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Abstract. In this paper, we report that we have solved the SVP Chal-
lenge over a 128-dimensional lattice in Ideal Lattice Challenge from TU
Darmstadt, which is currently the highest dimension in the challenge
that has ever been solved. The security of lattice-based cryptography is
based on the hardness of solving the shortest vector problem (SVP) in
lattices. In 2010, Micciancio and Voulgaris proposed a Gauss Sieve algo-
rithm for heuristically solving the SVP using a list L of Gauss-reduced
vectors. Milde and Schneider proposed a parallel implementation method
for the Gauss Sieve algorithm. However, the efficiency of the more than
10 threads in their implementation decreased due to the large number
of non-Gauss-reduced vectors appearing in the distributed list of each
thread. In this paper, we propose a more practical parallelized Gauss
Sieve algorithm. Our algorithm deploys an additional Gauss-reduced list
V of sample vectors assigned to each thread, and all vectors in list L re-
main Gauss-reduced by mutually reducing them using all sample vectors
in V . Therefore, our algorithm allows the Gauss Sieve algorithm to run
for large dimensions with a small communication overhead. Finally, we
succeeded in solving the SVP Challenge over a 128-dimensional ideal lat-
tice generated by the cyclotomic polynomial x128 +1 using about 30,000
CPU hours.

Keywords: shortest vector problem, lattice-based cryptography, ideal
lattice, Gauss Sieve algorithm, parallel algorithm

1 Introduction

Lattice-based cryptography has been considered a powerful primitive for con-
structing useful cryptographic protocols. The security of lattice-based cryptog-
raphy is based on the hardness of solving the shortest vector problem (SVP),
which involves searching for the shortest nonzero vectors in lattices. Ajtai proved
that the worst case complexity of solving the SVP is NP-hard under randomized

⋆ The full-version of this paper is appeared in [13].
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reductions [1]. The α-SVP [17] is an approximation problem of the SVP, which
searches for elements with the size of the shortest vector multiplied by a small ap-
proximation factor α. Many cryptographic primitives have been built on lattices
due to their security against quantum computers and their novel functionalities:
Ajtai-Dwork scheme [2], NTRU [10], fully-homomorphic cryptosystems [8], and
multi-linear maps [7].

There are several approaches for solving the SVP and the α-SVP. The fastest
deterministic algorithm is the Voronoi cell algorithm [18], which runs in expo-
nential time 2O(n) and space 2O(n) for n-dimensional lattices. The sieving algo-
rithms, which are explained in the next subsection, are probabilistic algorithms
that require exponential time 2O(n) and space 2O(n) [3, 21, 5]. The enumeration

algorithms are exhaustive search algorithms that need time 2O(n2) or 2O(n logn),
but only the polynomial size of space [29, 30, 6], and they are suitable for paral-
lelization using multicore CPUs and GPUs. Moreover, the lattice basis reduction
such as LLL or BKZ is a polynomial-time approximation algorithm [16, 28]. Gen-
erally, enumeration algorithms are also used in lattice basis reduction algorithms
as a subroutine for solving the α-SVP. On the other hand, sieving algorithms
are used only for solving the SVP.

1.1 Sieving Algorithms and Ideal Lattices

In 2001 Ajtai et al. proposed the first sieve algorithm for solving the SVP [3].
There are many variants of the sieving algorithm [21, 5] that try to improve the
computational costs of the algorithm. In 2009 Micciancio and Voulgaris proposed
a practical sieving algorithm, called the Gauss Sieve algorithm [19]. The Gauss
Sieve algorithm consists of a list L of vectors in the lattice and a reduction
algorithm that outputs a shorter vector from two input vectors. List L manages
the vectors reduced by the reduction algorithm. The number of vectors in L
increases but the norm of several vectors L is shrunk by the reduction algorithm,
and eventually the shortest nonzero vector can be found in list L.

The theoretical upper boundary of the computation time of the Gauss Sieve
algorithm is not yet proved; however, the Gauss Sieve algorithm is faster than
any other sieve algorithm in practice, because it deploys a list L of pair-wise
Gauss-reduced vectors that can gradually reduce the norm of vectors in the
list. The time complexity of the Gauss sieve is estimated to be asymptotically
20.52n for n-dimensional lattices [19]. In 2011 Milde and Schneider considered
a parallelization variant of the Gauss Sieve algorithm. From the experiment by
Milde and Schneider, once the number of threads increases to more than ten, the
speed-up factor does not exceed around five. Therefore, it is difficult to apply to
large-scale parallel computation.

In order to realize efficient construction of lattice-based cryptography, ideal
lattices are often used. Using ideal lattices, many cryptographic primitives work
faster and require less storage [10, 7]. One of the open problems is whether the
computational problems related to the ideal lattices are easier to solve compared
with those of random lattices [23]. First, Micciancio and Voulgaris mentioned the
possibility of speeding up the sieving algorithm for ideal lattices [19]. In ideal
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lattices, several vectors of similar norms have a rotation structure, and thus
it is possible to compute the set of vectors in the reduction algorithm derived
from the sieve algorithm without a large overhead. Schneider proposed the Ideal
Gauss Sieve algorithm, which uses the rotation structure of the Anti-cyclic lattice
generated by the polynomial xn + 1 where n is a power of two [26]. Then, their
proposed algorithm enables the Gauss Sieve algorithm to run about 25 times
faster on 60-dimensional ideal lattices.

1.2 Our Contribution

We propose a parallelized Gauss Sieve algorithm using an additional list V gen-
erated by the multisampling technique of vectors in the lattice. Our algorithm
mutually reduces the vectors in both L and V , so that all vectors in both lists
V and L remain pair-wisely Gauss-reduced. Using this technique, the reduction
algorithm can be easily parallelized. Additionally, even if the number of threads
increases, our algorithm keeps the vector set pairwise-reduced and efficiency is
maintained. Therefore, our algorithm enables the Gauss Sieve algorithm to run
without excessive overhead even in a large-scale parallel computation.

