
On the Security of the Pre-Shared Key

Ciphersuites of TLS

Yong Li1, Sven Schäge2?, Zheng Yang1, Florian Kohlar1, Jörg Schwenk1

1 Ruhr-Universität Bochum, Germany
{yong.li,zheng.yang,florian.kohlar,joerg.schwenk}@rub.de

2 University College London, UK
s.schage@ucl.ac.uk

Abstract. TLS is by far the most important protocol on the Internet for
negotiating secure session keys and providing authentication. Only very
recently, the standard ciphersuites of TLS have been shown to provide
provably secure guarantees under a new notion called Authenticated and
Con�dential Channel Establishment (ACCE) introduced by Jager et al.
at CRYPTO'12. In this work, we analyse the variants of TLS that make
use of pre-shared keys (TLS-PSK). In various environments, TLS-PSK
is an interesting alternative for remote authentication between servers
and constrained clients like smart cards, for example for mobile phone
authentication, EMV-based payment transactions or authentication via
electronic ID cards. First, we introduce a new and strong de�nition of
ACCE security that covers protocols with pre-shared keys. Next, we
prove that all ciphersuite families of TLS-PSK meet our strong notion
of ACCE security. Our results do not rely on random oracles nor on any
non-standard assumption.

Keywords: TLS, TLS-PSK, ACCE, Pre-Shared Keys, Authenticated
Key Exchange, Secure Channels

1 Introduction

TLS is undeniably the most prominent key exchange protocol in use to-
day. While the security of most web applications relies on the classical
Di�e-Hellman and RSA-based ciphersuites of TLS, there also exist sev-
eral important applications that make use of one of the less common
ciphersuites [31,1,29]. One such application is (remote) authentication of
resource-restricted clients like smart-cards. In these scenarios, computa-
tional e�ciency and low power consumption often are one of the most im-
portant system features. Instead of using the public-key based ciphersuites
of TLS, applications can apply a variant of TLS that assumes pre-shared
symmetric keys between client and server. The corresponding ciphersuite

? Supported by EPSRC grant number EP/J009520/1.

family is termed TLS with pre-shared keys (TLS-PSK) and available in
many TLS releases and libraries, for example [28,24,7].

Related Work: On the Security of TLS. Since the introduction
of its predecessor SSL, the security of TLS has often been the focus of
security researchers and attackers worldwide. Over the time, several at-
tacks on TLS have been published. Most of these attacks do not directly
attack the cryptographic core of TLS, but rather exploit side-channels or
vulnerabilities in associated technologies, like the famous Bleichenbacher
attack [6], or attacks on the domain name system or the public-key in-
frastructure [20,10,26]. However, despite that no serious attacks on the
cryptographic core of the current TLS protocol are known, determining
exactly what security guarantees TLS provides has been an elusive prob-
lem for many years. This is partly due to the fact that the popular TLS
ciphersuites provably do not provide security in the sense of authenticated
key exchange (AKE) protocols [3], the classical and very strong standard
notion of security of key exchange protocols (which requires that the ses-
sion key remains indistinguishable from random even if the adversary
obtains the communication transcript of the session). Until recently only
security analyses of modi�ed versions of TLS were published [18,16,27]. At
CRYPTO 2012, Jager, Kohlar, Schäge, and Schwenk (JKSS) [17] were the
�rst to present a detailed security analysis of the unmodi�ed version of one
of TLS's ciphersuite families. They showed that the cryptographic core of
ephemeral Di�e-Hellman with mutual authentication is a provably secure
authenticated and con�dential channel establishment (ACCE) protocol in
the standard model. ACCE is a new security notion that is particularly
well suited to capture what protocols like TLS intuitively want to achieve:
the establishment of a secure channel between client and server. Among its
features, it not only formalizes con�dentiality and integrity of messages ex-
changed between client and server, but also covers replay and re-ordering
attacks. Very recently, Krawczyk, Paterson, and Wee (KPW) [22] and in-
dependently Kohlar, Schäge, Schwenk (KSS) [19] presented, while relying
on di�erent cryptographic assumptions and security models 3, extensions
of the JKSS result to the remaining ciphersuite families. In particular,
they show that TLS-RSA and TLS-DH also constitute ACCE protocols
when used for mutual authentication setting and that TLS-RSA, TLS-
DH, and TLS-DHE are ACCE secure in the practically important setting

3 The security models and complexity assumptions di�er mainly with respect to the
capabilities granted to the adversary when corrupting and registering new parties
and the application of the random oracle model.

2

of server-only authentication (for which they provide new formal security
de�nitions).

Unfortunately, all previous results on the (ACCE) security of TLS are
based on either i) new, non-standard security assumption like the PRF-
ODH assumption introduced in [17] and re�ned in [22,19] or ii) strong
idealizations such as the modeling of TLS's key derivation function as a
random oracle [2] or assuming that the public-key encryption scheme in
TLS-RSA is replaced with an IND-CCA secure one. Looking somewhat
ahead, for the TLS-PSK ciphersuites, fortunately the situation is di�erent,
i.e. security can be based on standard assumptions only.

