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Abstract. Groth-Sahai proofs are efficient non-interactive zero-knowledge
proofs that have found widespread use in pairing-based cryptography.
We propose efficiency improvements of Groth-Sahai proofs in the SXDH
setting, which is the one that yields the most efficient non-interactive
zero-knowledge proofs.
– We replace some of the commitments with ElGamal encryptions,

which reduces the prover’s computation and for some types of equa-
tions reduces the proof size.

– Groth-Sahai proofs are zero-knowledge when no public elements are
paired to each other. We observe that they are also zero-knowledge
when base elements for the groups are paired to public constants.

– The prover’s computation can be reduced by letting her pick her own
common reference string. By giving a proof she has picked a valid
common reference string this does not compromise soundness.

– We define a type-based commit-and-prove scheme, which allows com-
mitments to be reused in many different proofs.

Keywords: Non-interactive zero-knowledge proofs, commit-and-prove
schemes, Groth-Sahai proofs, type-based commitments.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88] can be used to demon-
strate a statement is true without revealing any other information. NIZK proofs
are fundamental building blocks in cryptography and are used in numerous cryp-
tographic schemes. It is therefore important to increase their efficiency since even
small improvements will lead to significant performance gains when aggregated
over many applications.

NIZK proofs were invented more than two decades ago but early construc-
tions [BFM88,FLS99,Dam92,KP98] were very inefficient. This changed when
Groth, Ostrovsky and Sahai [GOS12] introduced pairing-based techniques for
constructing NIZK proofs. In a series of works [BW06,Gro06,BW07,GS12] pairing-
friendly NIZK proofs were developed. This line of research culminated in Groth
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and Sahai [GS12] that gave efficient and practical NIZK proofs that are now
widely used in pairing-based cryptography.

Groth-Sahai proofs [GS12] can be instantiated in many ways with either
symmetric or asymmetric pairings and over groups that may have either com-
posite order or prime order. The asymmetric setting with prime order groups
yields the smallest group elements [GPS08]. We will therefore focus on improving
Groth-Sahai proofs for prime order asymmetric bilinear groups, since the better
efficiency makes it the most important setting for use in practice.

Let us give some more details of what can be done with Groth-Sahai proofs.
The setting they consider is a bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ,T
are prime order p groups, ĝ and ȟ are generators of Ĝ and Ȟ respectively and e :
Ĝ×Ȟ→ T is a non-degenerate bilinear map. The prover wants to show that there
are values x̂i ∈ Ĝ, y̌j ∈ Ȟ, xi, yj ∈ Zp simultaneously satisfying a set of equations.
Groth and Sahai formulate four types of equations, which using additive notation
for group operations and multiplicative notation for the bilinear map e can be
written as follows.

Pairing-product equation: Public constants âj ∈ Ĝ, b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T.∑
i

x̂i · b̌i +
∑
j

âj · y̌j +
∑
i

∑
j

γij x̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ: Public constants âj ∈ Ĝ, bi ∈
Zp, γij ∈ Zp, t̂ ∈ Ĝ.∑

i

x̂ibi +
∑
j

âjyj +
∑
i

∑
j

γij x̂iyj = t̂.

Multi-scalar multiplication equation in Ȟ: Public constants aj ∈ Zp, b̌i ∈
Ȟ, γij ∈ Zp, ť ∈ Ȟ.∑

i

xib̌i +
∑
j

aj y̌j +
∑
i

∑
j

γijxiy̌j = ť.

Quadratic equation in Zp: Public constants aj ∈ Zp, bi ∈ Zp, γij ∈ Zp, t ∈
Zp. ∑

i

xibi +
∑
j

ajyj +
∑
i

∑
j

γijxiyj = t.

These four types of equations express in a direct way statements arising in
pairing-based cryptography. For this reason Groth-Sahai proofs are used in nu-
merous pairing-based protocols including group signatures [Gro07], anonymous
credentials [BCKL08,BCC+09], e-cash [FPV09], etc.

Groth-Sahai proofs are witness-indistinguishable proofs that enable a prover
to convince a verifier that a statement is true without revealing which witness the
prover knows. For a slightly more restricted set of statements where all pairing-
product equations have tT = 0T, Groth-Sahai proofs are actually zero-knowledge
proofs that leak no information besides the truth of the statement.



There have been several papers that extend or improve the Groth-Sahai
proof system in different directions. [Mei09] suggested how to create perfectly ex-
tractable commitments, something which is not given by the commitments used
by Groth and Sahai. [CHP07,BFI+10] reduced the computational cost of the ver-
ification of the proofs using batch techniques, at the cost of trading perfect sound-
ness for statistical soundness. [Seo12] gave another map for verifying proofs in the
symmetric setting which reduces the computational cost of the verification of the
proofs. On the other hand, they prove that the map proposed by Groth and Sa-
hai in the asymmetric setting is optimal. [GSW10] proposed another assumption
on which Groth-Sahai proofs can be based. [BCKL08,BCC+09] exploited reran-
domization properties of Groth-Sahai proofs, which they used in anonymous cre-
dentials. [Fuc11] proposed a witness-indistinguishable commit-and-prove scheme
based on Groth-Sahai proofs in the symmetric setting. [CKLM12] introduced a
new notion of malleable proof systems, which can be built from Groth-Sahai
proofs. While there has been significant research effort devoted to pairing-based
NIZK proofs, Groth-Sahai proofs still remain the most efficient NIZK proofs
that are based on standard intractability assumptions and there has not been
any progress in reducing their size or the prover’s computation except for special
purpose statements [EHKRV13,JR13].

1.1 Our contributions

We focus on improving efficiency and propose several ways to fine-tune Groth-
Sahai zero-knowledge proofs in the asymmetric bilinear group setting.

– Groth-Sahai proofs use public constants and committed variables. We intro-
duce two new types of values: public base elements and encrypted variables.
This reduces the size of proofs for statements involving these values.

– We recast Groth-Sahai proofs as a commit-and-prove scheme. This makes
it possible to reuse commitments in the proofs of different statements even
when these statements depend on previous commitments and proofs.