With the result of our proposed algorithm, we succeeded in solving the SVP
Challenge over a 128-dimensional ideal lattice generated by the cyclotomic poly-
nomial x128 + 1 using about 30,000 CPU hours. In our experiment, we used 84
instances and each instance runs 32 threads, namely the number of threads is
2,688 in total. The communication overhead among threads was less than ten
percents of the total running time.

2 Definitions and Problems

In this section, we provide a short overview of the definition of the SVP on the
lattice. We then explain the definitions of Gauss-reduced and pairwise-reduced
for a set of vectors on the lattice used for the Gauss Sieve algorithm.

Let B = {b1, . . . ,bn} be a set of n linearly independent vectors in Rm. The
lattice generated by B is the set L(B) = L(b1, . . . ,bn) = {

∑
1≤i≤n xibi, xi ∈ Z}

of all integer linear combinations of the vectors in B. The set B is called basis of
the lattice L(B). In the following, we denote by L(B) the lattice of basis B as
the matrix representation B = (b1, . . . ,bn) ∈ Rm×n. If n = m, the lattice L(B)
is called full-rank. In this paper, for the sake of simplicity, we will consider only
full-rank lattices and assume that all the basis vectors bi(i = 1, 2, ..., n) have
only integer entries.

The Euclidean norm of vector v = (v0, . . . , vn−1) ∈ L(B) is denoted by
||v|| =

∑
0≤i<n v

2
i . The norm of the shortest nonzero vectors in L(B) is de-

noted by λ1(L(B)). The inner product of two vectors a = (a0, . . . , an−1),b =
(b0, . . . , bn−1) ∈ L(B) is defined by ⟨a ·b⟩ =

∑
0≤i<n aibi. For x ∈ R, ⌊x⌉ denotes

the nearest integer to x, namely ⌊x+ 1/2⌋.
We define the shortest vector problem (SVP) on a lattice as follow.
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Definition 1 (Shortest vector problem on a lattice) Given a lattice L(B),
find a shortest nonzero vector of the length λ1(L(B)) in L(B).

From the Gaussian heuristic, the length of a shortest vector in lattice L(B)

is estimated to be λ1(L(B)) = (1/
√
π)Γ (n2 + 1)

1
n · det(L(B))

1
n , where Γ (x) is

the gamma-function and det(B) is the determinant of matrix B.
Let g(x) ∈ Z[x] be a monic polynomial of degree n, and let I be an ideal of

ring Z[x]/(g(x)). All elements of ideal I are represented by polynomials v(x) =∑
0≤i<n vix

i in Z[x]/(g(x)). We identify v(x) with vectors v = (v0, . . . , vn−1) ∈
Zn. The ideal I is an additive subgroup of Z[x]/(g(x)), and the set {v =
(v0, . . . , vn−1) ∈ Zn|v(x) =

∑
0≤i<n vix

i ∈ I} becomes a lattice. This is called
the ideal lattice generated by v(x), and its basis B consists of the rotation vec-
tors xiv(x) ∈ Z[x]/(g(x)) for i = 0, 1, ..., n − 1. The cyclotomic polynomials,
such as g(x) = xn + 1 for n = 2h with some positive integer h, are often used
for generating the ideal lattice in cryptography.

2.1 Gauss-reduced and Pairwise-reduced

We define Gauss-reduced and pairwise-reduced for a set of vectors on lattice
L(B). We then explain an algorithm for determining and reducing two given
vectors of lattice L(B).

First, the definition of Gauss-reduced is as follows.

Definition 2 (Gauss-reduced) If two different vectors a,b ∈ L(B) satisfy
||a± b|| ≥ max(||a||, ||b||), then a,b are called Gauss-reduced.

Micciancio and Voulgaris explained about the way to convert two vectors
a,b in L(B) to be Gauss-reduced. The conversion algorithm uses the Reduce
algorithm (Alg.1), which outputs vectors a′ for two vectors a,b in L(B). The
reduced vector a′ is a linear combination of a and b, which has a shorter norm
than max(a,b), or otherwise a′ = a. From this, we can determine whether two
vectors a,b in L(B) are Gauss-reduced. Indeed, we can easily prove the following
lemma.

Lemma 1. Let a,b be two vectors in L(B). We set a′ =Reduce(a,b) and
b′ =Reduce(b,a). If both a = a′ and b = b′ hold, then a,b are Gauss-reduced.

If two vectors a,b are not Gauss-reduced, then a ̸= a′ or b ̸= b′ holds by
Lemma 1. Recall that the reduced vector a′ ←Reduce(a,b) has the property
||a′|| ≤ ||a||. After performing both Reduce(a,b) and Reduce(b,a), we know
that the resulting vectors (a′,b′) are either Gauss-reduced or a′ (or b′) is strictly
shorter than a (or b), respectively. If we repeatedly run the Reduce algorithm
for a = a′ and b = b′, then we expect the resulting vectors (a′,b′) to become
Gauss-reduced. From our experiments in the 100-dimensional lattices, we can
obtain the Gauss-reduced vectors after at most 10 iterations in most cases.

If a,b are linearly dependent, the output of Reduce(a,b) is always the zero
vector, i.e., ||a′|| = 0, which is called a “collision”. The collision is used as the
condition for terminating the Gauss Sieve algorithm.
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Algorithm 1 Reduce [19]

Require: Vectors p1,p2 in lattice L(B)

Ensure: Vector p1 in lattice L(B) s.t. | ⟨p1,p2⟩
⟨p2,p2⟩

| ≤ 1
2

1: if |2 · ⟨p1 · p2⟩| > ⟨p2 · p2⟩ then
2: p1 ← p1 −

⌊
⟨p1,p2⟩
⟨p2,p2⟩

⌉
· p2 /* Make p1 closest to p2 in p1 + p2Z */

3: return p1

Definition 3 (Pairwise-reduced) Let A be a set of d vectors in L(B). If every
pair of two vectors (ai,aj) in A for i, j = 1, . . . , d, i ̸= j is Gauss-reduced, then
the A is called pairwise-reduced.