TLS with Pre-Shared Keys. The original speci�cations of the TLS
protocol [11,12,13] do not explicitly include ciphersuites that support
authentication and key exchange using pre-shared keys. However, since
2005 there exists an extension called �Pre-Shared Key Ciphersuites for
Transport Layer Security� (TLS-PSK) which speci�cally describes such
ciphersuites in RFC 4279 [14]. The TLS-PSK standard speci�es three
ciphersuites, TLS_PSK, TLS_RSA_PSK and TLS_DHE_PSK, each of which de-
rives the master secret in a di�erent way. In TLS_PSK, the master secret
is solely based on the secret pre-shared keys. In the remaining cipher-
suites the computation of the master secret is additionally dependent on
freshly exchanged secrets via encrypted key transport in TLS_RSA_PSK or
Di�e-Hellman key exchange in TLS_DHE_PSK. The intuition is that as long
as either the pre-shared key or the freshly exchanged secret is not com-
promised, then the protocol produces a secure application key. All three
ciphersuites assume that the client only has a pre-shared key for authenti-
cation. Although it is not as widespread as TLS with RSA key transport,
several interesting and important scenarios for TLS with pre-shared keys
exist where its e�ciency makes TLS-PSK a much more attractive alter-
native than, for example, TLS with self-signed certi�cates.

� Since November 2010, the new electronic German ID (eID) card sup-
ports online remote authentication of the eID card holder to some
online service (eService). Here TLS-PSK is applied to perform mutual
authentication between the two parties [15].

� As a second example, we mention the application of TLS-PSK in the
Generic Authentication Architecture, the 3GGP mobile phone stan-
dard for UMTS and LTE. According to ETSI TR 133 919 V11.0.0
(2012-11), TLS-PSK can be used to secure the communication be-
tween server and user equipment.

3

� An IETF draft from 2009 for EMV smart cards describes an authen-
tication protocol based on TLS-PSK [29]. EMV chips are widely de-
ployed and are used commonly for secure payment transactions [9].

Contribution. In this paper, we provide a security analysis of all three
TLS-PSK ciphersuites. Similar to classical TLS, it is provably impossible
to show that the keys produced by TLS-PSK are indistinguishable from
random. Therefore, as one of our main contributions, we introduce the
�rst de�nition of ACCE security for authentication protocols with pre-
shared keys. We do not propose a separate model but rather an extension
of the ACCE model of JKSS to also cover authentication via pre-shared
keys. Next, we introduce a strengthened variant of this de�nition called
asymmetric perfect forward secrecy, that captures that protocol sessions
of ACCE protocols with pre-shared keys may retain a strong level of con-
�dentiality even if the long-term secrets of the client are exposed after
the protocol run. Asymmetric perfect forward secrecy is a strong secu-
rity notion that can hold for protocols that do not ful�ll the standard
notion of perfect forward secrecy. This allows us to prove the security of
such protocols in a stronger security model than was previously possi-
ble. We show that TLS_PSK is ACCE secure (without forward secrecy),
TLS_RSA_PSK is ACCE secure with asymmetric perfect forward secrecy
and TLS_DHE_PSK is secure with (classical) perfect forward secrecy. In-
formally, our results say that TLS-PSK guarantees con�dentiality and
integrity of all messages exchange between client and server, unless the
adversary has learned the pre-shared key or corrupted one of the parties
to learn the application/session key. In TLS_DHE_PSK the communication
remains con�dential even if the adversary corrupts the pre-shared secret
later on. In contrast, in TLS_RSA_PSK the communication remains con�-
dential even if the adversary manages to corrupt the pre-shared key or
the server's long-term key later on, but not both of them.

Double PRFs and Forward Secrecy. To prove TLS_RSA_PSK and
TLS_DHE_PSK, we introduce a variant of pseudo-random functions (PRFs),
called double pseudo-random function (DPRF). Roughly, a DPRF takes as
input two keys only one of which is generated randomly and kept secret
from the attacker (as in classical PRFs). However, when the adversary
makes its queries, not only the message but also the other key can entirely
be speci�ed by the adversary. Our notion of DPRF nicely abstracts the
crucial mechanism in TLS-PSK that is required to guarantee (asymmetric)
perfect forward secrecy. In our security proofs, we assume that TLS's
key derivation function provides a suitable DPRF in the standard model.

4

Existing results on the security of HMAC support this assumption for
TLS 1.1 when the pre-shared key has a speci�c bit length. Our new DPRF
notion may be of independent interest beyond the scope of this work.

Note also, that for the TLS_PSK and TLS_DHE_PSK ciphersuites we nei-
ther have to rely on non-standard assumptions like the PRF-ODH assump-
tion of JKSS to give a proof nor on idealized setup assumptions like the
random oracle model. We can show that TLS_RSA_PSK is secure under our
basic notion of ACCE security without any assumption on the public key
encryption system used in TLS. This is because under the basic ACCE
de�nition security can be derived solely from secrecy of the pre-shared
keys. However, if we want to prove the ACCE security of TLS_RSA_PSK
with asymmetric perfect forward secrecy in the standard model we need
to assume that the public key encryption scheme is IND-CCA secure4,
similar to [22,19]. Thus, we do not consider TLS-RSA with RSA-PKCS
encryption as it is currently used in practice. We remark that [22] were
also able to prove security of the classical TLS ciphersuites based on RSA
key transport with RSA-PKCS encryption in the random oracle model. It
would be interesting to show that the results of KPW on TLS-RSA can be
transferred to show that TLS-PSK with RSA-PKCS based key transport
provides asymmetric perfect forward secrecy in the random oracle model.