– We show that the prover’s computation can be reduced by letting her pick
her own provably correct common reference string.

Encrypted variables. The common reference string in Groth-Sahai proofs con-
tains a public commitment key that the prover uses to commit to variables. The
prover then proceeds to prove that the committed variables satisfy the equations
in the statement. In our scheme we allow the prover to encrypt variables using
ElGamal encryption as an alternative to the commitment scheme. ElGamal en-
cryption reduces the prover’s computation when compared to the commitment
operation. Moreover, equations that use ElGamal ciphertexts instead of commit-
ments have simpler proofs. However, using ElGamal encryption means we cannot
get perfect zero-knowledge, so we rely on the Decision Diffie-Hellman (DDH) as-
sumption to get computational zero-knowledge and we place some restrictions
on the types of equations where ElGamal encryptions can be used.



Base elements. We observe that the commitment keys can be set up to allow
simulation in pairing-product equations where tT = â·ȟ+ĝ ·b̌ for public constants
â ∈ Ĝ and b̌ ∈ Ȟ. This extension of Groth-Sahai proofs comes at no extra cost,
so we save the costly rewriting of the equations proposed in [GS12] which was
required to get zero-knowledge in those kinds of equations.

In addition, a similar observation allows us to have shorter Groth-Sahai zero-
knowledge proofs for multi-scalar multiplications equations in Ĝ or in Ȟ in which
all the field elements are the constants t̂ = ĝ or ť = ȟ.

Using commitment keys with known discrete logarithms. In Groth-
Sahai proofs, a common reference string created by a trusted entity is shared
between the prover and the verifier. We show how to reduce the prover’s com-
putation by allowing her to choose her own common reference string, which we
think of as her public key. This change reduces the cost of computing her com-
mitments from 4 scalar multiplications to 2 scalar multiplications and it also
reduces the cost of computing proofs.

To enforce soundness, the prover will give a Groth-Sahai proof to the prover,
using a common reference string the verifier does trust, for the public key being
correct. The cost of such proof is 12 group elements in total, which is a one-off
cost as the public key can be used for many commitments and proofs.

Viewing the common reference string as the prover’s public key gives us some
flexibility in the setup. Instead of proving the public key correct in the common
reference string model, the prover could use the multi-string model [GO07] where
we only assume a majority out of n common reference strings are honest. Alter-
natively, the prover could give a zero-knowledge proof of knowledge to a trusted
third party that the public key is correct and get a certificate on the public key.

Type-based commit-and-prove schemes. A natural generalization of zero-
knowledge proofs are commit-and-prove schemes [Kil90,CLOS02], where the
prover can commit to values and prove statements about the committed values.
Commit-and-prove schemes provide extra flexibility and reduce communication;
it is for instance possible to choose values to be committed to in an adaptive
fashion that depends on previous commitments or proofs. The traditional def-
inition of zero-knowledge proofs would require the prover to make an entirely
new set of commitments for each statement to be proven.

Groth-Sahai proofs can be used to build a non-interactive commit-and-prove
scheme in a natural way; Belenkiy et al. [BCKL08] for instance explicitly let
the commitments be part of the statements and define witness-indistinguishable
proofs for such statements. Fuchsbauer [Fuc11] defines a witness-indistinguishable
Groth-Sahai based commit-and-prove scheme and uses it in the construction of
delegatable anonymous credentials. Our definition of a non-interactive commit-
and-prove scheme will resemble Fuchsbauer’s [Fuc11]. However, we are in a differ-
ent situation because we have more types of elements that we want to commit
to. A group element in Ĝ may for instance be committed using the perfectly
binding/perfectly hiding commitment scheme or using ElGamal encryption.



To give a generally applicable definition of non-interactive commit-and-prove
schemes, we propose the notion of type-based commitments. A type-based com-
mitment scheme enables the prover to commit to a message m with a publicly
known type t and we require that the type and message pair (t,m) belong to
a message space Mck. One example of a type could for instance be t = encĜ
meaning the value m should be encrypted (as opposed to using the more expen-

sive commitment operation) and it should be done in group Ĝ. This increases
the flexibility of the commitment scheme, we can for instance create a type
(pubĜ, x) that publicly declares the committed value x. Since the type is public
this commitment is no longer hiding, however, as we shall see it simplifies our
commit-and-prove scheme because we can now commit to both public constants
and secret variables without having to treat them differently.

Applications. To illustrate the advantages of our fine-tuned Groth-Sahai proofs
we give an example based on the weak Boneh-Boyen signature scheme [BB04],
which is widely used in pairing-based protocols. The verification key is an element
v̂ ∈ Ĝ and a signature on a message m ∈ Zp is a group element σ̌ ∈ Ȟ such that

(v̂ +mĝ) · σ̌ = ĝ · ȟ.

Suppose the prover has commitments to v̂ and σ̌ and wants to demonstrate
that they satisfy the verification equation for a (public) message m. With tradi-
tional Groth-Sahai proofs the commitments c and d to v̂ and σ̌ would be treated
as part of the statement and one would carefully demonstrate the existence of
openings of c and d to v̂ and σ̌ satisfying the pairing-product equation. With a
commit-and-prove system, we can instead jump directly to demonstrating that
the values inside v̂ and σ̌ satisfy the verification equation without having to treat
the openings of the commitments as part of the witness. This saves several group
elements each time one of the commitments is used.

Next, observe that the pairing-product equation has tT = ĝ · ȟ. A direct ap-
plication of Groth-Sahai proofs would therefore not yield a zero-knowledge proof
but only give witness-indistinguishability. To get zero-knowledge we could use
the workaround suggested by Groth-Sahai, which would consist of committing
to a new variable y̌, prove that y̌ = ȟ and simultaneously (v̂+mĝ) · σ̌− ĝ · y̌ = 0T.
This workaround would increase the cost of the proof from 8 group elements to
16 group elements, so we save 8 group elements by enabling a direct proof.