In general, if we append a vector b ∈ L(B) to a pairwise-reduced set A, then
A ∪ {b} is not always pairwise-reduced. If every pair of two vectors (ai,b) for
a1, ...,ad ∈ A is Gauss-reduced, then the union A∪{b} becomes pairwise-reduced
from the definition. Obviously we can prove the following lemma that shows that
the union of two pairwise-reduced sets of vectors becomes pairwise-reduced by
checking whether the all pairs of two vectors from A and B are Gauss-reduced.

Lemma 2 (Combining Lemma). Let A = {a1, . . . ,ar} and B = {b1, . . . ,bm}
be sets of vectors in L(B). Assume that both A and B are pairwise-reduced. If
every pair of two vectors (ai,bj) in A,B for 1 ≤ i ≤ r, 1 ≤ j ≤ m is Gauss-
reduced, then the union A ∪B is pairwise-reduced.

This lemma is used for constructing our proposed parallel algorithm for the
Gauss Sieve algorithm.

3 Gauss Sieve Algorithm

In this section, we briefly explain the Gauss Sieve algorithm [19] and the Ideal
Gauss Sieve algorithm [26].

3.1 Gauss Sieve [19]

The Gauss Sieve (GS) algorithm was proposed by Micciancio and Voulgaris in
2009 [19] and it was implemented as gsieve library by Voulgaris [32]. We prepare
two auxiliary lists L and S, where L and S are defined by a set of vectors and
a stack of vectors, respectively. L and S are initially assigned as empty. In the
beginning of the GS algorithm, a new vector v is randomly sampled using Klein’s
randomized rounding algorithm [15].

The GS algorithm runs a subroutine, Gauss Reduce, which updates v, L, S
by the steps in the following two parts. The first part runs the Reduce algorithm
using a list L for updating v′ = Reduce(v, ℓi) for all vectors ℓi ∈ L. Once the
v′ is not equal to v, this vector v′ is moved to stack S. The reason is that if v
is reduced using ℓi ∈ L, then v′ and ℓj , (i > j) are not always Gauss-reduced. If
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the v is not changed by Reduce(v, ℓi) for all ℓi ∈ L, the steps in the second part
are performed. The second part runs the Reduce algorithm using a list L that
makes the list pairwise-reduced. If ℓ′i ̸= ℓi holds for ℓ′i = Reduce(ℓi,v), then
the vector ℓ′i is moved to stack S and deleted from L. By the above steps, all
pairs (v, ℓi) are always Gauss-reduced, where ℓi ∈ L. Therefore, L ∪ v becomes
pairwise-reduced by Lemma 2. Then L is updated by L ∪ v and the iteration is
continued . If the stack is not empty, v is popped from the stack S, otherwise, v
is newly sampled . The termination condition of the GS algorithm is determined
by the number of collisions of the zero vector (||a′|| = 0) that appears in L.

The theoretical upper bound of the complexity of the GS algorithm is not yet
proved; however, in practice, the GS algorithm is faster than any other sieving
algorithms. According to Micciancio and Voulgaris [19], the complexity of the
GS algorithm is asymptotically estimated as time 20.52n and space 20.2n. More-
over, Micciancio and Voulgaris showed some experiments that the GS algorithm
outputs a shortest vector in some lattices of up to 60 dimensions, but it is not
theoretically proved that the GS algorithm always outputs a shortest vector [19].

3.2 Ideal Gauss Sieve Algorithm [26]

Schneider proposed an Ideal Gauss Sieve algorithm [26] that uses the structure
of an ideal lattice to improve the processing speed of the Gauss Sieve algorithm.
If n is a power of two, an ideal lattice generated by the cyclotomic polynomial
g(x) = xn +1 is called an Anti-cyclic lattice. In this type, the rotation of vector
v is rot(v) = (−vn−1, v0, . . . , vn−2). The rotation of the Anti-cyclic lattice can
generate new vectors that have a similar norm virtually for free. Therefore,
we can implement the Gauss Sieve algorithm using the list L with the rotated
vectors roti(v) for i = 1, 2, ..., n− 1 in addition to v with a small overhead. The
algorithm enables the Gauss Sieve algorithm to run about 25 times faster on
60-dimensional ideal lattices [26].

Unfortunately, upper bound of a running time has not yet been proven theo-
retically as a original Gauss Sieve algorithm. However, Micciancio and Vougalris
shows experimentally the running time is about 20.52n asymptotically [18].

4 Proposed Parallel Gauss Sieve Algorithm

In this section, we propose the parallelized algorithm derived from the Gauss
Sieve algorithm. We design our algorithm so that the list L remains pairwise-
reduced as with the Gauss Sieve algorithm, even though this algorithm works in
parallel.