Limitations. In our work, we give a dedicated security analysis for TLS-
PSK. We believe that it is possible to give a more modularized analysis,
similar to KPW [22] who analyzed the classical ciphersuites of TLS by
abstracting the handshake phase into a Constrained-CCA-secure (CCCA)
KEM that is combined with a secure authenticated encryption scheme.
The bene�t of the KPW analysis is re-usability: once the security proof is
established for a generic CCCA-secure KEM, all that remains is to show
that each of the ciphersuites indeed provides such a KEM.

2 Security Assumptions

To state our results, we will rely on standard security de�nitions for the
Decisional Di�e-Hellman assumption (DDH), collision-resistant crypto-
graphic hash functions, IND-CCA secure public key encryption schemes,
(plain) pseudo-random functions (PRF), and stateful length-hiding au-
thenticated encryption (sLHAE) schemes as recently de�ned in [30]. How-
ever, we will sometimes also rely on a new class of PRFs called double
pseudo-random functions.

4 KPW call this TLS-CCA.

5

Double Pseudo-Random Functions. Double pseudo-random func-
tions can be thought of as a class of pseudo-random functions with two
keys. Let DPRF : KDPRF1×KDPRF2×MDPRF → RDPRF denote a family of
deterministic functions, where KDPRF1 ,KDPRF2 is the key space, MDPRF

is the domain and RDPRF is the range of PRF.

Intuitively, security requires that the output of the DPRF is indis-
tinguishable from random as long as one key remains hidden from the
adversary even if the adversary is able to adaptively specify the second
key and the input message. To formalize security we consider the follow-
ing security game played between a challenger C and an adversary A. Let
RFDPRF(·, ·) denote an oracle implemented by C, which takes as input a
key kj ∈ KDPRFj (where j is speci�ed by the adversary via an Init query)
and message m ∈MDPRF and outputs a random value z ∈ RDPRF.

1. The adversary �rst runs Init(j) with j ∈ {1, 2} to specify the key
kj ∈ KDPRFj that he wants to manipulate.

2. The challenger C samples b̂
$← {0, 1}, and sets u = (j mod 2)+ 1. If

b̂ = 0, the challenger samples ku ∈R KDPRFu and assigns RFDPRF(·, ·)
to either DPRF(·, k2, ·) or DPRF(k1, ·, ·) depending on the value of u.
For instance, if u = 2 then the random function RFDPRF is assigned
to DPRF(·, k2, ·), and the A is allowed to specify k1 arbitrarily in each
query. If b̂ = 1, the challenger assigns RFDPRF to RF(·, ·) which is a
truly random function that takes as input key kj and message m and
outputs a value in the same range RDPRF as DPRF(·, ·, ·).

3. The adversary may adaptively make queries kj,i, mi for 1 ≤ i ≤ q to
oracle RFDPRF and receives the result of RFDPRF(kj,i,mi), where kj,i
denotes the i-th key kj chosen by A.

4. Finally, A outputs its guess b̂′ ∈ {0, 1} of b̂. If b̂ = b̂′, A wins.

De�nition 1. We say that DPRF is a (t, ε)-secure double pseudo-random
function, if any adversary running in time t has at most an advantage of

ε to distinguish the DPRF from a truly random function, i.e.

Pr
[
b̂ = b̂′

]
≤ 1/2 + ε.

The number of allowed queries q is upper bounded by t.

3 A Brief Introduction to TLS-PSK

6

Client Server
m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate

m4 : ServerKeyExchange

m5 : ServerHelloDone

m6 : ClientKeyExchange

m7 : ChangeCipherSpec

m8 : ClientFinished

m9 : ChangeCipherSpec

m10 : ServerFinished

pre-accept phase:

post-accept phase:

Stateful Symmetric Encryption

Fig. 1: Handshake in TLS-PSK

This section describes the three
sets of ciphersuites speci�ed in
TLS-PSK: TLS_PSK, TLS_RSA_PSK
and TLS_DHE_PSK. In each of these
ciphersuites, the master secret is
computed using pre-shared keys
which are symmetric keys shared
in advance among the communi-
cating parties. The main di�er-
ences are in the way the mas-
ter secret is computed. The fol-
lowing description is valid for all

TLS_PSK versions. We only de-
scribe the cryptographically rele-
vant messages and only those that
deviate from the classical TLS ciphersuites. A detailed description can be
found in the full version.

ServerCertificate. For TLS_PSK and TLS_DHE_PSK, the message is not
included. In TLS_RSA_PSK certS contains a public key that is bound to the
server's identity.

ServerKeyExchange. Since clients and servers may have pre-shared
keys with many di�erent parties, in the ServerKeyExchange message m4,
the server provides a PSK identity hint pointing to the PSK used for
authentication. However, for ephemeral Di�e-Hellman key exchange, the
Di�e-Hellman (DH) key exchange parameters are also contained in the
ServerKeyExchange messages including information on the DH group
(e.g. a large prime number p ∈ {0, 1}poly(κ), where κ is the security pa-
rameter, and a generator 〈g〉 for a prime-order q subgroup of Z∗p), and the
DH share TS (TS = gtS , where tS is a random value in Zq). (We implictly
assume that the client checks whether the received parameters are valid,
in particular if TS is indeed in the group generated by g.)