Now assume the prover has created her own common reference string pk and
has already sent it together with the well-formedness proof to the verifier. The
prover could now use pk to compute the zero-knowledge proof for the equation
(v̂ +mĝ) · σ̌ = ĝȟ . By using pk, she would need to do 10 scalar multiplications

in Ĝ and 6 scalar multiplications in Ȟ to compute the proof. In contrast, if she
was computing the proof using the commitment key ck, she would need to do 12
scalar multiplications in Ĝ and 10 scalar multiplications in Ȟ. As the operations
in Ȟ are usually significantly more expensive than the operations in Ĝ, the prover
is essentially saving 4 expensive operations of the 10 that she would need to do if
she used ck. Therefore, our techniques reduce the computational cost of creating



the zero-knowledge proof by roughly 40%. In addition, the computational cost
of computing the commitments to v̂ and σ̌ would also be reduced by 50%.

Finally, we can obtain a saving by encrypting one of the variables instead of
committing to it. If we encrypt v̂ for instance, the ciphertext is 2 group elements
just as a commitment would be, but the cost of the proof for the pairing-product
equation is reduced from 8 group elements to 6 group elements. In total we have
reduced the cost by 63% from 16 group elements to 6 group elements.

In the full paper [EG13] we give two concrete examples of existing schemes
using Groth-Sahai proofs where our techniques can improve efficiency.

2 Commit-and-prove scheme definitions

Let RL be a polynomial time verifiable relation containing triples (ck, x, w).
We will call ck the commitment key or the common reference string, x the
statement and w the witness. We define the key-dependent language Lck as the
set of statements x for which there exists a witness w such that (ck, x, w) ∈ RL.

We will now define a commit-and-prove scheme for a relation RL. In the
commit-and-prove scheme, we may commit to different values w1, . . . , wN and
prove for different statements x that a subset of the committed values w =
(wi1 , . . . , win) constitute a witness for x ∈ Lck, i.e., (ck, x, w) ∈ RL.

We will divide each committed value into two parts wi = (ti,mi). The first
part ti can be thought of as a public part that does not need to be kept secret,
while the second part mi can be thought of as a secret value that our commit-
and-prove scheme should not reveal. The first part ti will be useful later on to
specify the type of value mi is, for instance a group element or a field element,
and to specify which type of commitment we should make to mi. This is a natural
and useful generalization of standard commitment schemes.

A commit-and-prove scheme CP = (Gen,Com,Prove,Verify) consists of four
polynomial time algorithms. The algorithms Gen,Prove are probabilistic and
the algorithms Com,Verify are deterministic.

Gen(1k): Generates a commitment key ck. The commitment key specifies a mes-
sage space Mck, a randomness space Rck and a commitment space Cck.
Membership of either space can be decided efficiently.

Comck(t,m; r): Given a commitment key ck, a message (t,m) ∈ Mck and
randomness r such that (t, r) ∈ Rck returns a commitment c such that
(t, c) ∈ Cck.

Proveck(x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a commitment key ck, statement
x and commitment openings such that (ti,mi) ∈ Mck, (ti, ri) ∈ Rck and
(ck, x, t1,m1, . . . , tn,mn) ∈ RL returns a proof π.

Verifyck(x, (t1, c1), . . . , (tn, cn), π): Given a commitment key ck, a statement x,
a proof π and commitments (ti, ci) ∈ Cck returns 1 (accept) or 0 (reject).

Definition 1 (Perfect correctness). The commit-and-prove system CP is
(perfectly) correct if for all adversaries A

Pr

[
ck ← Gen(1k) ; (x,w1, r1, . . . , wn, rn)← A(ck) ; ci ← Comck(wi; ri) ;
π ← Proveck(x,w1, r1, . . . , wn, rn) : Verifyck(x, (t1, c1), . . . , (tn, cn), π) = 1

]
= 1,



where A outputs wi, ri such that wi = (ti,mi) ∈Mck, (ti, ri) ∈ Rck and
(ck, x, w1, . . . , wn) ∈ RL.

We say a commit-and-prove scheme is sound if it is impossible to prove a
false statement. Strengthening the usual notion of soundness, we will associate
unique values to the commitments, and these values will constitute a witness for
the statement. This means that not only does a valid proof guarantee the truth
of the statement, but also each commitment will always contribute a consistent
witness towards establishing the truth of the statement.

Definition 2 (Perfect soundness). The commit-and-prove system CP is (per-
fectly) sound if there exists a deterministic (unbounded) opening algorithm Open
such that for all adversaries A

Pr

[
ck ← Gen(1k) ; (x, t1, c1, . . . , tn, cn, π)← A(ck) ; mi ← Openck(ti, ci) :
Verifyck(x, t1, c1, . . . , tn, cn, π) = 0 ∨ (ck, x, (t1,m1), . . . , (tn,mn)) ∈ RL

]
= 1.

Extending the notion of soundness we may define a proof of knowledge as
one where it is possible to efficiently extract a witness for the truth of the state-
ment proven when given an extraction key xk. Actually, the commit-and-prove
schemes we construct will not allow the extraction of all types of witnesses due
to the hardness of the discrete logarithm problem. However, following Belenkiy
et al. [BCKL08] we can specify a function F such that we can extract F (ck, w)
from a commitment. Efficient extraction of a witness corresponds to the special
case where F (ck, w) = m, with m being the secret part of the witness w = (t,m).

Definition 3 (Perfect F -extractability). Let in the following ExtGen and
Ext be two algorithms as described below.

– ExtGen is a probabilistic polynomial time algorithm that on 1k returns (ck, xk).
We call ck the commitment key and xk the extraction key. We require that
the probability distributions of ck made by ExtGen and Gen are identical.

– Ext is a deterministic polynomial time algorithm that given an extraction
key xk and (t, c) ∈ Cck returns a value.

The commit-and-prove scheme CP with perfect soundness for opening algorithm
Open is F -extractable if for all adversaries A

Pr

[
(ck, xk)← ExtGen(1k) ; (t, c)← A(ck, xk) :
(t, c) /∈ Cck ∨ Extxk(t, c) = F (ck, (t,Open(t, c)))

]
= 1.