4.1 Overview

Let t be the number of threads used in our algorithm. Our algorithm prepares
the auxiliary list V of r vectors in L(B), where each thread treats at most
s = ⌊r/t⌋ sample vectors for the list V . We also use the same list L and stack S
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Algorithm 2 Proposed Parallel Gauss Sieve
Require: Lattice basis B, the number of sample vectors r ∈ N, α, β ∈ R
Ensure: A shortest vector v in L(B) /* The outputs from our proposed algorithm over the lattices

in our experiment for up to 70 dimensions were exactly same with those from the Gauss Sieve
algorithm which is expected to solve the SVP */

1: L← {}, V ← {}, S ← {},K ← 0
/* Steps from 2 to 9 are described in 4.2 Multisampling of vectors */

2: while K < α|L|+ β do
3: if |S| ≠ 0 then
4: t← min(r, |S|)
5: for j = 1, . . . , t do
6: Pop from Stack S to vj

7: if |S| < r then
8: for j = |S|+ 1, . . . , r do
9: Generate a new vector vj using Klein’s randomized rounding algorithm [15] (We use

gsieve and BKZ with a block size of 30 using NTL library. See Section 5.4.)
10: V ← {v1, ...,vr}, V ′ ← {}, V ′′ ← {}, L′ ← {}
11: L = {ℓ1, ..., ℓm}

/* Steps from 12 to 22 are described in 4.3 Reduction sample vectors using*/
12: for i = 1, . . . , r do
13: wi ← vi

14: for j = 1, . . . ,m do
15: wi ← Reduce(wi, ℓj) /* This step can be ran in parallel */
16: if ||wi|| = 0 then
17: K ← K + 1
18: else if wi ̸= vi then
19: S ← S ∪ {wi}
20: else
21: V ′ ← V ′ ∪ {wi}
22: V ′ = {v1, ...,vr′}

/* Steps from 23 to 34 are described in 4.4 Reduction sample vectors using sample
vectors */

23: for i = 1, . . . , r′ do
24: wi ← vi

25: for j = 1, . . . , r′ do
26: if i ̸= j then
27: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
28: if ||wi|| = 0 then
29: K ← K + 1
30: else if wi ̸= vi then
31: S ← S ∪ {wi}
32: else
33: V ′′ ← V ′′ ∪ {wi}
34: V ′′ = {v1, ...,vr′′}

/* Steps from 35 to 45 are described in 4.5 Reduction list vectors using sample vectors*/
35: for i = 1, . . . ,m do
36: wi ← ℓi
37: for j = 1, . . . , r′′ do
38: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
39: if ||wi|| = 0 then
40: K ← K + 1
41: else if wi ̸= ℓi then
42: S ← S ∪ {wi}
43: else
44: L′ ← L′ ∪ {wi}
45: L′ = {ℓ1, ..., ℓm′}
46: L← L′ ∪ V ′′

47: return a shortest vector in L

in the Gauss Sieve algorithm, and the vectors in list L remain pairwise-reduced
during our algorithm by control with list V . Each thread has list V , list L, and
stack S, where we write V = {v1, . . . ,vr} and L = {ℓ1, . . . , ℓm}. After each
iteration of the loop in our algorithm, we pop vectors from the stack S to list
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V . If the size of V is smaller than r, we generate new sample vectors by the
multisampling techniques. We explain how to construct the proposed threads in
the following. There are three different reduction steps in our algorithm, namely
Reduction sample vectors using list vectors, Reduction sample vectors
using sample vectors, and Reduction list vectors using sample vectors.
Our algorithm requires to use Alg.1 at most max(rm, r2) times in each step, in
other words, at most max(⌊rm/t⌋, ⌊r2/t⌋) times in each thread.

In the Reduction sample vectors using list vectors, let s = ⌊r/t⌋ be
the number of sample vectors treated by a thread, where r is the size of list V .
Each thread has the distributed list Vi = {v(i−1)s+1, . . . ,vis} and list L, where
V = ∪iVi and i = 1, 2, ..., t. Each thread i independently deals with list L and
the sample vectors Vi, and runs v′k = Reduce(vk, ℓj), where vk ∈ Vi, ℓj ∈ L,
identical to a Gauss Sieve algorithm. If v′k ̸= vk holds, then the thread i moves
the reduced vector v′k into the stack S, otherwise, the thread i moves this vector
v′k into new list V ′. At the end of this part, any vector v in list V ′ satisfies
v = Reduce(v, ℓ) for all vectors ℓ in list L.

In the Reduction sample vectors using sample vectors, each thread
has list V ′, which consists of r′ vectors on a lattice. Let s′ = ⌊r′/t⌋ be the number
of sample vectors treated by a thread. Each thread i deals with only a sample
list V ′ and runs v′k = Reduce(vk,vj), where vk ∈ {v(i−1)s′+1, . . . ,vis′},vj ∈ V ′

with k ̸= j. If v′k ̸= vk holds, then the thread i moves the reduced vectors
v′k into the stack S, otherwise, the thread i moves the vectors v′k into new list
V ′′. At the end of this part, list V ′′ becomes pairwise-reduced and we have the
relationship V ′′ ⊂ V ′ ⊂ V .

In the Reduction list vectors using sample vectors, let s̄ = ⌊m/t⌋ be
the number of list vectors treated by a thread, where m is the size of list L.
Each thread has list Li = {ℓ(i−1)s̄+1, . . . , ℓis̄} and V ′′, where L = ∪iLi, and
i = 1, 2, ..., t. From our assumption, L is pairwise-reduced before processing this
part. Each thread i deals with a distributed list Li and a list V ′′ and runs
ℓ′k = Reduce(ℓk,vj), where ℓk ∈ Li,vj ∈ V ′′. If ℓ′k ̸= ℓk holds, then the thread i
moves the reduced vector ℓ′k into the stack S, otherwise, the thread i moves the
vectors ℓk into new list L′. At the end of this part, any vector ℓk in the new list
L′ satisfies ℓk = Reduce(ℓk,vj) for all vectors vj in list V ′′. Here both L′ and
V ′′ are pairwise-reduced due to relationship L′ ⊂ L and V ′′ ⊂ V ′, respectively.

After the above three reduction steps, our algorithm merges list L′ and list
V ′′ to create the new list L = L′ ∪ V ′′. Note that ℓ = Reduce(ℓ,v) and v =
Reduce(v, ℓ) hold for any vector ℓ ∈ L′ and v ∈ V ′′. Therefore, any pair of
two vectors (ℓ,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and thus the union
L = L′ ∪ V ′′ becomes pairwise-reduced by Lemma 2.