ClientKeyExchange. Message m6 is called ClientKeyExchange. We
describe the contents of this message for the ciphersuites TLS_DHE_PSK,
TLS_PSK and TLS_RSA_PSK separately:

� For TLS_PSK, the message is not included.
� For ephemeral Di�e-Hellman key exchange TLS_DHE_PSK, it contains
the Di�e-Hellman share TC of the client, i.e. TC = gtC .

� For the RSA-based key exchange TLS_RSA_PSK the client selects a 46-
byte random value R and sends a 2-byte version number V and the

7

46-byte random value R encrypted under the server's RSA public key
to the server.

Also, the client sends an identi�er for the pre-shared key it is going to
use when communicating with the server. This information is called PSK

identity.

Computing The Master Secret. According to the original speci�-
cation, released as RFC 4279 [14], the key derivation function of TLS,
denoted here as PRFTLS, is used when constructing the master secret.
PRFTLS takes as input a secret, a seed, and an identifying label and pro-
duces an output of arbitrary length. We �rst describe the generic com-
putation of the master secret ms for all ciphersuites using pre-shared
keys. Then, a detailed description of all cases (TLS_PSK, TLS_DHE_PSK,
and TLS_RSA_PSK) is provided. The master secret ms is computed as fol-
lows:

ms := PRFTLS(pms, label1||rC ||rS) (1)

� TLS_PSK case: For TLS_PSK, the client/server is able to compute the
master secret ms using the pre-master secret pms, from which all fur-
ther secret values are derived. If the PSK is N bytes long, the pms
consists of the 2-byte representation (uint16) of the integer value N,
N zero bytes, the 2-byte representation of N once again, and the PSK
itself, i.e. pms := N ||0...0||N ||PSK. Since the �rst half of pms is con-
stant for any PSK we get for TLS_PSK that the entire security of PRFTLS
only relies on the second half of pms.

� TLS_DHE_PSK case: Let Z be the value produced for DH-based cipher-
suites, i.e. Z =gtStC = T tSC = T tCS . The pms consists of a concatenation
of four values: the uint16 lenZ indicating the length of Z, Z itself, the
uint16 lenPSK showing the length of the PSK, and the PSK itself:
pms := lenZ ||Z||lenPSK ||PSK.

� TLS_RSA_PSK case: First, the pre-master secret concatenates the uint16
constant C = 48, the 2-byte version number V, a 46-byte random value
R, the uint16 lenPSK containing the length of the PSK, and the PSK
itself, i.e. pms := C||V||R||lenPSK ||PSK.

3.1 On the Security of PRFTLS

In our security proof of TLS_PSK, we assume that the pseudo-random
function of TLS (PRFTLS) that is used for the computation of the master-
secret constitutes a secure PRF in the standard model when applied with

8

pms as the key. However to prove (asymmetric) perfect forward secrecy
in TLS_DHE_PSK and TLS_RSA_PSK, we assume that PRFTLS constitutes a

secure DPRF (in the standard model) where the key space of the DPRF
consists of the key space of the pre-shared key and the key space of the
freshly generated RSA or Di�e-Hellman secret. Unfortunately, existing
results do not directly prove that PRFTLS as used in TLS-PSK is a secure
DPRF. Nevertheless, they might in some cases serve as a strong indicator
of the security of PRFTLS. We provide a more detailed analysis of the
plausibility of this assumption in the full version.

4 ACCE protocols

In this section, we present an extension of the formal security model for
two party authenticated and con�dential channel establishment (ACCE)
protocols introduced by JKSS [17] to also cover scenarios with pre-shared,
symmetric keys. Additionally, we extend the model to also address PKI-
related attacks that exploit that the adversary does not have to prove
knowledge of the secret key when registering a new public key [5]. (In [25]
such attacks are generally called strong-key substitution attacks.) For bet-
ter comparison with JKSS we will subsequently use boxes to highlight
state variables that are essentially new in our model.

In this model, while emulating the real-world capabilities of an active
adversary, we provide an `execution environment' for adversaries following
the tradition of the seminal work of Bellare and Rogaway [3] and its
extensions [4,8,21,23,17]. Let K0 = {0, 1}κ be the key space of the session
key and K1 = {0, 1}κ be the key space of the pre-shared keys.

Execution Environment. In the following let `, d ∈ N be positive integers.
In the execution environment, we �x a set of ` honest parties {P1, . . . , P`}.
Each party is either identi�ed by index i in the security experiment or a
unique, �xed-length string idi (which might appear in the protocol �ows).

To cover authentication with symmetric keys, we extend the state of
each party to also include pre-shared keys. Each party holds (symmetric)
pre-shared keys with all other parties. We denote with PSKi,j = PSKj,i the
symmetric key shared between parties Pi and Pj . Each party Pi with i ∈
{1, . . . , `} also has access to a long-term public/private key pair (pki, ski).
Formally, each party maintains the state variables given in Table 1.

