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Abstract. Lossy trapdoor functions, introduced by Peikert and Waters
(STOC ’08), are functions that can be generated in two indistinguishable
ways: either the function is injective, and there is a trapdoor to invert
it, or the function is lossy, meaning that the size of its range is strictly
smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT
2012) proved that the Full Domain Hash signature scheme based on a
lossy trapdoor function has a tight security reduction from the lossiness
of the trapdoor function. Since Kiltz, O’Neill, and Smith (CRYPTO
2010) showed that the RSA trapdoor function is lossy under the Φ-
Hiding assumption of Cachin, Micali, and Stadler (EUROCRYPT ’99),
this implies that the RSA Full Domain Hash signature scheme has a tight
security reduction from the Φ-Hiding assumption (for public exponents
e < N1/4). In this work, we consider the Rabin trapdoor function, i.e.
modular squaring over Z∗N . We show that when adequately restricting its
domain (either to the set QRN of quadratic residues, or to (JN )+, the set
of positive integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1) the Ra-
bin trapdoor function is lossy, the injective mode corresponding to Blum
integers N = pq with p, q ≡ 3 mod 4, and the lossy mode corresponding
to what we call pseudo-Blum integers N = pq with p, q ≡ 1 mod 4. This
lossiness result holds under a natural extension of the Φ-Hiding assump-
tion to the case e = 2 that we call the 2-Φ/4-Hiding assumption. We then
use this result to prove that deterministic variants of Rabin-Williams Full
Domain Hash signatures have a tight reduction from the 2-Φ/4-Hiding
assumption. We also show that these schemes are unlikely to have a
tight reduction from the factorization problem by extending a previous
“meta-reduction” result by Coron (EUROCRYPT 2002), later corrected
by Kakvi and Kiltz (EUROCRYPT 2012). These two results therefore
answer one of the main questions left open by Bernstein (EUROCRYPT
2008) in his work on Rabin-Williams signatures.

1 Introduction

1.1 Background

Lossy Trapdoor Functions. Lossy Trapdoor Functions (LTF) were intro-
duced by Peikert andWaters [28] and have since then found a wide range of appli-
cations in cryptography such as deterministic public-key encryption [8], hedged



public-key encryption [2], and security against selective opening attacks [3, 14]
to name a few. Informally, an LTF consists of two families of functions: functions
in the first family are injective (and efficiently invertible using some trapdoor),
while functions in the second family are non-injective and hence lose information
on their input. The key requirement for an LTF is that functions sampled from
the first and the second family be computationally indistinguishable. Many con-
structions of LTF are known from various hardness assumptions such as DDH,
LWE, etc. [28]. In particular, Kiltz, O’Neill, and Smith showed [24] that the RSA
trapdoor function f : x 7→ xe mod N , where N = pq is an RSA modulus, is lossy
under the Φ-Hiding assumption, introduced by Cachin, Micali, and Stadler [9].
When e is coprime with φ(N) (φ(·) is Euler’s totient function), f is injective on
the domain Z∗N , while when e divides φ(N) (but e2 does not), f is e-to-1 on Z∗N .
The Φ-Hiding assumption states that given (N, e) where e < N1/4, it is hard to
tell whether gcd(e, φ(N)) = 1 or e|φ(N), which corresponds to respectively the
injective and lossy modes of the RSA function.

Full Domain Hash Signatures. Full Domain Hash (FDH) signatures [4] are
a class of signature schemes which can be based on any trapdoor function f : the
signature of a message m is computed as σ = f−1(H(m)), where H is some hash
function (the secret signature key is the trapdoor enabling to invert f). For a
long time, the only known security result for FDH signatures, due to Coron [11]
(improving on a previous result [4]), had been a non-tight reduction from the
problem of inverting the trapdoor function, losing a factor qs (the maximal
number of signature queries made by the forger). Recently, Kakvi and Kiltz [22]
showed that the FDH signature scheme, when based on a trapdoor function
which is lossy, has a tight reduction from the problem of distinguishing the in-
jective from the lossy mode of the LTF. In particular, this applies to RSA-FDH
signatures with public exponents e < N1/4, which hence have a tight security
reduction from the Φ-Hiding problem.1 Moreover, in the same paper, Kakvi and
Kiltz corrected a previous “meta-reduction” result due to Coron [12] stating that
the security reduction of [11] losing a factor qs is essentially optimal. More pre-
cisely, they showed that when the trapdoor function is certified (meaning that
there is an efficient algorithm distinguishing injective from non-injective mem-
bers of the function family), any security reduction from inverting the trapdoor
function to breaking FDH signatures must lose a factor qs (unless inverting the
trapdoor function is easy). This applies in particular to RSA-FDH signatures
with public exponents e > N1/4 since RSA is certified for these parameters [23].

1.2 Contributions of this Work

Lossiness of the Rabin Trapdoor Function. We show that the Rabin trap-
door function, i.e. modular squaring, is lossy (with exactly one or two bits of
lossiness) when adequately restricting its domain. Since any quadratic residue
1 Tight security reductions are important for adequately setting security parameters,
see the discussion of this point in [22].
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modulo an RSA modulus N = pq has exactly four square roots, it is not im-
mediately obvious how to render this function injective. It is well known that
when N is a so-called Blum integer, i.e. p, q ≡ 3 mod 4, any quadratic residue
has a unique square root which is also a quadratic residue, named its principal
square root. Hence, in this case, modular squaring defines a permutation over
the set of quadratic residues QRN . One potential problem with this definition
of the injective mode is that the domain of the permutation is (presumably) not
efficiently recognizable (this is exactly the Quadratic Residuosity assumption).
A different way to restrict the domain of modular squaring is to consider the set
(JN )+ of integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1 (which is efficiently
recognizable). We show that when restricting its domain to either QRN or (JN )+

to make it injective, modular squaring becomes an LTF. The lossy mode corre-
sponds to integers N = pq such that p, q ≡ 1 mod 4, that we call pseudo-Blum
integers. It can be shown that in that case, modular squaring becomes 4-to-1
over QRN and 2-to-1 over (JN )+. Indistinguishability of the injective and lossy
modes is then exactly the problem of distinguishing Blum from pseudo-Blum
integers, which is equivalent to tell whether 2 divides φ(N)/4 or not. This can
be seen as the extension of the traditional Φ-Hiding assumption to exponent
e = 2, so that we call this problem the 2-Φ/4-Hiding problem. Details can be
found in Sections 2 and 3.