We show the algorithm derived from the proposed parallelized Gauss Sieve
Algorithm in Alg.2. The inputs of this algorithm are a lattice on basis B, the
number of samplings r ∈ N, and termination conditions α, β. Here r is deter-
mined by the experimental scale, for example, the number of CPU cores or the
available memory (we discuss the most suitable value based on an experiment
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described in section 5). In the following, we explain the details of the proposed
algorithm.

4.2 Multisampling of Vectors (Steps from 3 to 9 in Alg.2)

We sample r vectors in lattice L(B) and construct a list V = (v1, . . . ,vr) at the
beginning of the iteration from step 3 to step 9 in Alg.2. Sample vector vi is
samples in two ways, (i.e., popping from stack S or newly generating just as in
the case the Gauss Sieve algorithm). If |S| ≥ r, all vectors vi are popped from
the stack S, where 1 ≤ i ≤ r. If 0 < |S| < r, we pop |S| vectors from the stack
S and generate (r−|S|) vectors using Klein’s sampling algorithm. If S is empty,
all vectors vi are newly generated using Klein’s sampling algorithm.

4.3 Reduction of Sample Vectors using List Vectors (Steps from 12
to 22 in Alg.2)

In this part, by reducing the sample vectors in V using all vectors in list L
we will construct the list V ′, which consists of vectors vi ∈ V that satisfy
Reduce(vi, ℓj) = vi for all ℓj ∈ L. Here denote V = {v1, . . . ,vr} and L =
{ℓ1, . . . , ℓm}. At the beginning of this part, we assign wi ← vi at step 13 in
Alg.2. For i = 1, 2, ..., r, this part runs Reduce(wi, ℓj) from j = 1 to m for the
fixed first input wi and updates wi using its output repeatedly. After running
Reduce(wi, ℓj) for ℓj ∈ L, if wi is changed (i.e., wi ̸= Reduce(wi, ℓj) for some
ℓj), this vector wi is moved to stack S, otherwise, wi(= vi) is moved to the
distributed list V ′. This part runs the Reduce algorithm in the following order.

w1 ← Reduce(w1, ℓ1)
w1 ← Reduce(w1, ℓ2)

...
w1 ← Reduce(w1, ℓm)

...

wi ← Reduce(wi, ℓ1)
wi ← Reduce(wi, ℓ2)

...
wi ← Reduce(wi, ℓm)

...

...
wr ← Reduce(wr, ℓ1)
wr ← Reduce(wr, ℓ2)

...
wr ← Reduce(wr, ℓm)

At the end of this part, we re-index the vectors in V ′ from 1 to r′ in no partic-
ular order, and rename the vectors in list V ′ from {w1, ...,wr′} to {v1, ...,vr′} at
step 22 in Alg.2. Recall that any vector vi in list V ′ satisfies vi =Reduce(vi, ℓj)
for all vectors ℓj in list L. We have the relationship V ′ ⊆ V and |V ′| = r′ ≤ r.

This part can simply be parallelized without heavy overhead. Let t be the
number of threads and s be the number of sample vectors treated by a thread,
where s = ⌊r/t⌋. While a thread i(1 ≤ i ≤ t) computes Reduce(wi, ℓ1) to
Reduce(wi, ℓm), another thread j(j ̸= i) can compute Reduce(wj , ℓ1) to Reduce(
wj , ℓm), because the vectors ℓk in list L are not changed in this part. Therefore,
the inner loop (from step 14 to step 21) can be fully parallelized and the degree
of parallelization is at most r, if we set s = 1. If s > 1, the thread i has
Vi = {v(i−1)s+1, . . . ,vis} and list L, where V = ∪iVi. And then the thread
i runs Reduce(w(i−1)s+1, ℓ1) to Reduce(wis, ℓm) sequentially in the following
order.
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Thread 1

w1 ← Reduce(w1, ℓ1)
...

w1 ← Reduce(w1, ℓm)
...

w′
s ← Reduce(ws, ℓ1)

...
w′

s ← Reduce(ws, ℓm)

· · ·

Thread t

ws(t−1)+1 ← Reduce(ws(t−1)+1, ℓ1)
...

ws(t−1)+1 ← Reduce(ws(t−1)+1, ℓm)
...

wst ← Reduce(wst, ℓ1)
...

wst ← Reduce(wst, ℓm)

4.4 Reduction of Sample Vectors using Sample Vectors (Steps from
23 to 34 in Alg.2)

In this part we try to convert the list V ′ = {v1, . . . ,vr′} to be a pairwise-reduced
list V ′′. We reduce sample vectors vi ∈ V ′ using all vectors in V ′ \ {vi} and
construct list V ′′, which consists of vectors vi that satisfy Reduce(vi,vj) = vi

for all vj ∈ V ′′ with i ̸= j. At the beginning of this part, we assign wi ← vi

at step 24 in Alg.2. For i = 1, 2, ..., r′, this part runs Reduce(wi,vj) from j = 1
to m without j = i for the fixed first input wi and updates wi using its output
repeatedly. During all reductions, just after wi is reduced even once, this vector
wi is moved to stack S as in the first reduction part. If wi is not reduced (wi =
Reduce(wi,vj)), this vector wi(= vi) is moved to list V ′′.

At the end of this part, we re-index the vectors in V ′′ from 1 to r′′ in
no particular order, and rename the vectors in list V ′′ from {w1, ...,wr′′} to
{v1, ...,vr′′} at step 34 in Alg.2. Recall that list V ′′ becomes pairwise-reduced
because Reduce(vi,vj) = vi holds for all vectors vi,vj ∈ V ′′ with i ̸= j. We
then have relationship V ′′ ⊆ V ′ ⊆ V and |V ′′| = r′′ ≤ r′ ≤ r.