A commit-and-prove scheme is zero-knowledge if it does not leak information
about the secret parts of the committed messages besides what is known from
the public parts. This is defined as the ability to simulate commitments and
proofs without knowing the secret parts of the messages (the types are known)
if instead some secret simulation trapdoor is known.

Following [Gro06,GOS12] we define a strong notion of zero-knowledge called
composable zero-knowledge. Composable zero-knowledge says the commitment
key can be simulated, and if the commitment key is simulated it is not possible
to distinguish real proofs from simulated proofs even if the simulation trapdoor
is known.



Definition 4 (Composable zero-knowledge). The commit-and-prove sys-
tem CP is (computationally) composable zero-knowledge if there exist proba-
bilistic polynomial time algorithms SimGen,SimCom,SimProve such that for all
non-uniform polynomial time stateful interactive adversaries A 3

Pr
[
ck ← Gen(1k) : A(ck) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k) : A(ck) = 1

]
and

Pr

[
(ck, tk)← SimGen(1k); (x, i1, . . . , in)← AComck(·)(ck, tk);
π ← Proveck(x,wi1 , ri1 , . . . , win , rin) : A(π) = 1

]
≈ Pr

[
(ck, tk)← SimGen(1k); (x, i1, . . . , in)← ASimComtk(·)(ck, tk);
π ← SimProvetk(x, ti1 , si1 , . . . , tin , sin) : A(π) = 1

]
,

where

– tk is a trapdoor key used to construct simulated proofs
– Comck(·) on wi = (ti,mi) ∈ Mck picks uniformly random ri such that

(ti, ri) ∈ Rck and returns ci = Comck(wi; ri)
– SimComtk(·) on wi = (ti,mi) ∈ Mck runs (ci, si) ← SimComtk(ti) and

returns ci, where si is some auxiliary information used to construct simulated
proofs

– A picks (x, i1, . . . , in) such that (ck, x, wi1 , . . . , win) ∈ RL

3 Preliminaries

3.1 Bilinear group

Let G be a probabilistic polynomial time algorithm that on input 1k returns
(p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T are groups of prime order p, ĝ and ȟ gen-

erate Ĝ and Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently computable,
non-degenerate bilinear map.

Notation: We will write elements x̂ ∈ Ĝ with a hat and elements y̌ ∈ Ȟ with
an inverted hat to make it easy to distinguish elements from the two groups. We
denote the neutral elements in the groups Ĝ, Ȟ and T with 0̂, 0̌ and 0T.

It will be convenient to use additive notation for all three groups Ĝ, Ȟ and T.
This notation deviates from standard practice (Ĝ, Ȟ are sometimes written mul-
tiplicatively and T is usually written multiplicatively) but will greatly simplify
our paper and make it possible to use linear algebra concepts such as vectors
and matrices in a natural way. We stress that even though we are using additive
notation it is hard to compute discrete logarithms in the groups.

3 Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| =
O(k−c) for every positive integer c. We say that f is negligible when f(k) ≈ 0 and
that it is overwhelming when f(k) ≈ 1.



It will also be convenient to write the pairing e with multiplicative notation.
So we define

x̂ · y̌ = e(x̂, y̌).

Writing the pairing multiplicatively allows us to use linear algebra notation
in a natural way, we have for instance

x̂ ·
(

0̌ y̌
ž 0̌

)
e> =

(
x̂ · y̌
0T

)
,

for x̂ ∈ Ĝ, y̌, ž ∈ Ȟ and e = (0, 1). Note that as x̂a · y̌ = x̂ · ay̌ we will use the
simpler notation x̂ay̌ = x̂a · y̌ = x̂ · ay̌.

3.2 SXDH assumption

Let (p, Ĝ, Ȟ,T, e, ĝ, ȟ) be a bilinear group. The Decision Diffie-Hellman (DDH)

problem in Ĝ is to distinguish the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ, κĝ),
where ξ, ρ, κ← Zp. The DDH problem in Ȟ is defined in a similar way.

Definition 5. The Symmetric eXternal Diffie-Hellman (SXDH) assumption holds

relative to G if the DDH problems are computationally hard in both Ĝ and Ȟ for
(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k).

3.3 ElGamal encryption

The ElGamal encryption scheme [EG84] is a public key encryption scheme given
by the following algorithms:

– Setup: on input a security parameter 1k, output a cyclic group Ĝ of prime
order p, an element ĝ ∈ Ĝ and an element ξ ← Z∗p. Then, define the public

key as pk = (Ĝ, v̂), where v̂ = (ξĝ, ĝ)> ∈ Ĝ2×1 and the secret decryption
key as xk = (pk, ξ), where ξ = (−ξ−1 mod p, 1).

– Encrypt: the encryption algorithm takes as input the public key pk and a
message x̂ ∈ Ĝ, picks a random r ← Zp and outputs the ciphertext ĉ =

e>x̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).

– Decrypt: the decryption algorithm takes as input the secret key xk and a
ciphertext ĉ ∈ Ĝ2×1 and outputs x̂ = ξĉ. Note ξe> = 1 and ξv̂ = 0 so
simple linear algebra shows decryption is correct.

The ElGamal encryption scheme is IND-CPA secure if the DDH problem
is computationally hard in Ĝ [TY98]. ElGamal encryption can be defined sim-
ilarly in Ȟ and if the SXDH assumption holds we then have IND-CPA secure
encryption schemes in both Ĝ and Ȟ.



3.4 Pairing-product equations and other types of equations

Using the linear algebra friendly additive notation for group operations and
multiplicative notation for the pairing, we can express the four types of equations
given in the introduction (Sec. 1) in a compact way.

Consider elements x̂1, . . . , x̂m ∈ Ĝ and y̌1, . . . , y̌n ∈ Ȟ, which may be publicly
known constants (called âj and b̌i in the introduction) or secret variables. Let
furthermore the matrix Γ = {γij}m,n

i=1,j=1 ∈ Zm×n
p and tT ∈ T be public values.