Application to Rabin-Williams Signatures. We apply our finding to the
security of deterministic Rabin-Williams Full Domain Hash signatures. The Ra-
bin signature scheme [29] is one of the oldest provably secure digital signature
scheme. Its security relies on the difficulty of computing modular square roots,
which is equivalent to factoring integers. Given an RSA modulus N = pq, the
general principle of Rabin signatures is to first map the message m ∈ {0, 1}∗ to
a quadratic residue h modulo N using some hash function H, and then return
a square root s of h. Since only 1/4 of integers in Z∗N are quadratic residues,
directly using h = H(m) mod N will fail for roughly 3 out of 4 messages. This
can be coped with using a randomized padding. The simplest one, Probabilistic
Full Domain Hash with `-bit salts (`-PFDH) [12], computes h = H(r,m) for
random `-bit salts r, until h is a quadratic residue (r is then included in the
signature for verification). A way to avoid this probabilistic method is to use a
tweak, as proposed by Williams [31].2 For any RSA modulus N , one can find
four values α1, α2, α3, α4 ∈ Z∗N such that for any h ∈ Z∗N , there is a unique
i ∈ [1; 4] such that α−1

i h mod N is a quadratic residue.3 When p ≡ 3 mod 8 and
q ≡ 7 mod 8, one can use the set of values {1,−1, 2,−2}. This way, the signa-
ture becomes a so-called tweaked square root (α, s), where s is a square root of
2 Williams’ paper [31] was primarily concerned with public key encryption. The idea
of using a tweak for deterministic signing is implicit in the ISO/IEC 9796 standard
published in 1991, and was later made more explicit in a paper by Kurosawa and
Ogata [25].

3 The sufficient condition for this is that the pairs of Legendre symbols (
(
αi
p

)
,
(
αi
q

)
)

take each of the four values (1, 1), (−1, 1), (1,−1) and (−1,−1) for exactly one αi.
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α−1H(m) mod N for the correct value α ∈ {1,−1, 2,−2}, and the verification
algorithm now checks whether αs2 = H(m) mod N . This enables to define FDH
Rabin-Williams signatures.

Since any quadratic residue modulo an RSA modulus N has four square
roots, one must also specify which (tweaked) square root of the hash to use as the
signature. There are basically two ways to proceed. The first one is simply to pick
a square root at random. However, when no randomization (or randomization
with only a small number of bits) is used in the input to the hash function,
one must be careful not to output two non-trivially distinct square roots if the
same message is signed twice, since this would reveal the factorization of the
modulus N . In consequence, the signature algorithm must either be stateful and
store all signatures previously output (which is cumbersome), or generate the
bits for deciding which root to use pseudo-randomly.4 However, in constrained
environments, implementors might be reluctant to pay the additional cost of a
pseudorandom function (moreover, how exactly this derandomization is done is
not always precisely discussed, and may have security implications as explained
in [26]).

The second option is to define some deterministic rule telling which square
root to use as the signature. The most popular way to do so is to use for N a
Blum integer and to use the principal square root. A variant is to use what we call
the absolute principal square root, i.e. |s mod N |, where s is the principal square
root represented by an integer in [−(N −1)/2; (N −1)/2]. This turns out to also
be the unique square root in (JN )+. We will call these ways to choose a square
root Principal Rabin-Williams (PRW) and Absolute Principal Rabin-Williams
(APRW) respectively.5 When no randomization in the input to the hash function
is used, the signature algorithm then becomes entirely deterministic (without
having to appeal to an auxiliary pseudorandom function), which is attractive
from an implementation point of view.

Bernstein [7] proposed an extensive study of possible variants of Rabin-
Williams signature schemes depending on the length of the salt and the square
root selection method. In particular, for FDH signatures, he showed a tight secu-
rity reduction from the factoring assumption for the probabilistic square root se-
lection method (Fixed Unstructured). On the other hand, for PRW and APRW,
only a loose reduction from factoring is known using methods of Coron [11, 7].
Our main result is a tight security reduction from the 2-Φ/4-Hiding problem for
the PRW and APRW schemes, building on the results of [22]. Details can be
found in Section 4.

Extending the Coron-Kakvi-Kiltz Meta-reduction Result. Recall that
Coron’s meta-reduction result [12] as corrected by Kakvi and Kiltz [22] states
that when the trapdoor function is certified, any security reduction from in-
4 This method was called Fixed Unstructured Rabin-Williams in [7], and Probabilistic
Rabin-Williams (PRW) in [26].

5 PRW was called Fixed Principal in [7] and Deterministic Rabin-Williams (DRW)
in [26], while APRW was called Fixed |Principal| in [7].
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verting the trapdoor function to breaking FDH signatures must lose a factor qs.
Since this only applies for certified trapdoor functions, this leaves open the ques-
tion of whether there might exist a tight reduction from inverting the trapdoor
function to breaking FDH signatures when the trapdoor function is not certi-
fied. In particular, the question whether there exists a tight security reduction
from factoring (or equivalently, computing modular square roots) for the PRW
and APRW schemes was left as an open problem in [7]. However, we observe
that the meta-reduction result still holds (namely, any security reduction from
inverting the trapdoor function to breaking FDH signatures must lose a factor
qs) when the underlying trapdoor function is gap one-way, meaning that invert-
ing the injective mode of the function is hard even with the help of an oracle
distinguishing injective from non-injective modes of the trapdoor function. This
implies in particular that if factoring with the help of an oracle solving the 2-Φ/4-
Hiding problem is hard, the PRW and APRW signature schemes cannot have a
tight security reduction from the factorization problem. This essentially answers
the open question of [7] regarding the security reductions for these schemes.
Details can be found in Section 5.