This part also can be parallelized in a similar way as the first part. Let t
be the number of threads and s′ be the number of sample vectors treated by a
thread, where s′ = ⌊r′/t⌋. Each thread i deals with only a sample list V ′ and
runs wk ← Reduce(wk,vj), where (i − 1)s′ + 1 ≤ k ≤ is′,vj ∈ V ′ with k ̸= j.
When thread i computes wi ← Reduce(wi,vj), another thread h can compute
wh ←Reduce(wh,vj) for all vj ∈ V ′.

4.5 Reduction of List Vectors using Sample Vectors (Steps from 35
to 45 in Alg.2)

In this part, by reducing the vectors ℓi in L using all sample vectors in V ′′ =
{v1, . . . ,vr′′}, we will construct the list L′, which consists of vectors ℓi ∈ L that
satisfy Reduce(ℓi,vj) = ℓi for all vj ∈ V ′′. At the beginning of this part, we as-
signwi ← ℓi at step 36 in Alg.2. For i = 1, 2, ...,m, this part runs Reduce(wi,vj)
from j = 1 to r′′ for the fixed first input wi and updates wi using its output re-
peatedly. During all reduction steps, if wi is changed (i.e., wi ̸= Reduce(wi,vi)
for some vi), this vector wi is moved to stack S, otherwise, this vector wi(= ℓi)
is moved to the distributed list L′.
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At the end of this part, we re-index the vectors in L′ from 1 to m′ in
no particular order, and rename the vectors in list L′ from {w1, ...,wm′} to
{ℓ1, ..., ℓm′} at Step 45 in Alg.2. Recall that any vector ℓi in list L′ satisfies
Reduce(ℓi,vj) = ℓi for all vectors vj in list V ′′. We then have relationships
L′ ⊆ L and |L′| = m′ ≤ m. After this part, our algorithm merges list L′ and list
V ′′ to become the new list L = L′ ∪ V ′′ at Step 46 in Alg.2.

This step can be simply parallelized without heavy overhead in a similar way
as the first part, and the degree of parallelization is at most r′′. Each thread
of index i updates s̄ vectors in list Li (i.e., Li = {ℓ(i−1)s̄+1, . . . , ℓis̄}, where
s̄ = ⌊m/r′′⌋).

4.6 Properties of the Proposed Algorithm

In our algorithm, list L remains pairwise-reduced at any iteration for the follow-
ing reasons. After the three reduction steps, our algorithm merges list L′ and
list V ′′ to become the new list L = L′ ∪ V ′′. Note that ℓ = Reduce(ℓ,v) and
v = Reduce(v, ℓ) hold for any vector ℓ in L′ and v ∈ V ′′ by the first and third
reduction parts. And then, V ′′ is pair-wise reduced by the second part. There-
fore, any pair of two vectors (ℓ,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and
thus the union L = L′ ∪ V ′′ becomes pairwise-reduced by Lemma 2.

Our algorithm is a natural extension of the Gauss Sieve algorithm. If only
one vector is sampled (i.e., r = 1), all the pairs of (ℓj ,v1) and (v1, ℓj) are Gauss-
reduced by the first and third reduction part, where ℓj ∈ L. There is nothing to
do in the second reduction part. Therefore, this algorithm is equal to the Gauss
Sieve algorithm when r = 1.

5 Implementation and Experimental Results

In this section, we explain the parallel implementation of the proposed parallel
Gauss Sieve algorithm on a multicore CPU, and we also present some algorithmic
improvement in our experiment.

5.1 Implementation using Amazon EC2

We use the instance cc1.8xlarge in AmazonEC2 [4]. Our implementation is based
on the gsieve library, published by Voulgaris [32] and written in C++. We
assume the following properties from our preliminary experiment:

– all absolute values of entries of vectors are less than 216

– the computational cost of the inner product is dominant (step 1 in Alg.1)

We optimize the code for the inner product (step 1 in Alg.1) using the SIMD
operation. Intel Xeon E5-2670 and g++4.1.2 support SSE4.2, and we can use
a 128-bit SSE register. Using the SSE, we can treat eight elements in one SSE
operation in parallel. This technique enables our program to run about four
times faster.
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Fig. 1. Results for solving the SVP Challenge of a 80-dimensional lattice. Fig (a) shows
the running time using one instance (32 threads). Fig (b) shows the maximum size of
list L. The horizontal axis indicates the number of sample vector r.

5.2 Space Complexity

In this section, we discuss the space complexity with a large number of sample
vectors r and a fixed number of threads t. The space complexity of our algorithm
is dominated by the size of lists L, V , and stack S. We evaluate the size of a
list by the number of vectors in the list. In our experiment of solving the SVP
Challenge of 80 dimensions [27], the sizes of list L between Gauss Sieve algorithm
(r = 1) and our algorithm (r > 1) are similar within several percent. Indeed,
Figure 1(b) shows the maximum size of list L for r = 1, 2, . . . , 5000 and fixed
t = 32 using one instance, and there is no increase of the maximum size of list
L from 400,000 even if r increases.

Next, in our algorithm, the maximum size of list V is at most r because V
is selected by r random vectors on a lattice at the beginning of iteration (from
step 12) and then the size of V shrinks by each iteration from step 12 to step
46. If we choose a suitable value of r which minimizes the total running time of
our proposed algorithm, then r is much smaller than the maximum size of list L.
Indeed, Figure 1(a) shows that the running time for solving the SVP Challenge
of 80 dimensions becomes relatively fast when the number of sample vectors r
is in the range of about 4,000 to 10,000.

Finally, in our experiment, the size of stack S in our proposed algorithm does
not increase that of the original Gauss Sieve algorithm. As a result, the space
complexity of our algorithm with a large r is not greater than that of the Gauss
Sieve algorithm of 20.2n.

5.3 Communication Complexity

In this section, we discuss the communication complexity between threads in our
proposed parallel algorithm. We evaluate the communication comlexity in terms
of the size of the lists communicated among the threads.