We can now write the pairing product equation simply as

x̂Γ y̌ = tT,

where x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n)>.

We can in a similar fashion write multi-scalar multiplication equations in Ĝ,
multi-scalar multiplication equations in Ȟ, and quadratic equations in Zp as

x̂Γy = t̂ xΓ y̌ = ť xΓy = t

for suitable choices of m,n ∈ N, Γ ∈ Zm×n
p , x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m

p ,y ∈
Zn×1
p , t̂ ∈ Ĝ, ť ∈ Ȟ and t ∈ Zp. The vectors x̂, y̌,x,y may contain a mix of

known public values and secret variables.
Groth and Sahai [GS12] made the useful observation that by subtracting

t̂ · 1, 1 · ť and 1 · t on both sides of the respective equations we may without loss
of generality assume t̂ = 0̂, ť = 0̌ and t = 0 in all multi-scalar multiplication
equations and quadratic equations.

To get zero-knowledge proofs, we will in addition like Groth and Sahai restrict
ourselves to tT = 0T in all pairing product equations. Groth and Sahai [GS12] do
not allow pairings of public constants in the pairing product equations in their
zero-knowledge proofs, which we express by requiring the matrix Γ to contain
entries γi,j = 0 whenever x̂i and y̌j both are public values. This is because their
zero-knowledge simulator breaks down when public values are paired. Groth
and Sahai offers a work-around to deal with public values being paired with each
other but it involves introducing additional multi-scalar multiplication equations
and therefore increases the complexity of the zero-knowledge proof by many
group elements. We will show that zero-knowledge simulation is possible when
base elements ĝ or ȟ are paired with each other or other public values. Since we
do not need the additional multi-scalar multiplication equation used in Groth
and Sahai’s work-around this yields a significant efficiency gain whenever ĝ or ȟ
are paired with each other or other public values.

4 Commitment keys and commitments

Like in Groth-Sahai proofs, commitment keys come in two flavours: extraction
keys that give perfect soundness and simulation keys that give zero-knowledge.
The two types of key generation algorithms are given in Fig. 1 and by the



SXDH assumption extraction keys and simulation keys are computationally in-
distinguishable.4

ExtGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k)
ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂ ← (ξĝ, ĝ)> v̌ ← (ψȟ, ȟ)
ŵ ← ρv̂ w̌ ← σv̌

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)

ξ ← (−ξ−1 mod p, 1) ψ ← (−ψ−1 mod p, 1)>

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
xk ← (ck, ξ,ψ)
Return (ck, xk)

SimGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1k)
ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂ ← (ξĝ, ĝ)> v̌ ← (ψȟ, ȟ)

ŵ ← ρv̂ − (0̂, ĝ)> w̌ ← σv̌ − (0̌, ȟ)

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
tk ← (ck, ρ, σ)
Return (ck, tk)

Fig. 1: Generator algorithms

The column vectors v̂, ŵ, û ∈ Ĝ2×1 will be used to make commitments ĉ to
group elements x̂ ∈ Ĝ and scalars x ∈ Zp. Commitments to group elements and
scalars are computed as

ĉ← e>x̂+ v̂r + ŵs and ĉ← ûx+ v̂r,

where r, s ∈ Zp. Commitments, usually denoted ď, to group elements ŷ ∈ Ȟ and
scalars y ∈ Zp are made analogously using the row vectors v̌, w̌, ǔ ∈ Ȟ1×2.

The commitment scheme is similar to [GS12], however, we will have several
different types of commitments and the randomness r, s ∈ Zp we use will depend
on the type. Fig. 2 summarizes the commitment types and describes the message,
randomness and commitment spaces specified by the public key ck.

The type t = (pubĜ, x̂) corresponds to a commitment to a public value x̂
using randomness r = s = 0. It is easy for the verifier to check whether a
commitment ĉ = e>x̂ is indeed a correct commitment to a public value x̂.
Explicitly allowing public values in the commitments simplifies the description
of the proofs because we can now treat all elements x̂1, . . . , x̂m in a pairing
product equation as committed values regardless of whether they are public or
secret. Suppose some of the elements x̂ ∈ Ĝ1×m that appear in a pairing-product
equation are committed as constant and others as Groth-Sahai commitments.
The matrix consisting of all the commitments Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m can be
written in a compact way as Ĉ = e>x̂+ v̂rx + ŵsx, where for a constant x̂i we
just have rxi

= 0 and sxi
= 0.

4 The commitment keys are not defined exactly as in [GS12]: by defining v̂ as (ξĝ, ĝ)>

instead of (ĝ, ξĝ)> we will be able to reduce the computational cost of the prover,
as explained in Sec. 6. Besides this small difference, the keys v̂, ŵ, û, v̌, w̌ and ǔ
correspond to u1, u2, u, v1, v2 and v in [GS12].



t m (r, s) ĉ

(pubĜ,m) m̂ ∈ Ĝ r = s = 0 ĉ = (0̂, m̂)>

encĜ m̂ ∈ Ĝ r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

comĜ m̂ ∈ Ĝ r, s ∈ Zp ĉ ∈ Ĝ2×1

baseĜ m̂ = ĝ r = s = 0 ĉ = (0̂, ĝ)>

scaĜ m ∈ Zp r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

unitĜ m = 1 r = s = 0 ĉ = û

t m (r, s) ď

(pubȞ,m) m̌ ∈ Ȟ r = s = 0 ď = (0̌, m̌)

encȞ m̌ ∈ Ȟ r ∈ Zp, s = 0 ď ∈ Ȟ1×2

comȞ m̌ ∈ Ȟ r, s ∈ Zp ď ∈ Ȟ1×2

baseȞ m̌ = ȟ r = s = 0 ď = (0̌, ȟ)

scaȞ m ∈ Zp r ∈ Zp, s = 0 ď ∈ Ȟ1×2

unitȞ m = 1 r = s = 0 ď = ǔ

Fig. 2: Mck,Rck and Cck.