1.3 Related and Future Work

Two constructions of lossy trapdoor functions based on modular squaring were
previously proposed, however they are slightly more complicated than the basic
Rabin trapdoor function. Mol and Yilek [27] gave a construction whose secu-
rity relies on an assumption close in spirit (though more involved) to the 2-
Φ/4-Hiding assumption. Freeman et al. [16] gave a construction relying on the
Quadratic Residuosity problem.

The cryptographic applications of the set (JN )+ when N is a Blum integer
were previously considered by Goldwasser et al. [19], Fischlin and Schnorr [15],
and Hofheinz and Kiltz [21] (in this last paper, it was denoted QR+

N and named
group of signed quadratic residues). In particular, it was showed in [21] that
under the factoring assumption, the Strong Diffie-Hellman problem [1] is hard
in this group.

The Coron-Kakvi-Kiltz meta-reduction result [12, 22] was extended by Hof-
heinz et al. [20] to the case where the signature scheme is re-randomizable (rather
than with unique signatures).

Kiltz et al. [24] showed that lossiness of RSA implies that the RSA-OAEP
encryption scheme [5] meets indistinguishability under chosen-plaintext attacks
in the standard model (under appropriate assumptions on the hash functions
used to instantiate OAEP). An interesting question is whether lossiness of the
Rabin trapdoor function can be used to argue about the security of Rabin-
OAEP encryption as was done in [24] for RSA. Though from a theoretical point
of view the results of [24] apply to OAEP used with any LTF, they provide some
meaningful security insurance only when the amount of lossiness is sufficiently
high. This requires more careful investigation in the case of Rabin-OAEP. As a
first step in this direction, we note that if “multi-primes” pseudo-Blum integers
N = p1 · · · pm, with p1, . . . , pm ≡ 1 mod 4 are indistinguishable from 2-primes
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pseudo-Blum integers, lossiness of the Rabin trapdoor function with domain
(JN )+ can be amplified from 1 bit to m − 1 bits. Similar arguments were used
for RSA in [24].

2 Preliminaries

2.1 General Notation

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security
parameter will be denoted k. A function f of the security parameter is said
negligible if for any c > 0, f(k) ≤ 1/kc for sufficiently large k. When S is a non-
empty finite set, we write s ←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output.

2.2 Basic Definitions

Given an (odd for most of what follows) integer N , the multiplicative group of
integers modulo N is denoted Z∗N . This group has order φ(N) where φ(·) is the
Euler function. We denote JN the subgroup of Z∗N of all elements x ∈ Z∗N with
Jacobi symbol

(
x
N

)
= 1. This subgroup has index 2 and order φ(N)/2 in Z∗N .

Moreover it is efficiently recognizable even without the factorization of N since
the Jacobi symbol is efficiently computable given only N . We also denote JN
the coset of elements x ∈ Z∗N such that

(
x
N

)
= −1. Finally, we denote QRN the

subgroup of quadratic residues of Z∗N . This subgroup is widely believed not to
be efficiently recognizable when N is composite and its factorization is unknown:
this is the Quadratic Residuosity assumption.

We will represent elements of ZN as signed integers in [−(N−1)/2, (N−1)/2].
Given an integer x, we denote |x mod N | the absolute value of x mod N . For any
subset S ⊂ ZN , we denote S+ = S∩[1; (N−1)/2] and S− = S∩[−(N−1)/2;−1].
Note that (JN )+, (JN )−, (JN )+ and (JN )− form a partition of Z∗N .

We call an integer N = pq which is the product of two distinct odd primes
a Blum integer when p, q ≡ 3 mod 4 , and a pseudo-Blum integer when p, q ≡
1 mod 4 , and we denote

Bl(k) = {(N, p, q) : N = pq, p 6= q are bk/2c-bit primes with p, q ≡ 3 mod 4}

B̃l(k) = {(N, p, q) : N = pq, p 6= q are bk/2c-bit primes with p, q ≡ 1 mod 4} .

We call a Blum integer N = pq such that moreover p ≡ 3 mod 8 and q ≡ 7 mod 8
a Williams integer, and a pseudo-Blum integer such that p ≡ 5 mod 8 and
q ≡ 1 mod 8 a pseudo-Williams integer. We denote

Wi(k) = {(N, p, q) ∈ Bl(k) : p ≡ 3 mod 8, q ≡ 7 mod 8}

W̃i(k) = {(N, p, q) ∈ B̃l(k) : p ≡ 5 mod 8, q ≡ 1 mod 8} .

Note that:
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– when N is a Blum integer, −1 ∈ JN \QRN ;
– when N is a pseudo-Blum integer, −1 ∈ QRN ;
– when N is a Williams or a pseudo-Williams integer, 2 ∈ JN .
A quadratic residue modulo an RSA modulus N = pq has four square roots,

two of which are in (Z∗N )+ and two of which are in (Z∗N )−. The two square roots
in (Z∗N )+ will be called the absolute square roots in what follows. The following
lemma will be important when proving lossiness of the Rabin trapdoor function.

Lemma 1. Let N = pq be a RSA modulus with N ≡ 1 mod 4. Let x ∈ QRN ,
and let s1 and s2 be the two absolute square roots of x (the two other square
roots being −s1 and −s2). Then:
– if N is a Blum integer, exactly one si is in (JN )+ and the other is in (JN )+;

moreover if si ∈ (JN )+ then either si ∈ QRN or −si ∈ QRN ;
– if N is a pseudo-Blum integer, then s1, s2,−s1,−s2 are either all in QRN ,

or all in JN \QRN , or all in JN .