The �rst two variables, ski and PSKi, are used to store keys that are
used in the protocol execution while the remaining variables are solely
used to de�ne security. (When de�ning security the latter are additionally

9

Variable Description

ski stores the secret key of a public key pair (pki, ski)

PSKi a vector which contains an entry PSKi,j per party Pj
τi denotes, that ski was corrupted after the τi-th query of A
fi a vector denoting the freshness of all pre-shared keys,

containing one entry fi,j ∈ {exposed, fresh} for each entry in PSKi

Table 1: Internal States of Parties

managed and updated by the challenger.) The variables of each party Pi
will be initialized according to the following rules:

� The long-term key pair (pki, ski) and pre-shared key vector PSKi are
chosen randomly from the key space. For all parties Pi, Pj with i, j ∈
{1, . . . , `} and with i 6= j, and pre-shared keys PSKi it holds that
PSKi,j = PSKj,i and PSKi,i := ∅.

� All entries in fi are set to fresh.

� τi is set to τi := ∞, which means that all parties are initially not
corrupted.

In the following, we will call party Pi uncorrupted i� τi = ∞. Thus, we
do not consider a dedicated variable that holds the corruption state of the
secret key ski. Each honest party Pi can sequentially and concurrently
execute the protocol multiple times. This is modeled by a collection of
oracles {πsi : i ∈ [`], s ∈ [d]}. Oracle πsi behaves as party Pi carrying
out a process to execute the s-th protocol instance with some partner Pj
(which is determined during the protocol execution). All oracles of Pi have
access to the long-term keys ski and PSKi with j ∈ {1, . . . , `}. Moreover,
we assume each oracle πsi maintains a list of independent internal state
variables with the semantics given in Table 2. The variables Φsi , Pid

s
i , ρ

s
i ,

Variable Description

Φsi denotes πsi 's execution-state in {negotiating, accept, reject}
Pidsi stores the identity of the intended communication partner
ρsi denotes the role ρsi ∈ {Client, Server}

Ksi = (kenc, kdec) stores the application keys Ksi
Stsi = (u, v, ste, std, C) stores the current states of the sLHAE scheme

Tsi records the transcript of messages sent and received by πsi

kstsi denotes the freshness kstsi ∈ {exposed, fresh} of the session key

bsi stores a bit b ∈ {0, 1} used to de�ne security

Table 2: Internal States of Oracles

10

Ksi , ste, std, and Tsi are used by the oracles to execute the protocol. The
remaining variables are only used to de�ne security. The variables of each
oracle πsi will be initialized by the following rules:

� The execution-state Φsi is set to negotiating.

� The variable kstsi is set to fresh.
� The bit bsi is chosen at random.

� The counters u, v are initialized to 0.

� All other variables are set to only contain the empty string ∅.

At some point, each oracle πsi completes the execution with a decision
state Φsi ∈ {accept, reject}. Furthermore, we will always assume (for
simplicity) that Ksi = ∅ if an oracle has not reached accept-state (yet).

Matching Conversations. To formalize the notion that two oracles engage
in an on-line communication, we de�ne partnership via matching conver-

sations as proposed by Bellare and Rogaway [3]. We use the variant by
JKSS.

De�nition 2. We say that an oracle πsi has a matching conversation to

oracle πtj, if

� πsi has sent all protocol messages and Ttj is a pre�x of Tsi , or
� πtj has sent all protocol messages and Tsi = Ttj.

To keep our de�nition of ACCE protocols general we do not consider
protocol-speci�c de�nitions of partnership like for example [22] who de�ne
partnership of TLS sessions using only the �rst three messages exchanged
in the handshake phase.

Adversarial Model. An adversary A in our model is a PPT taking as
input the security parameter 1κ and the public information (e.g. generic
description of above environment), which may interact with these oracles
by issuing the following queries.

Sendpre(πsi ,m): This query sends message m to oracle πsi . The oracle will
respond with the next message m∗ (if there is any) that should be sent
according to the protocol speci�cation and its internal states.

After answering a Sendpre query, the variables (Φsi ,Pid
s
i , ρ

s
i ,K

s
i , T

s
i) will

be updated depending on the protocol speci�cation. This query is
essentially de�ned as in JKSS.

RegisterParty(µ, pkµ, [psk]): This query allows A to register a new party
with a new identity µ and a static public key (pkµ) to be used for party

11

Pµ. In response, if the same identity µ is already registered (either
via a RegisterParty-query or µ ∈ [`]), a failure symbol ⊥ is returned.
Otherwise, a new party Pµ is added with the static public key pkµ.
The secret key skµ is set to a constant. The parties registered by this
query are considered corrupted and controlled by the adversary. If
RegisterParty is the τ ′-th query of the adversary, Pµ is initialized with
τµ = τ ′. If the adversary also provides a pre-shared key psk, then this
key will be implemented for every party Pi with i ∈ [`] as key PSKi,µ.

5

Otherwise, the simulator chooses a random key psk
$← {0, 1}κ and sets

PSKi,µ = PSKµ,i := psk for all parties Pi before outputting psk. The
corresponding entries fi,µ in the vectors of the other parties Pi with
i ∈ [`] are set to exposed. Via this query we extend the ACCE model
of JKSS to also model key registration.

RevealKey(πsi): Oracle π
s
i responds to a RevealKey-query with the con-

tents of variable Ksi , the application keys. At the same time the chal-
lenger sets kstsi = exposed. If at the point when A issues this query
there exists another oracle πtj having matching conversation to πsi ,

then we also set ksttj = exposed for πtj . This query slightly deviates

from JKSS.6.

Corrupt(Pi, [Pj]): Depending on the second input parameter, oracle π1i
responds with certain long-term secrets of party Pi. This query extends
the corruption capabilities of JKSS to symmetric keys.

