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Abstract. We introduce the notion of rate-limited secure function evaluation
(RL-SFE). Loosely speaking, in an RL-SFE protocol participants can monitor
and limit the number of distinct inputs (i.e., rate) used by their counterparts
in multiple executions of an SFE, in a private and verifiable manner. The
need for RL-SFE naturally arises in a variety of scenarios: e.g., it enables ser-
vice providers to “meter” their customers’ usage without compromising their
privacy, or can be used to prevent oracle attacks against SFE constructions.
We consider three variants of RL-SFE providing different levels of security. As
a stepping stone, we also formalize the notion of commit-first SFE (cf-SFE)
wherein parties are committed to their inputs before each SFE execution.
We provide compilers for transforming any cf-SFE protocol into each of the
three RL-SFE variants. Our compilers are accompanied with simulation-based
proofs of security in the standard model and show a clear tradeoff between the
level of security offered and the overhead required. Moreover, motivated by the
fact that in many client-server applications clients do not keep state, we also
describe a general approach for transforming the resulting RL-SFE protocols
into stateless ones.

As a case study, we take a closer look at the oblivious polynomial evalua-
tion (OPE) protocol of Hazay and Lindell, show that it is commit-first and
instantiate efficient rate-limited variants of it.

Keywords. secure function evaluation, foundations, secure metering, oracle
attacks, oblivious polynomial evaluation

1 Introduction

Secure function evaluation (SFE) allows a set of mutually distrustful parties
to securely compute a function f of their private inputs. Roughly speaking,
SFE protocols guarantee that the function is computed correctly and that the
parties will not learn any information from the interaction other than their
output and what is inherently leaked from it. Seminal results in SFE show that
one can securely compute any functionality [2930/T5I8/2]. There has been a
large number of follow-up work improving the security, strengthening adversarial
models, and studying efficiency. Recent work on practical SFE has also led to
real-world deployments [7l6], and the design and implementation of several SFE
frameworks [245l[T220/21].



In practice, most applications of SFE considered in the literature need to ac-
commodate multiple executions of a protocolﬂ Consider a client that searches for
multiple patterns in a large text via a secure pattern matching protocol [I7/19],
searches several keywords in a private database via an oblivious keyword search
[27013], or an individual who needs to run a software diagnostic program, or
an intrusion detection system (IDS) to analyze data via an oblivious branching
program (OBP) or an automaton evaluation (OAE) protocol [2228].

Invoking an SFE protocol multiple times raises important practical issues
that are outside the scope of standard SFE, and hence are not addressed by
the existing solutions. We point out two such issues and introduce rate-limited
SFE as a means to address them. The reason for the choice of name is that
rate-limiting is commonly used in network and web applications to refer to re-
strictions put on clients’ usage (on a per user, or a per IP address basis). In this
work we consider similar restrictions on a user’s inputs to services that maybe
implemented using SFE.

SECURE METERING OF SFE. Service providers tend to charge their clients ac-
cording to their level of usage: a location-based service may wish to charge its
clients based on the number of locations they use the service from; a database
owner based on the number of distinct search queries; an IDS provider based on
the number of suspicious files sent for vulnerability analysis. Service providers
would be more willing to adopt SFE protocols if it is possible to efficiently enforce
such a metering mechanism. The challenge is to do so without compromising the
client’s privacy, or allowing the server or the client to cheat the metering system.

ORACLE ATTACKS. Consider multiple executions of a two-party SFE protocol
(such as those mentioned above), where the first party’s input stays the same
in different executions but the second party’s input varies. A malicious second
party who “adaptively” uses different inputs in each execution, can gradually
learn significant information about the first party’s input, and, in the worst
case, fully recover it. For instance, consider an oblivious polynomial evaluation
(OPE) protocol (e.g., used in oblivious keyword search) wherein the server holds
a polynomial p while the client holds a private point  and wants to learn p(z),
but cannot learn more than it. Evaluating the polynomial p on sufficiently many
points allows a malicious client to interpolate and recover p. A similar attack can
be applied to OBP and OAE protocols to learn the private branching program
or automaton which may embed propriety information. Learning attacks of this
sort are well-understood and have been previously identified as important threats
in the context of SFE; they are sometimes referred to as oracle attacks since the
attacker has black-box access to input/output values from multiple executions
(e.g., see the discussion in [1]).