At first, we estimate the communication complexity of our algorithm. The
dominant part of the communication complexity of our algorithm is the timing
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Fig. 2. Results for solving the SVP Challenge on lattices of 80 and 90 dimensions.
Fig (a) shows the running time of solving the SVP Challenge of 80 dimensions for
t = 1, 2, . . . , 32. Fig (b) shows the running and communication time of solving the SVP
Challenge of 80 dimensions for t = 32, 64, . . . , 224. Fig (c) shows the running and com-
munication time of solving the SVP Challenge of 96 dimensions for t = 32, 64, . . . , 224.

of broadcasting the whole list L in the beginning of iterations (from step 12)
because the size of the list V is much smaller than that of the list L for large
dimensions n. In the previous section, we estimated that the space complexity of
our algorithm was 20.2n, which was the maximum size of list L. In the following,
we estimate the number of broadcasting the list L among threads in our algo-
rithm. A main thread broadcasts the whole list L to t threads in each iteration
(from step 12 to step 46 in Alg.2), and thus the communication complexity of
our algorithm becomes t20.2n per one iteration. Therefore, the total communi-
cation complexity of broadcasting the list L is tγ20.2n, where γ is the number
of iterations (from step 12 to step 46 in Alg.2). Here, the number of iterations
γ can be estimated as 20.29n in the case of r = 1 and t = 1 [18]. On the other
hand, in our experiment of the proposed algorithm in from 60 to 80 dimensions,
γ was estimated as 20.25n for r = 8192 and t = 32. Note that the number of
iterations γ is independent of t and, γ remains the same for a fixed number of
sampling r. If r is bigger than 8192 with fixed t, then we have more samples r
in the beginning of the iteration (from step 12 to step 46 in Alg.2) and γ is not
greater than 20.25n. Therefore, the communication complexity of our algorithm
is at most 20.45n which is smaller than the computation time of each thread, i.e.,
20.52n.

Next, we describe some experiments on both the running and communication
time for solving the SVP Challenge [27] of 80 and 96 dimensions for changing the
number of threads t. Figure 2 shows the running and communication time of our
algorithm for solving the SVP Challenge of 80 and 96 dimensions by changing
the number of threads for t = 1, . . . , 224. Figure 2(a) shows the total time for
solving the SVP Challenge of 80 dimensions for t = 1, . . . , 32 using one instance
that has 32 threads. Note that there is no communication cost among 32 threads
in one instance because they share one common memory in the instance. The
total time becomes 1/t by using t threads for t ≤ 16. The number of cores is
16 in one instance, and the improvement becomes smaller than 1/t for r > 16
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due to the overhead of hyper-threading technology. Finally, Figures 2(b) and
2(c) show the running and communication time for solving the SVP Challenge
of 80 and 96 dimensions by changing the number of instance from 1 to 7, namely
t = 32 to 224. In this experiment, the communication time becomes greater if
the number of threads t increases. The communication time of our algorithm
is about ten percent of the total running time for 64 threads and 128 threads
in 80 dimensions (Figure 2(b)) and 96 dimensions (Figure 2(c)), respectively.
Therefore, we expect that the rate of communication time relatively decreases
for larger dimensions n.

5.4 Sampling Short Vectors and Shrinking Ratio

If we are able to sample shorter vectors at step 9 in Alg.2, then the running
time of the proposed Gauss Sieve algorithm can be improved. However, it takes
longer time to sample such shorter vectors on a lattice in general. Therefore, we
try to adjust the parameter which determines the tradeoff between the length of
the norm of sample vectors and the running time of our algorithm.

In the gsieve library [32], Klein’s randomized rounding algorithm [15] is
implemented. The details of the algorithm are explained by Gentry et al. [9].
In the following we adjust the parameter of the core subroutine in the gsieve
library, namely the SampleD algorithm described in [9]. For the two inputs (u, c),
SampleD chooses an integer x from the range [c−u·d, c+u·d], where d = log n in
the gsieve library. We determine a more suitable value of d instead of d = log n
used in the gsieve library. The SampleD outputs x with probability ρu,c(x− c),
otherwise repeats choosing x, where ρu,c(x) denoted a Gaussian function on R
that is defined by ρu,c(x) = exp(−π|x − c|2/u2) for any x ∈ R. If the SampleD
algorithm outputs a smaller integer, Klein’s sampling algorithm outputs a shorter
vector. However, the computational time of the SampleD algorithm increases as
the length of the output vector decreases.

In our experiment, we found the parameter d = log n/70 which is most
suitable for speeding up our proposed parallel Gauss sieve algorithm. In this
case, the average value of the norms of all the sample vectors using the parameter
d = log n/70 becomes 3.7 times shorter than that using the parameter d = log n
in the gsieve library. This technique enables our proposed algorithm to run
about two times faster.

Next, we estimate how the norm of sample vectors becomes smaller in the
final list L in our proposed algorithm. Our proposed algorithm terminates and
outputs a shorter vector from the final list L at step 47 in Alg.2. Here denote by
GH the Gaussian heuristic bound (1/

√
π)Γ (n2 + 1)

1
n · det(L(B))

1
n for a lattice

L(B) of dimensions n, which is heuristically estimated as the length λ1(L(B))
of a shortest vector in L(B). In our experiment, we used a lattice L(B) of 80
dimensions whose GH is equal to 2179. The average value of the norm of all the
sample vectors is 1.66 GH and that of vectors in the final list L is 1.24 GH. The
norm of the shortest vector in the final list L at the termination of our proposed
algorithm achieves 1.04 GH. More details are described in [13].
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5.5 Improvement of the Ideal Gauss Sieve

In [26], there are three types of ideal lattices generated by specific polynomials
(including two cyclotomic polynomials), which are suitable for the rotate oper-
ation rot(v) of a vector v. We define a new type of an ideal lattice, which is
called a Trinomial lattice.