Proof. Consider x ∈ QRN . Denote xp = x mod p and xq = x mod q. Let also
±rp and ±rq denote the two square roots of respectively xp (mod p) and xq
(mod q). The four square roots of x modulo N are obtained by combining ±rp
and ±rq by the Chinese Remainder Theorem, i.e. there are to integers cp and
cq such that the four square roots of x are ±(pcprq ± qcqrp) mod N . Assume
that one of the two absolute square roots is s1 = (pcprq + qcqrp) mod N (the
reasoning is similar if it is −(pcprq + qcqrp) mod N). Then the other absolute
square root satisfies s2 = α(pcprq − qcqrp) mod N , with α = ±1 so that:(

s2

p

)
=
(
α

p

)(
−1
p

)(
s1

p

)
and

(
s2

q

)
=
(
α

q

)(
s1

q

)
.

Consequently:
– when N is a Blum integer, s1 and s2 have opposite Jacobi symbols; moreover,

assuming s1 ∈ (JN )+ then since −1 is a non-quadratic residue, either s1 ∈
QRN or −s1 ∈ QRN ;

– when N is a pseudo-Blum integer, we see that(
s1

p

)
=
(
−s1

p

)
=
(
s2

p

)
=
(
−s2

p

)
and

(
s1

q

)
=
(
−s1

q

)
=
(
s2

q

)
=
(
−s2

q

)
,

from which the claim on the localization of the four square roots follows.
This concludes the proof. ut

Hence when N is a Blum integer, the two absolute square roots can easily be
distinguished through their Jacobi symbol. In the following, given a Blum integer
N and x ∈ QRN , we will call the unique square root of x which is in QRN the
principal square root of x, and denote it psr(x). We will also call the unique
square root of x which is in (JN )+ the absolute principal square root of x, and will
denote it |psr|(x). The notation is chosen so that |psr|(x) = |psr(x) mod N |.
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Tweaked Square Roots. Let N be a Williams integer. Then for any x ∈
Z∗N there is a unique α ∈ {1,−1, 2,−2} such that α−1x mod N is a quadratic
residue.6 The four pairs (α, si)i=1,...,4 where (si)i=1,...,4 are the four square roots
of α−1x mod N are named the tweaked square roots of x, and α is named the
tweak. Hence, (α, s) with α ∈ {1,−1, 2,−2} is a tweaked square root of x ∈ Z∗N
iff αs2 = x mod N . By extension, the principal tweaked square root of x is
the unique tweaked square root (α, s) such that s ∈ QRN , and the absolute
principal tweaked square root is the unique tweaked square root (α, s) such that
s ∈ (JN )+. Overloading the notation, they will be denoted respectively psr(x)
and |psr|(x).

2.3 Trapdoor Functions

We recall some formal definitions associated with trapdoor functions (we follow
closely the ones of [22]). We also introduce the concept of gap one-way trapdoor
function, which is informally a trapdoor function which is hard to invert even
when given access to an oracle which tells whether a member of the family is
injective or lossy.

Definition 1 (Trapdoor Function). A trapdoor function (TDF) is a tuple
of polynomial-time algorithms TDF = (InjGen, Eval, Invert) with the following
properties:

– InjGen(1k): a probabilistic algorithm which on input the security parameter
1k, outputs a public description pub (with implicitly understood domain Dpub)
and a trapdoor td;

– Eval(pub, x): a deterministic algorithm which on input pub and a point x ∈
Dpub, outputs a point y ∈ {0, 1}∗; we denote fpub : x 7→ Eval(pub, x);

– Invert(td, y): a deterministic algorithm which on input td and a point y ∈
{0, 1}∗, outputs a point x ∈ Dpub when y ∈ fpub(Dpub) (and ⊥ otherwise).

We require that for any k and any (pub, td) possibly output by InjGen(1k), the
function fpub : x 7→ Eval(pub, x) be injective, and y 7→ Invert(td, y) be its
inverse f−1

pub. We also require that Dpub and fpub(Dpub) be efficiently samplable.

Definition 2 (One-Way TDF). A trapdoor function TDF = (InjGen, Eval,
Invert) is said to be (t, ε)-one-way if for any adversary A running in time at
most t, one has:

Pr
[
pub← InjGen(1k), x←$ Dpub, x

′ ← A(pub, Eval(pub, x)) : x′ = x
]
≤ ε .

Definition 3 (Certified TDF). A trapdoor function TDF = (InjGen, Eval,
Invert) is said to be certified if there exists a deterministic polynomial-time
algorithm Certify which, on input an arbitrary string pub (not necessarily gen-
erated by InjGen) returns 1 iff the function x 7→ Eval(pub, x) is injective over
Dpub.
6 This follows easily from the fact that the pairs of Legendre symbols (

(
α
p

)
,
(
α
q

)
) for

α = 1, −1, 2, and −2 are respectively (1, 1), (−1,−1), (−1, 1) and (1,−1).
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Definition 4 (Lossy TDF). A lossy trapdoor function (LTF) with absolute
lossiness ` is a tuple of algorithms LTF = (InjGen, LossyGen, Eval, Invert)
such that (InjGen, Eval, Invert) is a TDF as per Definition 1, and moreover
LossyGen is a probabilistic algorithm which on input 1k, outputs a public de-
scription pub′ such that the range of the function fpub′ : x 7→ Eval(pub′, x) over
Dpub′ satisfies:

|Dpub′ |
|fpub′(Dpub′)|

≥ ` .

We say that LTF is (t, ε)-secure if for any adversary A running in time at most
t, the following advantage is less than ε:∣∣Pr[(pub, td)← InjGen(1k) : 1← A(pub)]

− Pr[pub′ ← LossyGen(1k) : 1← A(pub′)]
∣∣ .