A naive solution to the problems discussed above is to limit the total number
of executions of an SFE protocol, ignoring the actual input values. However,
this approach does not provide a satisfactory solution in most scenarios. For

! Depending on the application, a subset of the participants may use the same input
in different executions.



example, in case of secure metering, fixing an a priori upper bound on the total
number of executions would mean charging legitimate clients multiple times
for using the service with the same input; a disadvantage for clients who may
need to use the same input from multiple devices, or reproduce a result due to
communication errors, device upgrades, or perhaps to prove the validity of the
outcome to a third-party by re-running the protocol. Similarly, in case of oracle
attacks, clients need not be disallowed to use the same input multiple times
since querying the same input many times does not yield new information to an
attacker.

RATE-LIMITED SFE. A more accurate (and challenging) solution is to [limit
and/or monitor the number of distinct inputs used by an SFE participant in
multiple executions. Obviously, this should be done in a secure and efficient
manner, i.e., a party should not be able to exceed an agreed-upon limit, and its
counterpart should not learn any additional information about his private inputs,
or impose a lower limit than the one they agreed onE| We refer to the number
of distinct inputs used by a participant as his rate, and call a SFE protocol that
monitors/limits this number, a rate-limited SFE.

Of course, achieving RL-SFE is more costly than the naive solution discussed
above. However, at a minimum we require the proposed solution to avoid stor-
ing and/or processing the complete transcripts of all previous executions. (We
discuss the exact overhead of our solutions in detail below.)

We note that the complementary question of what functions are unsafe for
use in SFE (leak too much information) has also been studied, e.g., by combining
SFE and differential privacy [3I26], or belief tracking techniques [25]. These works
are orthogonal to ours, and can potentially be used in conjunction with rate-
limited SFE as an enforcement mechanism. For instance, the former works can
be invoked to negotiate on a function f with a measurable “safeness” from which
the rate for each user can be derived. Subsequently, the abidance of this rate can
be enforced through our rate-limited SFE.

Our Contribution. Motivated by the discussion above, we initiate the study
of rate-limited SFE. For simplicity, in this paper we focus on the two-party
case, but point out that the definitions and some of the constructions are easily
extendible to the multiparty setting. Our main contributions are as follows.

DEFINITIONS. We introduce three definitions for rate-limited secure function
evaluation: (i) rate-hiding, (ii) rate-revealing and (iii) pattern-revealing. All our
definitions are in the real-world/ideal-world simulation paradigm and are con-
cerned with multiple sequential executions of an SFE protocol. They reduce to
the standard simulation-based definition (stand alone) for SFE, when applied to
a single execution.

In a rate-hiding RL-SFE, in each execution, the only information revealed
to the parties is whether the agreed-upon rate limit has been exceeded or not.

2 In fact the problem becomes significantly easier when the parties are assumed to be
semi-honest.



In a rate-revealing RL-SFE, the parties additionally learn the current rate (i.e.,
the number of distinct inputs used by their counterpart so far). In a pattern-
revealing RL-SFE, parties also learn the pattern of occurrences of each other’s
inputs during the previous executions. These notions provide a useful spectrum of
tradeoffs between security and efficiency: our constructions become more efficient
as we move to the more relaxed notions, to the extent that our pattern-revealing
transformation essentially adds no overhead to the underlying SFE protocol.