� If A queries Corrupt(Pi) or Corrupt(Pi, ∅)7, oracle π1i returns the
long-term secret key ski of party Pi. If this query is the τ -th query
issued by A, then we say that Pi is τ -corrupted and π1i sets τi := τ .

� If A queries Corrupt(Pi, Pj), oracle π
1
i returns the symmetric pre-

shared key PSKi,j stored in PSKi and sets fi,j := exposed.

� If A queries Corrupt(Pi,>), oracle π1i returns the vector PSKi and
sets fi,j := exposed for all entries fi,∗ ∈ fi.

Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0

andm1, length parameter len, and header dataH. If Φsi 6= accept then
πsi returns⊥. Otherwise, it proceeds as depicted in Figure 2, depending
on the random bit bsi

$← {0, 1} sampled by πsi at the beginning of the

5 This is just for simplicity. Modeling di�erent pre-shared keys between the registered
party and every other party is equivalent to registering multiple parties with a single
shared key each.

6 JKSS implicitly located the speci�cation of when to set ksttj = exposed into the
security de�nition.

7 The party Pi is not adversarially controlled.

12

game and the internal state variables of πsi . This query is essentially
de�ned as in JKSS.

Decrypt(πsi , C,H): This query takes as input a ciphertext C and header
data H. If πsi has Φsi 6= `accept' then πsi returns ⊥. Otherwise, it
proceeds as depicted in Figure 2. This query is essentially de�ned as
in JKSS.

Encrypt(πsi ,m0,m1, len, H): Decrypt(πsi , C,H):

u := u+ 1 v := v + 1

(C(0), st
(0)
e)

$← StE.Enc(kρenc, len, H,m0, ste) If bsi = 0, then return ⊥
(C(1), st

(1)
e)

$← StE.Enc(kρenc, len, H,m1, ste) (m, std) = StE.Dec(kρdec, H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv or H 6= Hv,

(Cu, Hu, ste) := (C(b), H, st
(b)
e) then phase := 1

Return Cu If phase = 1 then return m

Here u, v, bsi , ρ, k
ρ
enc, k

ρ
dec, C denote the values stored in the internal variables of πsi .

Fig. 2: Encrypt and Decrypt oracles in the ACCE security experiment.

De�nition 3 (Correctness).We say that an ACCE protocol Π is correct,
if for any two oracles πsi , π

t
j that have matching conversations with Pidsi =

j and Pidtj = i and Φsi = accept and Φtj = accept it always holds that

Ksi = Ktj.

Secure ACCE Protocols. We de�ne security via an experiment played
between a challenger C and an adversary A.
Security Game. Assume there is a global variable pinfo which stores
the role information of each party for the considered protocol Π.8 In the
game, the following steps are performed:

1. Given the security parameter κ, C implements the collection of oracles
{πsi : i, j ∈ [`], s ∈ [d]} with respect to Π and pinfo. In this process,
C generates long-term keys PSKi for all parties i ∈ [`]. Next it addi-
tionally generates long-term key pairs (pki, ski) for all parties i ∈ [`]
that require them (e.g. if the corresponding party is a server in the
TLS_RSA_PSK protocol). Finally, C gives all identi�ers {idi}, all public
keys (if any), and pinfo to A.

8 This information is simply used to determine which party also holds asymmetric key
pairs besides the shared symmetric keys.

13

2. Next the adversary may start issuing Sendpre, RevealKey, Corrupt,
Encrypt, Decrypt, and RegisterParty queries.

3. At the end of the game, the adversary outputs a triple (i, s, b′) and
terminates.

In the following, we provide a general security de�nition for ACCE
protocols. It will subsequently be referred to when formalizing speci�c
de�nitions for ACCE protocols that provide no forward secrecy, perfect
forward secrecy or asymmetric perfect forward secrecy. We have tried to
keep the details of the execution environment and the de�nition of security
close to that of JKSS. Intuitively, our security de�nition mainly di�ers
from JKSS in that it considers adversaries that also have access to the
new RegisterParty query and the extended Corrupt query.

De�nition 4 (ACCE Security). We say that an adversary (t, ε)-breaks
an ACCE protocol, if A runs in time t, and at least one of the following

two conditions holds:

1. When A terminates, then with probability at least ε there exists an

oracle πsi such that
� πsi ‘accepts' with Pidsi = j when A issues its τ0-th query, and
� both Pi and the intended partner Pj

9 are not corrupted throughout

the security game and
� πsi has internal state kstsi = fresh, and
� there is no unique oracle πtj such that πsi has a matching conver-

sation to πtj.
If an oracle πsi accepts in the above sense, then we say that πsi accepts
maliciously.

2. When A terminates and outputs a triple (i, s, b′) such that
� πsi ‘accepts′ � with a unique oracle πtj such that πsi has a matching

conversation to πtj � when A issues its τ0-th query, and
� A did not issue a RevealKey-query to oracle πsi nor to πtj, i.e.

kstsi = fresh, and
� Pi is τi-corrupted and Pj is τj-corrupted,
then the probability that b′ equals bsi is bounded by∣∣Pr[bsi = b′]− 1/2

∣∣ ≥ ε.
If adversary A outputs (i, s, b′) with b′ = bsi and the above conditions

are met, we say that A answers the encryption-challenge correctly.