We say that LTF is a regular (`, t, ε)-lossy trapdoor function if LTF is (t, ε)-secure
and all functions generated by LossyGen are `-to-1 on Dpub′ .
Remark 1. One can easily show that if TDF is a regular (`, t, ε)-lossy TDF, then it
is (t′, ε′)-one way with t′ ' t and ε′ ≤ ε+1/`. Note in particular that asymptoti-
cally, if ` = O(1) is constant (as is the case for the trapdoor functions considered
in this paper), this only implies that TDF is weakly one-way [18].
Definition 5 (Gap One-Way TDF). A trapdoor function TDF = (InjGen,
Eval, Invert) is said (t, ε, n)-gap one-way if for any adversary A running in
time at most t and making at most n queries to a Certify(·) oracle which on
input a string pub, returns 1 iff the function x 7→ Eval(pub, x) is injective over
Dpub, one has:

Pr
[
pub← InjGen(1k), x←$ Dpub,

x′ ← ACertify(·)(pub, Eval(pub, x)) : x′ = x
]
≤ ε .

Informally, for a lossy TDF, being gap one-way means that inverting the
injective mode of the function cannot be black-box reduced to the lossiness of
the TDF. Note that for a certified TDF, being gap one-way is equivalent to being
one-way since the Certify oracle can be efficiently implemented.

2.4 Signature Schemes
A signature scheme Σ is a tuple of algorithms (Σ.KeyGen, Σ.Sig, Σ.Ver) where
Σ.KeyGen(1k) outputs a pair of public/secret key (pk, sk), Σ.Sig(sk,m), on in-
put a secret key sk and a message m ∈ {0, 1}∗, outputs a signature σ, and
Σ.Ver(pk,m, σ), on input a public key pk, a message m, and a purported sig-
nature σ, either outputs 1 (accepts) or 0 (rejects). A signature scheme is said
to have unique signatures if for all k, for any public key pk possibly output by
KeyGen(1k), and any message m ∈ {0, 1}∗, there is exactly one string σ such
that Ver(pk,m, σ) accepts. The usual security definition for a signature scheme
is existential unforgeability under chosen-message attacks (EUF-CMA security).
We recall this definition in the full version of the paper [30].
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FDH Signatures Based on an Arbitrary TDF. Let TDF = (InjGen,
Eval, Invert) be a trapdoor function. The Full Domain Hash signature scheme
TDF-FDH is defined as follows: the key generation algorithm KeyGen(1k) runs
InjGen(1k) to obtain (pub, td), selects a random hash function H : {0, 1}∗ →
fpub(Dpub), and sets pk = (pub,H) and sk = td. The signature algorithm, on
input td and m, computes h = H(m) and returns σ = Invert(td, h). The ver-
ification algorithm, on input pub, m and σ, checks that Eval(pub, σ) = H(m).
This scheme can be shown EUF-CMA secure in the Random Oracle Model under
the assumption that TDF is (strongly) one-way [4, 11], but the reduction loses a
factor qs, where qs is the maximal number of signature queries of the adversary,
and this loss cannot be avoided assuming that TDF is certified [12, 22].

3 The 2-Φ/4-Hiding Assumption and Lossiness of the
Rabin Trapdoor Function

3.1 Definition

We introduce the 2-Φ/4-Hiding assumption, an extension of the traditional Φ-
Hiding assumption to the case e = 2. The Φ-Hiding assumption, introduced by
Cachin et al. in [9], roughly states that given an RSA modulus N = pq and a
random prime 3 ≤ e < N1/4, it is hard to distinguish whether e divides φ(N)
or not (when e ≥ N1/4 and e|φ(N), N can be factored using Coppersmith’s
method for finding small roots of univariate modular equations [10, 9]). Kiltz et
al. [24] were the first to observe that the Φ-Hiding assumption can be interpreted
in terms of lossiness of the RSA trapdoor permutation.

The original definition of the Φ-Hiding assumption was formulated for primes
e randomly drawn in [3;N1/4[. Since in practice RSA is often used with a fixed,
small prime e (e.g. e = 3 or e = 216 + 1), Kakvi and Kiltz [22] introduced the
Fixed-Prime Φ-Hiding assumption, which states, for a fixed prime e, that it is
hard, given an RSA modulus N = pq, to distinguish whether e divides φ(N) or
not (the exact statement of the assumption is slightly different for e = 3 and
e > 3 in order to avoid trivial distinguishers). The 2-Φ/4-Hiding assumption is
the extension of the Fixed-Prime Φ-Hiding assumption to the case e = 2. Since
for an RSA modulus N (more generally for any number which has at least two
distinct prime factors) one always has that 4 divides φ(N), the problem will be to
distinguish whether 2 divides φ(N)/4 or not. Moreover, when N ≡ 3 mod 4, one
can check that 2 always divides φ(N)/4, so that the instances will be restricted
to RSA moduli such that N ≡ 1 mod 4. As a matter of fact, distinguishing
whether 2 divides φ(N)/4 or not whenN ≡ 1 mod 4 turns out to be equivalent to
distinguishing Blum integers from pseudo-Blum integers. Indeed, if N is a Blum
integer, then p = 4p′+ 3 and q = 4q′+ 3, so that φ(N) = 4(2p′+ 1)(2q′+ 1) and
2 - (φ(N)/4). On the other hand, if N is a pseudo-Blum integer, then p = 4p′+1
and q = 4q′ + 1, so that φ(N) = 16p′q′ and 2|(φ(N)/4). We now precisely
formalize the assumption.
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Definition 6 (2-Φ/4-Hiding Assumption). We say that the 2-Φ/4-Hiding
problem is (t, ε)-hard if for any algorithm A running in time at most t, the
following advantage is less than ε:

Adv2−Φ/4(A) def=
∣∣∣Pr[(N, p, q)←$ Bl(k) : 1← A(N)]−

Pr[(N, p, q)← B̃l(k) : 1← A(N)]
∣∣∣ .

