting, we can construct the full
scheme ΣACPS with message space Zmp from m instances of Σ′ACPS that use the
same public parameters and key in a straightforward manner.

Likewise, by transferring Lemma 9, Lemma 10 and Lemma 11 from Σ′ACPS

to ΣACPS and by Theorem 4, we get

Theorem 12. The SKE scheme ΣACPS is RKA-KDM[Φ, Ψ ] secure (for Φ as de-
fined above in this section and Ψ from the full BHHO scheme) if the LWE as-
sumption holds for the respective parameters.

3.3 Brakerski-Goldwasser [26]

In this section we consider the encryption scheme of Brakerski and Goldwasser
[26], modified to the symmetric setting. The KDM security of the original (public-
key) scheme relies on the hardness of deciding quadratic residuosity in the group
Z∗N , for Blum integer N = p · q. To construct our SKE scheme ΣBG resilient
against related key attacks, we additionally have to stipulate that DDH is hard
over the subgroup of quadratic residues QRN . We achieve security against the
same class of KDM functions as for ΣBHHO from Section 3.1.
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QR assumption. Let N be a Blum integer of bitlength λ. With Z∗N [+1] we
denote the set of elements in Z∗N with Jacobi symbol +1 and with QRN :=
{x2 mod N : x ∈ Z∗N} the set of Quadratic Residues modulo N . Then we say
that the Quadratic Residuosity (QR) assumption holds in Z∗N if

|Pr[A(N, x) = 1 : x← Z∗N [+1]]− Pr[A(N, x) = 1 : x← QRN ]|

is negligible for all PPT adversaries A.

The SKE scheme Σ′
BG. We define the scheme for messages M ∈ {0, 1}.

– Pg(1λ) picks a random Blum integerN of length `(λ).6 Then samples quadratic
residues g1, . . . , gλ ← QRN and returns π := (N, g1, . . . , gλ).

– Kg(π) returns a random bitstring k ← {0, 1}λ.
– Ek(M) picks r1, . . . , rλ ← [N2], computes g0 :=

∏
i∈[λ](g

ri
i )−ki and outputs

C := (gr11 , . . . , g
rλ
λ , (−1)M · g0) ∈ Zλ+1

N

– Dk(C) parses C as (x1, . . . , xλ, y). Computes M̃ := y ·
∏
i∈[λ] x

ki
i . Returns 0

if M̃ = 1, returns 1 if M̃ = −1, otherwise returns ⊥.

The RKA[Φ] oracle. The RKA[Φ] oracle FRKA[Φ] for Σ′BG works exactly like
the RKA[Φ] for Σ′BHHO from Section 3.1, i.e., Φ allows for transformations of the
secret key under XOR. Analogously to Lemma 5 we have

Lemma 13. FRKA[Φ] is an RKA[Φ] oracle for Σ′BG in the sense of Definition 2.

The KDM[Ψ ′] oracle. Analogously to Σ′BHHO we define

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k 7→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}

Given a function ψi,b and a ciphertext C = (x1, . . . , xλ, y), the KDM[Ψ ′] oracle
FKDM[Ψ ′] for Σ′BG simply returns

C ′ := (x′1, . . . , x
′
λ, y
′) := (x1, . . . , xi−1, (−1) · xi, xi+1, . . . , xλ, y)

We check that this decrypts to ki ⊕ b if FKDM[Ψ ′] is given an honestly generated
ciphertext of b (the constant part of ψi,b), i.e., y = (−1)b ·

∏
j∈[λ] xj

−kj :

Dk(C ′) = y′·
∏
j∈[λ]

x′j
kj (∗)

= y·(−1)ki ·
∏
j∈[λ]

xj
kj = (−1)b+ki ·

∏
j∈[λ]

xj
−kj ·xjkj = (−1)ki⊕b

(∗) since x′i = (−1) · xi and x′j = xj for j ∈ [λ] \ {i}.

6 We use `(λ) here since the IND-CPA security of Brakerski and Goldwasser’s original
scheme requires that N is substantially shorter than the number of components/key
length λ, e.g., `(λ) = λ/2. We refer to [26], Theorem 6.1 for details.
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Lemma 14. FKDM[Ψ ′] is a KDM[Ψ ′] oracle for Σ′BG in the sense of Definition 3
if QR is hard in the underlying group Z∗N .