In a standard Groth-Sahai proof, group element variables are committed as
type t = comĜ using randomness r, s ← Zp. We will for greater efficiency also
allow commitments of type t = encĜ where s = 0. A type t = encĜ commitment
to a group element x̂ is ĉ ← e>x̂ + v̂r, which is an ElGamal encryption of x̂
as described in Sec. 3.3. Using encryption of variables instead of commitments
reduces the computation and in some instances the size of the proofs. However,
even on a simulation key the encryptions are only computationally hiding, so we
must take care to ensure that it is possible to simulate proofs.

We also introduce the type t = baseĜ for a commitment to the base element
ĝ using r = s = 0. This type allows us to differentiate ĝ from other public values,
which is important because simulation becomes problematic when public values
are paired with each other. However in the special case when ĝ is paired with
ȟ or public constants it is possible to simulate. In addition, one can get shorter
zero-knowledge proofs for certain equations by using the special properties of
commitments with types t = baseĜ and t = baseȞ.

Scalars have the type t = scaĜ and we use the type t = unitĜ for a com-
mitment to the scalar 1 using r = s = 0. Please note that t = unitĜ suffices to
incorporate any public value a ∈ Zp into our equations by multiplying the cor-
responding row in the matrix Γ with a. With these two types we can therefore
commit to both variables and constants in Zp, which simplifies the description
of the proofs.

We have now described the types of commitments in Ĝ and similar types for
commitments in Ȟ are given in Fig. 2. The commitment algorithm is described
in Fig. 3.

The extraction key xk includes a vector ξ such that ξv̂ = ξŵ = 0̂ and
ξe> = 1, ξû = ĝ. On a commitment to a group element ĉ = e>x̂ + v̂r + ŵs or
on an encryption to a group element ĉ = e>x̂+v̂r we can extract x̂ by computing
x̂ = ξĉ. On a commitment to a scalar ĉ = ûx + v̂r we extract ĝx = ξĉ, which
uniquely determines the committed value x. The extraction algorithm is given
in Fig. 4.

The simulated commitment algorithm SimComtk(t) commits honestly to
public constants, base elements ĝ, ȟ and units 1, which is easy to verify us-
ing public information. For all other types it commits to 0. We refer to the full
paper [EG13] for a detailed specification.



Input Randomness Output

(pubĜ, x̂), x̂ r ← 0, s← 0 ĉ← e>x̂

encĜ, x̂ (?) r ← Zp, s← 0 ĉ← e>x̂+ v̂r

comĜ, x̂ r ← Zp, s← Zp ĉ← e>x̂+ v̂r + ŵs

baseĜ, ĝ (?) r ← 0, s← 0 ĉ← e>ĝ
scaĜ, x r ← Zp, s← 0 ĉ← ûx+ v̂r
unitĜ, 1 r ← 0, s← 0 ĉ← û

Input Randomness Output

(pubȞ, y̌), y̌ r ← 0, s← 0 ď← y̌e

encȞ, y̌ (?) r ← Zp, s← 0 ď← y̌e+ rv̌

comȞ, y̌ r ← Zp, s← Zp ď← y̌e+ rv̌ + sw̌

baseȞ, ȟ (?) r ← 0, s← 0 ď← ȟe

scaȞ, y r ← Zp, s← 0 ď← yǔ+ rv̌

unitȞ, 1 r ← 0, s← 0 ď← ǔ

Fig. 3: Commitment algorithm. [GS12] do not have the types marked with (?).

Extxk(t, ĉ) where ĉ ∈ Ĝ2×1

Return x̂← ξĉ

Extxk(t, ď) where ď ∈ Ȟ1×2

Return y̌ ← ďψ

Fig. 4: Extraction algorithm.

On a simulation key, the commitments of types comĜ or scaĜ are perfectly
hiding. Commitments of types (pubĜ, x̂) or encĜ on the other hand are perfectly
binding. However, by the SXDH assumption commitments of type encĜ cannot
be distinguished from commitments to other elements. Commitments of type
(pubĜ, x̂) are public, so we do not require any hiding property.

Commitments to ĝ and 1 of types baseĜ and unitĜ are interesting. The secret
simulation key specifies ρ such that û = ρv̂ and e>ĝ = ρv̂− ŵ. This means that
commitments of types baseĜ and unitĜ can be equivocated as either commit-

ments to ĝ and 1 or as commitments to 0̂ and 0. The zero-knowledge simulator
will use the equivocations to simulate proofs involving the base element ĝ or
constants in Zp.

5 Proofs

We will first explain how the proofs work using the example of pairing product
equations to give intuition. We want to prove that committed values x̂, y̌ satisfy
the equation

x̂Γ y̌ = 0T.

Assume that we have committed to x̂, y̌ as Ĉ = e>x̂ + v̂rx + ŵsx and Ď =
y̌e+ ryv̌ + syw̌. We then have

ĈΓ Ď =(e>x̂+ v̂rx + ŵsx)Γ (y̌e+ ryv̌ + syw̌)

=e>x̂Γ y̌e+ v̂rxΓĎ + ŵsxΓĎ + e>x̂Γryv̌ + e>x̂Γsyw̌

=0T + v̂π̌′v̂ + ŵπ̌′ŵ + π̂′v̌v̌ + π̂′w̌w̌

where π̌′v̂ = rxΓĎ, π̌
′
ŵ = sxΓĎ, π̂

′
v̌ = e>x̂Γry, π̂

′
w̌ = e>x̂Γsy.



The prover randomizes π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′v̂ + αv̌ + βw̌, π̌ŵ = π̌′ŵ +

γv̌+ δw̌, π̂v̌ = π̂′v̌ − v̂α− ŵγ, π̂w̌ = π̂′w̌ − v̂β− ŵδ. This gives us a randomized
proof π̌v̂, π̌ŵ, π̂v̌, π̂w̌ satisfying the verification equation

ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.

Soundness and F -extractability. An extraction key xk contains ξ,ψ such
that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌. Multiplying the verification equation by
ξ and ψ on the left and right side respectively, we get

ξĈΓ Ďψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.