CoMMIT-FIRST SFE. In order to design rate-limited SFE protocols, we formalize
the auxiliary notion of commit-first SFE (cf-SFE). Roughly speaking, a proto-
col is commit-first if it can be naturally divided into a (i) committing phase,
where each party becomes committed to its input for the second phase, and (ii)
a function evaluation phase, where the function f is computed on the inputs
committed to in the first phase[]

We utilize cf-SFE as a stepping stone to design rate-limited SFE. It turns out
that the separation between the input commitment phase and the function eval-
uation phase facilitates the design of efficient rate-limited SFE. In particular,
now a party only needs to provide some evidence of a particular relation be-
tween the committed inputs in the first phase. In contrast, if we had not started
with a commit-first protocol, such an argument would have involved the com-
plete history of the transcripts for all the previous executions, rendering such an
approach impractical.

The related notion of “evaluating on committed inputs” is well-known (e.g.
see [I523]), but we need and put forth a formal (and general) definition for cf-
SFE in order to prove our RL-SFE protocols secure. We then show that several
existing SFE constructions are either commit-first or can be efficiently trans-
formed into one. Examples include variants of Yao’s garbled circuit protocol,
the oblivious polynomial evaluation of Hazay and Lindell [16], the private set
intersection protocol of Hazay and Nissim [I8], and oblivious automaton evalua-
tion of Gennaro et al. [I4]. We also show that the GMW compiler [I5], outputs a
commit-first protocol. This is of theoretical interest as it provides a general com-
piler for transforming a semi-honest SFE protocol into a malicious cf-SFE (and
eventually a rate-limited SFE using the compilers in this paper). We elaborate
on these cf-SFE instantiations in the full version of this paper [I1].

COMPILERS & TECHNIQUES. We design three compilers for transforming a cf-
SFE into each of the three variants of RL-SFE discussed above, and provide
simulation-based proofs of their security. All our compilers start from a cf-SFE
protocol and add a “proof of repeated-input phase” between the committing
phase and the function evaluation phase. An exception is our pattern-revealing
compiler, where a proof of repeated-input is implicit given that we force the
commitments to be deterministic. In our first compiler (rate-hiding), whenever
the j-th execution begins, party P; first checks whether its input is “fresh” or has

3 Note that adding input commitments to the beginning of a protocol does not au-
tomatically yield a cf-SFE, since parties are not necessarily bound to using the
committed inputs in their evaluation.



already been used in a previous run. In the former case, P; encrypts the value “1”
and, otherwise, the value “0” using a semantically secure public-key encryption
scheme (E, D) for which it holds the secret key sk. Denote the resulting ciphertext
with ¢/. Party P; forwards to P, a ZK proof of the following statement:

(“committed to old input” A E(0)
V (“committed to new input” A E(1) A 37, D(sk, ¢') < rate”).

Intuitively, the proof above only leaks the fact that the rate is not exceeded in the
current execution, but nothing else. In order to generate this proof (resp. verify
the proof generated by the counterpart), P; needs to store all the commitments
and ciphertexts sent to (resp. received from) P» in previous executions.

For our second compiler (rate-revealing), we can do without the encryptions.
Parties can instead prove a simpler statement giving evidence that the current
(committed) input corresponds to one of the commitments the other party re-
ceived earlier. Clearly, this approach reveals the current rate, but as we prove
nothing more.

Finally, our third compiler (pattern-revealing) exploits a PRF to generate the
randomness used in the committing phase of the underlying cf-SFE protocol. In
this way, the commitment becomes deterministic (given the input), allowing the
other party to check whether the current input has already been used and in
which runs. This approach discloses the pattern of inputs used by the parties;
on the other hand, it is extremely efficient adding little computational overhead
(merely one invocation of a PRF) to the original ¢f-SFE protocol.