Proof. To show the indistinguishability of FKDM[Ψ ′]’s output we use the interac-
tive vector game (IV) from [26], Section 5. In the interactive λ-vector game the
experiment picks a Blum integer N , a quadratic residues g1, . . . , gλ ← QRN and
a bit b← {0, 1} and sends N, g1, . . . , gλ to a PPT adversary A that has to guess
b. It then provides A with an oracle that, given a query a ∈ {0, 1}λ, returns
((−1)a1gr1, . . . , (−1)aλgrλ) if b = 0 and (gr1, . . . , g

r
λ) if b = 1 for fresh randomness

r. [26] show that A’s advantage is negligible if the QR assumption holds in Z∗N .
Let D be a PPT algorithm to distinguish FKDM[Ψ ′](ψ,Ek(M)) from Ek(ψ(k))

in the sense of Definition 3. We construct an adversary S on the interactive
1-vector game that utilizes D: First, S sets π to the parameters (N, g1, . . . , gλ)
received from the interactive λ-vector game, samples a key k ← {0, 1}λ and
then sends π and k to D. For each query ψi,b received from D, S picks ran-
domness r1, . . . , ri−1, ri+1, . . . , rλ ← [N2] and queries the interactive λ-vector
game with vector a ∈ {0, 1}λ where ai := 1 and aj := 0 for j 6= i. S gets
a response (x1, . . . , xλ) and sets x′i := xi and x′j := x

rj
j for j 6= r. It then

sends (x′1, . . . , x
′
λ, (−1)b ·

∏
j∈[λ] x

′
j
−kj ) to D. It is easy to check that this equals

FKDM[Ψ ′](ψi,b,Ek(b; r̂)) if the bit picked by the λ-vector game is 0, or Ek(ψ(k); r̂)
otherwise (where randomness r̂ := (rr1, . . . , ri−1, r, ri+1, . . . , rrλ)).

The advantage of S is the advantage of D at the same asymptotic time
complexity. Thus, if QR holds in Z∗N , no such adversary D with non-negligible
advantage can exist.

Lemma 15. The SKE scheme Σ′BG is IND-CPA secure if QR is hard over the-
group Z∗N and DDH is hard over the subgroup of quadratic residues QRN .

Proof. This proof is completely analogous to the IND-CPA proof for Σ′BHHO

(see Lemma 7). We first collapse the randomness to one random exponent per
ciphertext. For this we rely on the hardness of DDH over QRN . Subsequently we
utilize the IND-CPA security of Brakerski and Goldwasser’s original scheme to
conclude the proof.

The full scheme ΣBG. Analogously to the setting for BHHO (Section 3.1), we
can canonically construct the full scheme ΣBG for message space {0, 1}λ from
λ instances of Σ′BG using the same public parameters and the same key. The
class of RKA functions remains the same, while the class of KDM functions
automatically extends from Ψ ′ to

Ψ := {ψi,M : {0, 1}λ → {0, 1}λ, k 7→ (ki1⊕∆1, . . . , kiλ⊕∆λ) : i ∈ [λ]λ, ∆ ∈ {0, 1}λ}

Since we can canonically transfer Lemma 13, Lemma 14 and Lemma 15 from
Σ′BG to ΣBG we get the final result of this section by Theorem 4.

Theorem 16. The SKE scheme ΣBG is RKA-KDM[Φ, Ψ ] secure (for Φ and Ψ
as defined above in this section) if QR is hard in the underlying group Z∗N and
DDH is hard over the subgroup of quadratic residues QRN .
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3.4 Bellare et al. [14]

Since Applebaum’s work on KDM amplification [4], it is known that projection-
KDM security implies bounded-KDM security. Projection-KDM security allows
for KDM functions where each output bit depends only on one input bit (key
bit). Bounded-KDM security means that the class of KDM functions is the
set of all functions that can be represented by a circuit of bounded size L.
We refer to this function class as Ψbnd(L) from now on. To our knowledge, cur-
rently the most efficient way to construct a bounded-KDM secure scheme from
a projection-KDM secure one is the approach of Bellare, Hoang, and Rogaway
[14] (henceforth BHR). In this section we observe that their construction also
maintains RKA security in our sense. Thus, we can plug all of our projection-
KDM secure schemes (i.e., ΣBG, ΣACPS and ΣBHHO) into their framework to
get RKA-bounded-KDM secure schemes. Obviously, this result holds for any
projection-KDM secure scheme that is RKA secure (with a suitable oracle in
our sense).