Observe, x̂ = ξĈ are the values the extractor Extxk gets from the commitments
Ĉ and y̌ = Ďψ are the values the extractor Extxk gets from the commitments
Ď. The extracted values from the commitments therefore satisfy x̂Γ y̌ = 0T.
This gives us perfect soundness and perfect F -extractability, where F on group
elements in Ĝ and Ȟ is the identity function.

Zero-knowledge. The simulator will simulate proofs by equivocating the com-
mitments to values x̂, y̌ that satisfy the equation x̂Γ y̌ = 0T. On a simulation
key, commitments with types comĜ, comȞ are perfectly hiding. The simulator

can therefore use x̂i = 0̂ or y̌j = 0̌. Commitments with types baseĜ,baseȞ
are also equivocable to 0̂ or 0̌ since on a simulation key e>ĝ = v̂ρ − ŵ and
ȟe = σv̌ − w̌. By using equivocations to 0̂ and 0̌ we can now ensure that
x̂iγi,j y̌j = 0T whenever txi

∈ {baseĜ, comĜ} or tyj
∈ {baseȞ, comȞ}. Commit-

ments of type txi
∈ {(pubĜ, x̂), encĜ} and tyj

∈ {(pubȞ, y̌), encȞ} cannot be
equivocated and, to get zero-knowledge, we will therefore assume γi,j = 0 when-
ever such types are paired (as is also the case in [GS12]).

We now have that the simulator can equivocate commitments and base el-
ements to 0̂ and 0̌ such that the resulting x̂, y̌ satisfy x̂Γ y̌ = 0T. The ran-
domization of the proofs ensures that they will not leak information about
whether we are giving a real proof or simulating. Recall the prover randomized
π̌′v̂, π̌

′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′v̂ +αv̌+βw̌, π̌ŵ = π̌′ŵ +γv̌+δw̌, π̂v̌ = π̂′v̌− v̂α−ŵγ,

π̂w̌ = π̂′w̌ − v̂β − ŵδ. On a simulation key this means regardless of whether we
are giving a real proof or a simulated proof π̌v̂, π̌ŵ are uniformly random and
π̂v̌, π̂w̌ are the unique values that make the verification equation true. Finally,
the encrypted elements are computationally hidden by the SXDH assumption,
so here the simulator may use encryptions of 0̂ and 0̌ instead of the witness
and as we shall show the proofs can be constructed on top of the ciphertexts
such that they do not reveal whether the underlying plaintext are part of a real
witness or are set to zero by the simulator.

Optimizations. Now let us return to the prover. Observe that rx, sx, ry, sy
may have some zero elements. In particular, assume that all elements in sx are
0. This happens if all x̂i in the statement have types encĜ, (pubĜ, x̂i) or baseĜ.



Moreover, assume that all elements y̌ have as types either comȞ or baseȞ so
that a simulator uses y̌ = 0̌ in the simulated proof. This sets π̌′ŵ = 0̌. As π̌′ŵ
is the same for all witnesses, even for “simulated witnesses”, we might as well
set γ = δ = 0. For such equations, we therefore save 2 group elements or 25%
of the proof size compared to Groth and Sahai [GS12] where there is no encĜ
or encȞ types. We refer to the full paper [EG13] for a list of equation types and
the corresponding proof sizes.

5.1 The full proof system

We divide the possible statements into 16 different types. They are summarized
in Fig. 5, which provides an algorithm for checking that the statement format
is correct. The relation RL is defined in Fig. 6, which provides an algorithm to
check whether a statement is true. The relation first checks that the types of
the witnesses and the types of the equations match according to Fig. 5 and then
whether the relevant pairing product, multi-scalar multiplication or quadratic
equation is satisfied.

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Γ ∈ Zm×n
p

Check that the equation and message types match each other according to the table below

T tx1 , . . . , txm ty1 , . . . , tyn
PPE baseĜ, (pubĜ, x̂i), encĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ
PEncĜ baseĜ, (pubĜ, x̂i), encĜ baseȞ, comȞ
PConstĜ baseĜ, (pubĜ, x̂i) baseȞ, comȞ
PEncȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ
PConstȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j)
MEĜ baseĜ, (pubĜ, x̂i), encĜ, comĜ unitȞ, scaȞ
MEncĜ baseĜ, (pubĜ, x̂i), encĜ unitȞ, scaȞ
MConstĜ baseĜ, (pubĜ, x̂i) unitȞ, scaȞ
MLinĜ baseĜ, comĜ unitȞ
MEȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ
MEncȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ
MConstȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j)
MLinȞ unitĜ baseȞ, comȞ
QE unitĜ, scaĜ unitȞ, scaȞ
QConstĜ unitĜ unitȞ, scaȞ
QConstȞ unitĜ, scaĜ unitȞ

If T = PPE check Γi,j = 0 for all (i, j) where txi ∈ {(pubĜ, x̂i), encĜ} and tyj ∈ {(pubȞ, y̌j), encȞ}
Accept format if all checks pass, else abort

Fig. 5: Equation - message types check



RL(ck, (T, Γ ), ({(txi , xi)}mi=1, {(tyj , yj)}nj=1))

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)
For all i, j check (txi , xi) ∈Mck and (tyj , yj) ∈Mck

If x ∈ Ĝm and y ∈ Ȟn check xΓy = 0T

If x ∈ Ĝm and y ∈ Zn
p check xΓy = 0̂

If x ∈ Zm
p and y ∈ Ȟn check xΓy = 0̌

If x ∈ Zm
p and y ∈ Zn

p check xΓy = 0
Accept if and only if all checks pass

Fig. 6: Relation that defines the key-dependent languages for our proofs

The prover and verifier are given in Fig. 7. The prover constructs a proof for
the relevant type of equation assuming the input is a correctly formatted state-
ment with valid openings of commitments to a satisfying witness. The verifier
uses the matching verification equation to check validity of a proof.