A variant of this problem is obtained by switching from Blum integers to
Williams integers, i.e. replacing Bl(k) and B̃l(k) in the above definition by re-
spectively Wi(k) and W̃i(k). Clearly, the hardness of this variant is polynomially
related to the hardness of the original problem, under the plausible assump-
tion that roughly half of Blum, resp. pseudo-Blum integers are Williams, resp.
pseudo-Williams integers.

3.2 Lossiness of the Rabin and Rabin-Williams Trapdoor Functions

We now show that the 2-Φ/4-Hiding assumption implies that squaring is a lossy
trapdoor function over the domains QRN or (JN )+, for N ≡ 1 mod 4, with
respectively two bits or one bit of lossiness. The injective mode corresponds to
N being a Blum integer, and the lossy mode corresponds to N being a pseudo-
Blum integer.

The Rabin LTFs. We first define two related LTFs, that we name respectively
the Principal Rabin LTF PR-LTF and the Absolute Principal Rabin LTF APR-LTF
as follows:

– on input 1k, PR-LTF.InjGen and APR-LTF.InjGen both draw (N, p, q) ←$
Bl(k), and output pub = N and td = (p, q);

– on input 1k, PR-LTF.LossyGen and APR-LTF.LossyGen both draw (N, p, q)←$
B̃l(k), and output pub′ = N ;

– the domain is DN = QRN for PR-LTF, and DN = (JN )+ for APR-LTF; the
evaluation algorithms PR-LTF.Eval(N, x) and APR-LTF.Eval(N, x) both out-
put fN (x) = x2 mod N ; in both cases fN (DN ) = QRN in injective mode;

– the inversion algorithm PR-LTF.Invert((p, q), y) outputs the principal square
root psr(y), while APR-LTF.Invert((p, q), y) outputs the absolute principal
square root |psr|(y) (for N a Blum integer and y ∈ QRN ).

Theorem 1. Assuming the 2-Φ/4-Hiding problem is (t, ε)-hard, the Principal
Rabin trapdoor function PR-LTF is a regular (4, t, ε)-LTF, while the Absolute
Principal Rabin trapdoor function APR-LTF is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly the 2-Φ/4-
Hiding problem. It follows from Lemma 1 that when N is a Blum integer, any
y ∈ QRN has exactly one pre-image in QRN or (JN )+, while when N is pseudo-
Blum integer, any y in the range fN (QRN ) has exactly 4 pre-images in QRN ,
and any y in the range fN ((JN )+) has exactly 2 pre-images in (JN )+. ut

11



The Rabin-Williams LTFs. The PR-LTF and APR-LTF LTFs can be straight-
forwardly extended to what we call the Principal Rabin-Williams LTF PRW-LTF
and Absolute Principal Rabin-Williams LTF APRW-LTF as follows:

– on input 1k, PRW-LTF.InjGen and APRW-LTF.InjGen both draw a random
Williams integer (N, p, q)←$ Wi(k), and output pub = N and td = (p, q);

– on input 1k, PRW-LTF.LossyGen and APRW-LTF.LossyGen both draw a random
pseudo-Williams integer (N, p, q)←$ W̃i(k) and output pub′ = N ;

– the domain of PRW-LTF is DN = {1,−1, 2,−2} × QRN , while the domain
of APRW-LTF is DN = {1,−1, 2,−2} × (JN )+; the evaluation algorithms
PRW-LTF.Eval(N, (α, x)) and APRW-LTF.Eval(N, (α, x)) compute the function
fN (α, x) = αx2 mod N ; in both cases fN (DN ) = Z∗N in injective mode;

– algorithm PRW-LTF.Invert((p, q), y) computes the principal tweaked square
root psr(y), while APRW-LTF.Invert((p, q), y) computes the absolute princi-
pal tweaked square root |psr|(y) (for N a Williams integer and y ∈ Z∗N ).

Theorem 2. Under the assumption that Williams and pseudo-Williams inte-
gers are (t, ε)-indistinguishable, the Principal Rabin-Williams trapdoor function
PRW-LTF is a regular (4, t, ε)-LTF, while the Absolute Principal Rabin-Williams
trapdoor function APRW-LTF is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly indis-
tinguishability of Williams and pseudo-Williams integers, which follows from
the 2-Φ/4-Hiding assumption and the additional (reasonable) assumption that
roughly half of Blum, resp. pseudo-Blum integers, are Williams, resp. pseudo-
Williams integers. Injectivity of fN for both PRW-LTF and APRW-LTF follows di-
rectly from Lemma 1 and the discussion about tweaked square roots in Section 2.
Assume now that N is a pseudo-Williams integer, and let y ∈ fN (DN ) with
DN = {1,−1, 2,−2} × QRN . We show that y has exactly 4 pre-images in DN ,
which will establish that PRW-LTF is 4-to-1 on DN . Let (α, x) ∈ DN be such that
αx2 = y mod N . Then by Lemma 1, y has at least 4 pre-images in DN , all with
the same tweak α. Assume that y has an extra pre-image (α′, x′) ∈ DN with
α′ 6= α. Note that when N = pq is a pseudo-Williams integer (i.e. p ≡ 5 mod 8
and q ≡ 1 mod 8), the pairs of Legendre symbols (