9 The party Pj is not adversarially corrupted, i.e. j ∈ [`]. This means that Pj has not
been registered by a RegisterParty query. Otherwise A may obtain all corresponding
secure keys and trivially make oracle πsi accept.

14

We say that the ACCE protocol is (t, ε)-secure, if there exists no adversary

that (t, ε)-breaks it.

Let us now de�ne security more concretely. We consider three levels
of forward secrecy. We start with a basic security de�nition for protocols
that do not provide any form of forward secrecy.

De�nition 5 (ACCE Security without Forward Secrecy). We say

that an ACCE protocol is (t, ε)-secure without forward secrecy (NoFS), if
it is (t, ε)-secure with respect to De�nition 4 and τi = τj =∞.

The next de�nition considers PFS in the classical sense for both, client
and server, as in JKSS.

De�nition 6 (ACCE Security with Perfect Forward Secrecy). We

say that an ACCE protocol is (t, ε)-secure with perfect forward secrecy
(PFS), if it is (t, ε)-secure with respect to De�nition 4 and τi, τj ≥ τ0.

In the following, we provide our new de�nition of asymmetric perfect
forward secrecy which is similar to that of classical perfect forward secrecy
except that only the client is allowed to be corrupted after it has accepted.

De�nition 7 (ACCE Security with Asymmetric Perfect Forward

Secrecy). We say that an ACCE protocol is (t, ε)-secure with asymmetric
perfect forward secrecy (APFS), if it is (t, ε)-secure with respect to Def-

inition 4 and it holds that τi = ∞ and τj ≥ τ0 if πsi has internal state

ρ = Server or τi ≥ τ0 and τj =∞ if πsi has internal state ρ = Client.

5 Security Analysis of Pre-Shared Key Ciphersuites for

Transport Layer Security

In this section, we present our results for each of the TLS-PSK cipher-
suites. Due to space restrictions, the proofs are given in the full version.

Theorem 1. Let µ be the output length of PRFTLS and let λ be the length

of the nonces. Assume that PRFTLS is a (t, εPRF)-secure PRF when keyed

with the pre-master secret pms := N ||0...0||N ||PSK or the master secret

ms. Suppose the hash function H is (t, εH)-secure, and the sLHAE scheme

is (t, εStE)-secure. Then for any adversary that (t′, εtls)-breaks the TLS_PSK
protocol in the sense of De�nition 5 with t ≈ t′ it holds that

εtls ≤ (d`)2
(

1

2λ−1
+ 3εDPRF + 3εPRF + 2εH +

1

2µ−1
+ 6εStE

)
.

15

Theorem 2. Let µ be the output length of PRFTLS and let λ be the length

of the nonces. Assume that PRFTLS is a (t, εDPRF)-secure DPRF when

keyed with the pre-master secret pms := lenZ ||Z||lenPSK ||PSK (that con-

sists of the pre-shared secret PSK and the Di�e-Hellman value Z). As-
sume that PRFTLS is a (t, εPRF)-secure PRF when keyed with the mas-

ter secret ms. Suppose the hash function H is (t, εH)-secure, the DDH-
problem is (t, εDDH)-hard in the group G used to compute Z, and the sL-

HAE scheme is (t, εStE)-secure. Then for any adversary that (t′, εtls)-breaks
the TLS_DHE_PSK protocol in the sense of De�nition 6 with t ≈ t′ we get

εtls ≤ (d`)2
(

1

2λ−1
+ 3εDPRF + 3εPRF + 2εH +

1

2µ−1
+ εDDH + 6εStE

)
.

Theorem 3. Let µ be the output length of PRFTLS and let λ be the length

of the nonces. Assume that PRFTLS is a (t, εDPRF)-secure DPRF when

keyed with the pre-master secret pms := C||V||R||lenPSK ||PSK (that con-

sists of the pre-shared key PSK and the random key R that is exchanged

between client and server). Assume that PRFTLS is a (t, εPRF)-secure PRF
when keyed with the master secret ms. Suppose the hash function H is

(t, εH)-secure, the public key encryption scheme PKE is (t, εPKE)-secure
(IND-CCA). Suppose that the sLHAE scheme is (t, εStE)-secure. Then for

any adversary that (t′, εtls)-breaks the TLS_RSA_PSK protocol (where the key
transport mechanism is implemented via PKE) in the sense of De�nition 7

with t ≈ t′ it holds that

εtls ≤ (d`)2
(

1

2λ−1
+ εPKE + 3εDPRF + 3εPRF + 2εH +

1

2µ−1
+ 6εStE

)
.

Technical Overview of the Security Proofs. At a high level,
the security proofs are similar to that of JKSS. From a technical stand-
point, the security proof of TLS_PSK is simpler than that of the classical
ciphersuites of TLS as security only relies on the secrecy of the pre-shared
secrets. Roughly, in the proofs of the classical TLS ciphersuites one ad-
ditionally has to establish that the key exchange mechanism produces a
shared secret in the �rst place. To prove TLS_RSA_PSK and TLS_DHE_PSK

we exploit the DPRF-security of PRFTLS. The challenge is to show that
the master secret is indistinguishable from random although the adver-
sary may reveal the pre-shared secret or a freshly generated ephemeral
secret. Intuitively, if only one of these values remains unrevealed by the
adversary, then at least one input key to the DPRF PRFTLS is (indistin-
guishable from) random. Therefore, PRFTLS computes a random-looking
master secret which in turn can be used to derive secure application keys.