A Trinomial lattice is generated by the trinomials in the cyclotomic poly-
nomials. Note that the Trinomial lattice is not used in cryptography, but we
use this type for the speeding up for solving the SVP Challenge in Ideal lattice
Challenge [22]. There are two conditions for a Trinomial lattice, as follows:

– Condition 1 : If n/2 is a power of three, where n is an even dimension of
a lattice, an Trinomial lattice is generated by the cyclotomic polynomial
g(x) = xn + xn/2 +1. In this condition, the rotation of vector v is rot(v) =
(−vn−1, v0, . . . , vn

2−2, v
n
2−1 − vn−1, vn

2
, . . . , vn−2).

– Condition 2 : If the dimension n is the product of both a power of two
and a power of three, an Trinomial lattice is generated by the cyclotomic
polynomial g(x) = xn − xn/2 + 1. In this condition, the rotation of vector v
is rot(v) = (−vn−1, v0, . . . , vn

2−2, v
n
2−1 + vn−1, vn

2
, . . . , vn−2).

The rotate operation rot(v) using the Trinomial lattice requires no greater com-
putational cost than that using the Anti-cyclic lattice.

In a Trinomial lattice, repeating the rotate operation increases the norm
gradually. Therefore, the total running time of our algorithm increases with
too large a number of rotate operations. Then, we derived the most suitable
number of rotate operations from the experiment to solve the SVP Challenge of
72 dimensions with each number of rotations. In our experiment, it was found
that the most suitable number was 6, and this technique enables our parallel
Gauss Sieve algorithm to run about 5.5 times faster. More details are described
in [13].

5.6 Solving the SVP Challenge

We have solved several problems in the SVP Challenge over random lattices [27]
and the Ideal Lattice Challenge [22]. The problem setting in these challenges has
been published in [23]. We pre-computed the BKZ-reduced basis with a block
size of 30 using NTL library [31]. Because this precomputation requires much
less time than the Gauss Sieve algorithm, we do not include the timing in the
following. In our experiment, we used the instance cc1.8xlarge in AmazonEC2.
We fix the number of threads at 32 per an instance.

In the SVP Challenge over random lattices [27], we solved the SVP chal-
lenges of 80 and 96 dimensions given as filename “svpchallengedim80seed0.txt”
and “svpchallengedim90seed0.txt”. As we explained in section 5.1, our parallel
algorithm solved the SVP Challenges of 80 dimensions in about one CPU hour
using one instance which deploys 32 threads and 8,192 sample vectors. According
to the results of Schneider [25], their program for the Gauss Sieve requires about
106 seconds ≈ 278 hours using one thread for the same problem. Hence, our
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parallel algorithm enables the Gauss Sieve algorithm to run about like 200 times
faster. We also solved the SVP Challenge of 96 dimensions using four instances
of 128 threads and 32,768 sample vectors. As a result, our parallel algorithm
required about 200 CPU hours.

In the Ideal Lattice Challenge [22], we solved the SVP Challenges of 80,
96 and 128 dimensions. In this challenge, a basis of n-dimensional ideal lat-
tice is generated from one of cyclotomic polynomials of degree n. In our ex-
periment we chose the 80-dimensional lattice generated by cyclotomic polyno-
mial given as a filename “ideallatticedim80index220seed0.txt”. The basis of 96-
dimensional lattice was selected to be a Trinomial lattice generated by g(x) =
x96 − x48 + 1 given as filename “ideallatticedim96index288seed0.txt”, and that
of 128-dimensional SVP Challenge was selected to be an Anti-cyclic lattice gen-
erated by cyclotomic polynomial g(x) = x128 + 1 given as filename “ideallat-
ticedim128index256seed0.txt”. In our experiment of the 80-dimensional ideal
lattice, our parallel algorithm required about one CPU hour using 32 threads
and 8,192 sample vectors, which are the same time cost compared with our above
experiment for a random lattice in the SVP Challenge. Additionally, in our exper-
iment of the 96-dimensional ideal lattice, our parallel algorithm required about 8
CPU hours using 32 threads and 8,192 sample vectors. The proposed techniques
for Trinomial lattice (Section 5.5) enable us to speedup about 25 times faster
than the random lattice of the same dimension.

In our experiment of the 128-dimensional ideal lattice, our parallel algorithm
require 29, 994 CPU hours using 84 instances, where we can set that the number
of total threads and sample vectors are t = 2, 688 and r = 688, 128, respectively.
The Euclidean norm of the output vector is 2,959 which is 1.03 times larger
than the Gaussian heuristic bound of this ideal lattice, namely this vector is
a solution of SVP Challenge. In the experiment, the communication overhead
among threads for solving the SVP Challenge of 128 dimensions was less than
ten percents for the total running time of our proposed parallel Gauss Sieve
algorithm. More details are described in [13].

6 Conclusion

In this paper, we proposed a parallel Gauss Sieve algorithm, which is an extension
of Gauss Sieve algorithm suitable for parallel computation of a large number
of threads. We implemented the proposed parallel Gauss Sieve algorithm by
the SIMD operation in AmazonEC2 which supports hyper-threading technology.
Our experiment deploys 32 threads per instance cc1.8xlarge of 16 CPU cores.
We tried to solve the SVP Challenge in the Ideal Lattice Challenge from TU
Darmstadt (http://www.latticechallenge.org/).

Then we successfully solved the SVP Challenge of 128 dimensions on the ideal
lattice generated by the cyclotomic polynomial x128+1, where this type of ideal
lattice is often used for efficient implementation of lattice-based cryptography.
Our experiment required 29,994 CPU hours by executing 2,688 threads over
84 instances in total. In the experiment, the communication overhead among



Parallel Gauss Sieve Algorithm 17

threads is less than ten percents of the total running time. To the best of our
knowledge, this is currently the highest dimensions of solving the SVP Challenge
over ideal lattices.
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