(
α
p

)
,
(
α
q

)
) for α = 1, −1, 2,

and −2 are respectively (1, 1), (1, 1), (−1, 1) and (−1, 1). Hence it must be that
α′ = −α, so that x2 = −(x′)2 mod N . Let a be any square root of −1 modulo
N . Since a2 = −1 mod N , we observe (denoting p = 8p′ + 5 and q = 8q′ + 1)
that: (

a

p

)
≡ a

p−1
2 ≡ a

8p′+4
2 ≡ (−1)2p′+1 ≡ −1 mod p(

a

q

)
≡ a

q−1
2 ≡ a

8q′
2 ≡ (−1)2q′ ≡ 1 mod q ,

so that a ∈ JN . Hence, we have that x2 = (ax′)2 mod N , with x, x′ ∈ QRN .
Yet by Lemma 1, one should have ax′ ∈ QRN as well, which is impossible since
a ∈ JN . Hence y has exactly 4 pre-images in DN .
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The proof that APRW-LTF is 2-to-1 on DN = {1,−1, 2,−2} × (JN )+ is very
similar. See the full version of the paper [30]. ut

4 Application to Rabin-Williams Signatures

There are two very close ways to define deterministic Rabin-Williams FDH sig-
natures, called principal and |principal| in the terminology of Bernstein [7]. We
will use the name Absolute Principal Rabin-Williams signatures for the latter
in this paper. Before defining precisely these schemes, we stress that the exact
definition of the verification algorithm is important, especially with respect to
how a forgery is defined (since a forgery is exactly a string which is accepted by
the verification algorithm). Hence, to be more precise, we will define in total four
“real” signature schemes: Principal Rabin-Williams (PRW), Absolute Principal
Rabin-Williams (APRW), as well as two slightly different variants that we call
PRW∗ and APRW∗, which differ from respectively PRW and APRW only in
their verification algorithm. We will also define a “theoretical” scheme PRW∗∗
where the verification algorithm is inefficient (this will be necessary to estab-
lish a clean security reduction). For the five schemes, the signing algorithm first
hashes the message h = H(m); then, for the PRW, PRW∗, and PRW∗∗ schemes,
the signing algorithm returns the principal tweaked square root of h, whereas
for the APRW and APRW∗ schemes, the signing algorithm returns the absolute
principal tweaked square root of h. In all the following, we assume that if h is
not coprime with N , the signing algorithm outputs some fixed signature, e.g.
(1, 1). Since this happens only with negligible probability whenH is modeled as
a random oracle, this does not affect the security analysis.

We now proceed to the formal definition. First, all the schemes share exactly
the same key generation algorithm:

– (A)PRW(∗,∗∗ ).KeyGen(1k): on input the security parameter 1k, draw uni-
formly at random (N, p, q) ←$ Wi(k). Select a hash function H : {0, 1}∗ →
ZN . The public key is pk = (N,H) and the secret key is sk = (p, q).

Note that the hash function will usually be selected once for each security pa-
rameter k and common to all public keys, but this affects the security proof only
up to negligible terms, see Bernstein [7].

The signing algorithm for PRW, PRW∗, and PRW∗∗ on one hand, and for
APRW and APRW∗ on the other hand, are the same, and are defined as follows:

– PRW(∗,∗∗ ).Sig(sk,m): To sign a message m, compute h = H(m), and out-
put the principal tweaked square root σ = (α, s) = psr(h).

– APRW(∗).Sig(sk,m): To sign a messagem, compute h = H(m), and output
the absolute principal tweaked square root σ = (α, s) = |psr|(h).

The verification algorithms for the five schemes are very close, and differ only
with respect to an additional check on the Jacobi symbol of the signature made
for PRW∗ and APRW∗, and on the quadratic residuosity of the signature for
PRW∗∗. They are defined as follows:

13



– (A)PRW(∗,∗∗ ).Ver(pk,m, σ): To check a purported signature σ = (α, s) on
messagem, first ensure that s ∈ S, and then check that αs2 = H(m) mod N .
Accept if this holds, and reject otherwise;

where the set S is defined as:

– S = Z∗N for PRW, S = JN for PRW∗, and S = QRN for PRW∗∗;
– S = (Z∗N )+ for APRW and S = (JN )+ for APRW∗.

Note that the verification algorithm is (presumably) inefficient for PRW∗∗ since
it needs to decide whether the signature is indeed the principal square root, i.e.
a quadratic residue.

The following claims are straightforward:

– in PRW, each message has exactly four valid signatures:
(α, s1) = |psr|(H(m)), (α,−s1), and (α, s2), (α,−s2) with s2 ∈ (JN )+;

– in PRW∗, each message has exactly two valid signatures:
(α, s) = |psr|(H(m)) and (α,−s);

– in PRW∗∗, each message has a unique valid signature: (α, s) = psr(H(m));
– in APRW, each message has exactly two valid signatures:
|psr|(H(m)) and (α, s2) with s2 ∈ (JN )+;

– in APRW∗, each message has a unique valid signature: |psr|(H(m)).

We now relate the security of PRW, PRW∗, and PRW∗∗ on one hand, and APRW
and APRW∗ on the other hand.

Lemma 2. The security of PRW, PRW∗ and PRW∗∗ on one hand, and APRW
and APRW∗ on the other hand, is related as depicted in Figure 1, where an
arrow labeled (t, f(ε)) from scheme A to scheme B means that if scheme A is
(t, ε, qh, qs)-EUF-CMA secure in the ROM, then scheme B is (t′, f(ε), qh, qs)-
EUF-CMA secure for t′ ' t.

Proof. See the full version of the paper [30]. ut

Hence, one can see that PRW and PRW∗ on one hand, and APRW and
APRW∗ on the other hand, have the same security up to a factor 2. In other
words, omitting the additional check on the Jacobi symbol has negligible impact
on security. Since computing a Jacobi symbol might be costly (in particular, it
is more expensive than modular squaring), we see that PRW and APRW are
superior in terms of security/efficiency trade-off.