Proveck(T, Γ, {(txi , xi, (rxi , sxi))}mi=1, {(tyj , yj , (ryj , syj ))}nj=1)

If x ∈ Ĝm define Ĉ = e>x+ v̂rx + ŵsx else if x ∈ Zm
p define Ĉ = ûx+ v̂rx

If y ∈ Ȟn define Ď = ye+ ryv̌ + syw̌ else if y ∈ Zn
p define Ď = yǔ+ ryv̌

Set α = β = γ = δ = 0
If T = PPE pick α, β, γ, δ ← Zp

If T ∈ {PEncĜ,MEȞ} pick α, β ← Zp

If T ∈ {PEncȞ,MEĜ} pick α, γ ← Zp

If T ∈ {MEncĜ,MEncȞ,QE} pick α← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

Return π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

Verifyck(T, Γ, {(txi , ĉi)}mi=1, {(tyj , ďj)}nj=1, π)

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m and Ď =
(
ď1 · · · ďn

)> ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌
Return 1 if all checks pass, else return 0

Fig. 7: Prover and verifier algorithms

Let F be given by

F (ck, t, x̂) = x̂ for t ∈ {(pubĜ, x̂), encĜ, comĜ,baseĜ}
F (ck, t, x) = ĝx for t ∈ {scaĜ,unitĜ}
F (ck, t, ŷ) = y̌ for t ∈ {(pubȞ, y̌), encȞ, comȞ,baseȞ}
F (ck, t, y) = yȟ for t ∈ {scaȞ,unitȞ}

.



Theorem 1. The commit-and-prove scheme given in Figs. 1,3,4 and 7 has per-
fect correctness, perfect soundness and F -extractability for the function F defined
above, and computational composable zero-knowledge if the SXDH assumption
holds relative to G.

Due to lack of space, the description of the zero-knowledge simulator and the
proof of the theorem is given in the full version [EG13].

6 NIZK proofs with prover-chosen CRS

In Groth-Sahai proofs, the prover uses a common reference string shared between
the prover and the verifier to construct NIZK proofs. We can improve efficiency
by letting the prover choose her own common reference string, which we will refer
to as her public key. To maintain the soundness of the NIZK proof, the prover
will create its public key as a perfectly binding key and will make a NIZK proof
using the shared common reference string to prove that the public key is binding.
In this section we will explain how the prover creates her public key, proves its
well-formedness and we explain what the efficiency improvement obtained is. In
the full version of this paper [EG13] we give definitions for commit-and-prove
schemes with prover-chosen CRS and we prove the security of our scheme.

6.1 Creating the public key

Like commitment keys, public keys can be created in two ways: they can either
be perfectly binding or perfectly hiding. These two types of keys are computa-
tionally indistinguishable if the SXDH assumption holds. As we already argued,
we will require the prover to create her public key in a perfectly binding way.
However, the zero-knowledge simulator will create a perfectly hiding public key
and simulate the NIZK proof for well-formedness.

ProverGen(ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌
ŵP ← ρP v̂P w̌P ← σP v̌P

ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )
sk ← (pk, ρP , σP )
Return (pk, sk)

SimProverGen(ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌

ŵP ← ρP v̂P − (0̂, ĝ)> w̌P ← σP v̌P − (0̌, ȟ)

ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )
sk ← (pk, ρP , σP )
Return (pk, sk)

Fig. 8: Public key generator algorithms

As shown in Fig. 8, the public key is created in a similar way to how the
commitment key is created. The main difference is that the bilinear group



(p, Ĝ, Ȟ,T, e, ĝ, ȟ) is already fixed, and that we allow the prover to reuse the
elements v̂, v̌. This both reduces the size of the public key and also ensures that
the prover’s commitments are extractable even when using her own key.

Once the prover has created her pair of public key and secret key, she has
to compute an NIZK proof to show that her pk is perfectly binding. A valid
public key is defined by the existence of some ρP , σP such that ŵP = ρP v̂ and
w̌P = σP v̌, which can be written as two equations of type MConstĜ involving

public elements in Ĝ and a secret ρP committed in Ȟ, and two equations of
type MConstȞ involving public elements in Ȟ and a secret σP committed in Ĝ.
These are simple statements that each have a proof consisting of a single group
element. In the full version of this paper [EG13] we give the exact NIZK proofs
that have to be computed. The total cost of communicating the public key,
which is determined by the commitments to ρP and σP and the NIZK proofs
is 12 group elements. Since we are using a commit-and-prove scheme we can
consider this as a one-off cost for each verifier engaging with the prover after
which the public key may be used for many commitments and proofs.

6.2 Computing commitments and NIZK proofs

Once the prover has created her public key pk and has proven its well-formedness,
she can make commitments and prove statements using pk instead of ck. The
commitments and proofs are created and verified in exactly the same way as
described in Fig. 3 and Fig. 7, but the number of scalar multiplications needed
to compute commitments and NIZK proofs can be reduced using her knowledge
of the discrete logarithms in sk. We have for instance

ĉ = e>x̂+ v̂r + ŵP s = e>x̂+ v̂(r + ρP s),

so the prover can compute a commitment with 2 scalar multiplications instead
of 4 scalar multiplications.

By using the secret key sk the prover can reduce the number of scalar mul-
tiplications by 50% for commitments to group elements and commitments to
elements in Zp. Computing NIZK proofs is more complicated and there are
many operations that cannot be avoided by using the secret key sk. However,
in some cases the improvement is very noticeable as in the case of quadratic
equations (T = QE) where the number of scalar multiplications is reduced by
50%5. Furthermore, in most applications found in the literature there are only a
few variables in the equations, which makes our improvements more significant.
The exact savings can be found in the full version of this paper [EG13].

5 We assume that operations in Ȟ are more computationally expensive than operations
in Ĝ, as usually Ĝ is an elliptic curve over a prime order field and Ȟ is the same elliptic
curve over an extension field [GPS08]. Therefore, we have tried to reduce the numbers
of operations in Ȟ as much as possible. In addition, we have for simplicity assumed
that the commitments that appear in the NIZK proof have as many randomization
factors as possible conditioned to the equation type T .
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