16

Acknowledgements. We would like to thank Kenny Paterson and the
anonymous referees for their valuable comments and suggestions.

References

1. Mohamad Badra and Pascal Urien. Toward SSL integration in SIM smartcards.
In WCNC, pages 889�893. IEEE, 2004.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing e�cient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Gane-
san, Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference on Computer
and Communications Security, pages 62�73. ACM, 1993.

3. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology � CRYPTO'93, volume 773 of
Lecture Notes in Computer Science, pages 232�249. Springer, August 1994.

4. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, 6th IMA International Con-
ference on Cryptography and Coding, volume 1355 of Lecture Notes in Computer
Science, pages 30�45. Springer, December 1997.

5. Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the
Station-to-Station (STS) protocol. In Hideki Imai and Yuliang Zheng, editors,
Public Key Cryptography, volume 1560 of Lecture Notes in Computer Science,
pages 154�170. Springer, 1999.

6. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Hugo Krawczyk, editor, Advances in
Cryptology � CRYPTO'98, volume 1462 of Lecture Notes in Computer Science,
pages 1�12. Springer, August 1998.

7. BouncyCastle Software Developers. Bouncy Castle Crypto APIs, 2013. http:

//www.bouncycastle.org/.

8. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit P�tzmann, editor, Advances in Cryptology
� EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453�474. Springer, May 2001.

9. Chunhua Chen, Shaohua Tang, and Chris J. Mitchell. Building general-purpose
security services on EMV payment cards. In Angelos D. Keromytis and Roberto Di
Pietro, editors, SecureComm, volume 106 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering, pages 29�
44. Springer, 2012.

10. Italo Dacosta, Mustaque Ahamad, and Patrick Traynor. Trust no one else: Detect-
ing MITM attacks against SSL/TLS without third-parties. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, ESORICS, volume 7459 of Lecture Notes in
Computer Science, pages 199�216. Springer, 2012.

11. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746.

12. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated
by RFCs 4366, 4680, 4681, 5746.

13. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878.

17

http://www.bouncycastle.org/
http://www.bouncycastle.org/

14. P. Eronen and H. Tschofenig. Pre-Shared Key Ciphersuites for Transport Layer
Security (TLS). RFC 4279 (Proposed Standard), December 2005.

15. German Federal O�ce for Information Security (BSI). TR-03112, Das eCard-
API-Framework, 2005. https://www.bsi.bund.de/ContentBSI/Publikationen/

TechnischeRichtlinien/tr03112/index_htm.html.
16. Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg

Schwenk. Universally composable security analysis of TLS. In Joonsang Baek,
Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec, volume 5324 of Lecture
Notes in Computer Science, pages 313�327. Springer, 2008.

17. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security
of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology � CRYPTO 2012, volume 7417 of Lecture Notes
in Computer Science, pages 273�293. Springer, August 2012.

18. Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in
TLS. In Moti Yung, editor, Advances in Cryptology � CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science, pages 127�142. Springer, August 2002.

19. Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH and
TLS-RSA in the standard model. IACR Cryptology ePrint Archive, 2013:367, 2013.

20. Florian Kohlar, Jörg Schwenk, Meiko Jensen, and Sebastian Gajek. Secure bindings
of SAML assertions to TLS sessions. In ARES, pages 62�69. IEEE Computer
Society, 2010.

21. Hugo Krawczyk. HMQV: A high-performance secure Di�e-Hellman protocol. In
Victor Shoup, editor, Advances in Cryptology � CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 546�566. Springer, August 2005.

22. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,
CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages 429�448.
Springer, 2013.

23. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec 2007: 1st International Conference on Provable Security, volume 4784 of
Lecture Notes in Computer Science, pages 1�16. Springer, November 2007.

24. Nikos Mavrogiannopoulos and Simon Josefsson. The GnuTLS Transport Layer
Security library. Last updated 2013-03-22, http://gnutls.org.

25. Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user
setting. Des. Codes Cryptography, 33(3):261�274, 2004.

26. Christopher Meyer and Jörg Schwenk. Lessons learned from previous SSL/TLS
attacks - a brief chronology of attacks and weaknesses. IACR Cryptology ePrint
Archive, 2013:49, 2013.

27. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS handshake pro-
tocol: A modular analysis. Journal of Cryptology, 23(2):187�223, April 2010.

28. OpenSSL. The OpenSSL project, 2013. http://www.openssl.org.
29. L.Cogneau P. Urien and P. Martin. EMV support for TLS-PSK. draft-urien-tls-

psk-emv-02, February 2011.
30. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does

matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology � ASIACRYPT 2011, volume 7073
of Lecture Notes in Computer Science, pages 372�389. Springer, December 2011.

31. Pascal Urien. Introducing TLS-PSK authentication for EMV devices. In
Waleed W. Smari and William K. McQuay, editors, CTS, pages 371�377. IEEE,
2010.

18

https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03112/index_htm.html
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03112/index_htm.html
http://gnutls.org
http://www.openssl.org

	On the Security of the Pre-Shared Key Ciphersuites of TLS
	Yong Li1, Sven Schäge2, Zheng Yang1, Florian Kohlar1, Jörg Schwenk1