(Projective) garbling schemes. What follows is a quick introduction to gar-
bling schemes established by [14]. A garbling scheme is a tuple of algorithms
(GCgarble,GCencode,GCdecode,GCeval).7 The algorithm GCgarble is probabilistic while
the remaining algorithms are deterministic. Given an encoding of the security
parameter and a function f , GCgarble(1λ, f) outputs the description of a garbled
circuit (F, e, d). Here, F is a function mapping garbled inputs to garbled outputs.
E.g., F could be a circuit in terms of gates and wires together with a garbled
table for each gate. The outputs e and d contain information to encode and
decode the input and output of F respectively. We say that a garbling scheme is
correct if GCdecode(d,GCeval(F,GCencode(M, e))) = f(M) for all functions f (from
a certain class), inputs M ∈ {0, 1}λ and descriptions (F, e, d) ← GCgarble(1λ, f)
of garbled circuits for f .

For our application we need so-called projective garbling schemes. Basi-
cally, a garbling scheme is projective if for all x := GCencode(e,M) and x′ :=
GCencode(e,M ′), we have |xi| = |x′i| for i ∈ [λ] and xi = x′i for i ∈ [λ] with
Mi = M ′i (see [15] for a rigorous definition). One well-known way to construct a
projective garbling scheme is to assign a pair of keys to each wire corresponding
to low and high voltage (0/1) respectively. Then e is a tuple of pairs of keys and
GCencode(M, e) picks the keys from e corresponding to the bits of M .

Furthermore, we say that a garbling scheme is privacy preserving if for
any two (adversarially chosen) functions f0, f1 with the same circuit size and
inputs x0, x1 of same length with f0(x0) = f1(x1), no adversary can distin-
guish (F0,GCencode(e0, x0), d0) from (F1,GCencode(e1, x1), d1) (where (Fb, eb, db)
← GCgarble(1λ, fb), b ∈ {0, 1}). We refer to [15] for a more detailed definition.

The construction of BHR. The construction creates a symmetric KDM[Ψbnd(L)]-
secure encryption scheme ΣBHR = (Pg,Kg,E,D) from any projection-KDM-
7 For simplicity we omit the additional evaluation function from [14] and restrict to

inputs of length λ here.
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secure encryption scheme Σ′ = (Pg′,Kg′,E′,D′) and any privacy preserving
projective garbling scheme (GCgarble, GCencode, GCdecode, GCeval) as follows.
– Pg(1λ) returns Pg′(1λ).
– Kg(π) returns Kg′(π).
– Ek(M) first generates a garbled circuit for the identity function IDλ on bit-

strings of length λ: (F, e, d)← GCgarble(1λ, IDλ). It then encodes the message
x := GCencode(e,M) (w.l.o.g. x ∈ {0, 1}λ×λ). Finally, it outputs the cipher-
text C := (F, d,E′k(xi)).

– Dk((F, d, (ci)i∈[λ])) first decrypts the keys for the input wires xi := D′k(ci)
and then evaluates the circuit to compute and output the message M :=
GCdecode(d,GCeval(F,x)).

An RKA[Φ] oracle for ΣBHR. Given an RKA[Φ] oracle F ′RKA[Φ] for Σ′, we can
construct an RKA[Φ] oracle FRKA[Φ] for ΣBHR (note that we maintain the class
of RKA functions). Let C = (F, d, (ci)i∈[λ]) be an honestly generated ciphertext
and ϕ ∈ Φ be an RKA function. We define FRKA[Φ](C) := (F, d, (F ′RKA[Φ](ci))i∈[λ]).
A straightforward hybrid argument over the ci, based on the indistinguishability
of F ′RKA[Φ], shows the indistinguishability of FRKA[Φ](C).

Theorem 17. Let Σ′ be a RKA-KDM[Φ, Ψ ]-secure SKE scheme with an indis-
tinguishable RKA[Φ] oracle FRKA[Φ]. If Ψ covers projections, then ΣBHR is an
RKA-KDM[Φ, Ψbnd(L)]-secure SKE for any arbitrary but fixed bound L.

Proof. We only sketch the proof here, which is straightforward and based on a
short sequence of games. Our first game is the original RKA-KDM[Φ, Ψ ] experi-
ment (see Definition 1). In the next game, we no longer use the secret key itself
to answer the RKA part of queries. More concretely, for a given RKA-KDM
query (ϕ,ψ), we compute C ← Ek(ψ(k)) and output FRKA[Φ](ϕ,C) instead of
directly returning Eϕ(k)(ψ(k)). The indistinguishability of this game hop follows
directly from the indistinguishability of RKA[Φ]. Finally, we can simply follow
the strategy from [15], Theorem 15, to compute C. This strategy requires that
the garbling scheme used to construct ΣBHR is privacy preserving and projective.
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