In the following, we give a tight reduction for PRW∗∗ and APRW∗ from the
2-Φ/4-Hiding assumption, which extends to PRW and APRW by Lemma 2. It
is easy to see that the PRW∗∗, resp. APRW∗ signature scheme is exactly the in-
stantiation of the generic TDF-FDH scheme recalled in Section 2.4 with PRW-LTF,
resp. APRW-LTF. In order to conclude about the security of these schemes, we ap-
peal to the main result of [22]. This theorem was originally stated for trapdoor
permutations, but it can be straightforwardly extended to trapdoor functions
such that Dpub and fpub(Dpub) are efficiently samplable.
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2-Φ/4-Hiding

PRW∗∗ PRW∗ PRW

APRW∗ APRW

(t, 7ε/3)

(t, 3ε)

(t, 2ε) (t, 2ε)

(t, 2ε)

Fig. 1. Set of reductions proved in Lemma 2. An arrow labeled (t, f(ε)) from scheme
A to scheme B means that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM,
then scheme B is (t′, f(ε), qh, qs)-EUF-CMA secure for t′ ' t. The reduction from
2-Φ/4-Hiding to breaking PRW∗∗ and APRW∗ is Theorem 4.

Theorem 3 ([22]). Assume LTF is a regular (`, t′, ε′)-LTF for ` ≥ 2. Then for
any (qh, qs), the TDF-FDH signature scheme instantiated with LTF is (t, ε, qh,
qs)-EUF-CMA secure in the ROM, where

ε =
(

2`− 1
`− 1

)
ε′ and t = t′ − qhTEval ,

where TEval is the time to run algorithm Eval of LTF.

Theorem 4. Assuming the 2-Φ/4-Hiding problem is (t′, ε′)-hard, then for any
(qh, qs), the PRW∗∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where
ε = 7ε′/3 and t = t′−O(qhk3), and the APRW∗ signature scheme is (t, ε, qh, qs)-
EUF-CMA secure, where ε = 3ε′ and t = t′ −O(qhk3).

Proof. This follows directly from Theorems 2 and 3 (noting that QRN and (JN )+

are efficiently samplable). Combined with Lemma 2, this yields tight security
reductions for PRW and APRW (see Figure 1 for a clear picture). ut

Remark 2. The global security reduction from the 2-Φ/4-Hiding assumption to
breaking the signature scheme is slightly looser for PRW (factor 28/3) than
for APRW (factor 6 = 18/3). We also remark that a PRW signature oracle is
(potentially) slightly more powerful than an APRW signature oracle because
it reveals some non-trivial information regarding the quadratic residuosity of
the square roots of the hash of the message (whereas this information, which
is unnecessary for verifying signatures, is “canceled” in an APRW signature
oracle). Since APRW signatures are not more costly than PRW signatures (and
even slightly more communication efficient), these two observations make a case
in favor of APRW signatures.

As explained in [22], these results can be extended to PSS-R [6], allowing a
smaller overhead of the randomized signature under the 2-Φ/4-Hiding assump-
tion. It seems also likely (though we have not checked the details) that the same
techniques can be used to prove a tight security reduction from the 2-Φ/4-Hiding
assumption for Rabin-Williams Partial Domain Hash signatures [13, 17].
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5 Extending the Coron-Kakvi-Kiltz Meta-reduction
Result

In this section, we complete the picture of the security of FDH signatures by ex-
tending Coron’s meta-reduction result [11] as corrected by Kakvi and Kiltz [22].
In a nutshell, this result says that if a trapdoor function TDF is certified, then
any reduction from inverting the trapdoor function to breaking the EUF-CMA
security of the TDF-FDH signature scheme must lose a factor qs (the maximal
number of signature queries made by the forger) in its time-to-success ratio.
The theorem below extends this to trapdoor functions which are not necessar-
ily certified, assuming that TDF is gap one-way. The proof is straightforwardly
adapted from the one of [11, 22]: when simulating the forger, the meta-reduction
checks as a preliminary step that the public key received from the reduction con-
tains a parameter pub which defines an injective function. When TDF is certified,
this can be done efficiently by the meta-reduction itself. In the variant below,
the meta-reduction uses a Certify oracle for this step, hence breaking the gap
one-wayness (rather than classical one-wayness) of the trapdoor function.

Theorem 5. Let TDF be a trapdoor function. Let tR, εR, n, εF , qh, qs be functions
of the security parameter with qh > qs. Assume there exists a reduction R which
(tR, εR, n, εF , qh, qs)-reduces breaking the one-wayness of TDF to breaking EUF-
CMA security of the TDF-FDH signature scheme. Then there exists a meta-
reductionM which (tM , εM , n)-breaks the gap one-wayness of TDF, where:

tM ≤ (n+ 1)tR

εM ≥ εR − εF ·
n · exp(−1)

qs

(
1− qs

qh

)−1
.

Proof. A precise definition of a (black-box) reduction and a sketch of the proof
are provided in the full version of the paper [30]. ut

Remark 3. Theorem 5 above can be straightforwardly extended to any non-
interactive computational problem which is hard relative to a Certify oracle
(instead of the one-wayness of the underlying trapdoor function).

Consequences for RSA and Rabin-Williams FDH Signatures. We know
by Theorem 8 of [22] that RSA-FDH with public exponents e < N1/4 has a
tight security reduction from the Φ-Hiding assumption. By Theorem 7 of [22] we
also know that RSA-FDH with public exponents e > N1/4 cannot have a tight
security reduction from the problem of inverting RSA —nor any non-interactive
hard problem— since RSA is certified for this class of exponents [23]. Theorem 5
above implies that it is unlikely as well that RSA-FDH with e < N1/4 can have a
tight security reduction from inverting RSA: unless inverting RSA with the help
of an oracle solving the Φ-Hiding problem is easy, any reduction from inverting
RSA to breaking the EUF-CMA security of RSA-FDH with e < N1/4 must lose
a factor qs.
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This extends to Rabin-Williams FDH signatures as follows: unless computing
modular square roots (or equivalently factoring) with the help of an oracle solving
the 2-Φ/4-Hiding problem is easy, any reduction from factoring to breaking the
EUF-CMA security of the PRW and APRW schemes must lose a factor qs.
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