MAKING RL-SFE sTATELESS. The above compilers suffer from the limitation
that the parties need to keep a state which grows linearly in the total number of
executions of the underlying SFE protocol. In many applications, clients do not
keep state (and outsource this task to the servers), either due to lack of resources
or because they need to use the service from multiple locations/devices. We show
a general approach for transforming the stateful RL-SFE protocols generated
above into stateless ones. Here, the client keeps merely a small secret (whose
size is independent of the total number of executions), but is still able to prevent
cheating by a malicious server, and preserve privacy of his inputs. At a high
level, the transformation requires the client to store its authenticated (MACed)
state information on the server side and retrieve/verify /update it on-the-fly as
needed. We show how to apply this transformation to our rate-revealing compiler
to obtain a stateless variant and prove its security. A similar technique can be
applied to our rate-hiding compiler. Our pattern-revealing compiler is already
stateless (client only needs to store a PRF key) for the party who plays the role
of the client.

CASE STuDY. We take a closer look at the oblivious polynomial evaluation
protocol of Hazay and Lindell [I6]. Their protocol is secure against malicious
adversaries. We show that it is also a commit-first OPE, by observing that a
homomorphic encryption of the parties’ inputs together with ZK proofs of their
validity, can be interpreted as a commitment to their inputs. This immediately



yields an efficient pattern-revealing RL-SFE for the OPE problem, based on the
compiler we design. We also provide an efficient rate-hiding and rate-revealing
RL-OPE by instantiating the ZK proofs for membership in the necessary lan-
guages, efficiently.

Roadmap. We start introducing notations and our model for commit-first SFE
in Section [2] and [3} In Section [4] we give the definition of rate-limited SFE. A
fortaste of our rate-hiding, rate-revealing and pattern-revealing compilers are
given in Section [B] whereas Section [6] describes the stateless version of the rate-
revealing compiler. Finally, Section [7] deals with concrete instantiations for the
case of OPE.

2 Preliminaries

Throughout the paper, we denote the security parameter by . A function negl(\)
is negligible in A (or just negligible) if it decreases faster than the inverse of every
polynomial in A\. A machine is said to run in polynomial-time if its number of
steps is polynomial in the security parameter.

Let X = {X)}xeny and Y = {Y)}ren be two distribution ensembles. We
say X and Y are computationally indistinguishable (and we write X =, Y)
if for every non-uniform polynomial-time adversary A there exists a negligible
function negl such that | Pr [A(X) = 1] —Pr[A(Y) = 1] | < negl()\). Note that all
our security statements can be straightforwardly proven for uniform polynomial-
time adversaries, as well.

If  is a string, |z| denotes the length of z. Vectors are denoted boldface; given
vector x, we write x[j] for the j-th element of x. If X is a set, #X represents the
number of elements in X. When « is chosen randomly in X, we write z « X.
When A is an algorithm, y + A(x) denotes a run of A on input z and output
y; if A is randomized, then y is a random variable and A(x;r) denotes a run of
A on input z and random coins 7.

Our compilers make use of standard cryptographic primitives. Due to space
limitations, we assume familiarity of these primitives and define them formally
in the full version of this paper [I1].

3 Commit-First SFE

In this section, we formally define the notion of commit-first secure function eval-
uation (cf-SFE). Our three compilers Wrp, Yrr and Ypg for designing rate-limited
SFE, leverage commit-first protocols as a building block. We call a protocol m
commit-first if it can be naturally divided into two phases. In the first phase
(committing phase), both parties P; and P, become committed to their inputs.
At the end of this phase, no information about the parties’ inputs is revealed
(the hiding property), and neither party can use a different input than what it
is committed to in the remainder of the protocol (the binding property). In the



second phase (function evaluation phase), the function f will be computed on
the inputs committed to in the last phase.

We now specify the two separate phases. Consider a polynomial-time func-
tionality f = (f1, fo) with f; : {0,1}* x {0,1}* — {0,1}*. Then, a cf-SFE proto-
col m = (71, me) for evaluating f on parties’ inputs 1 and x5 proceeds as follows.

Committing Phase: Parties P; and P, execute 7w which is defined by the
functionality ((z1,71), (x2,72)) — (Ca(z2,72), C1(x1,71)). Note that the com-
mitment schemes C;, Cy can be arbitrary schemes (often different for each
cf-SFE protocol), as long as they satisfy the hiding and the binding proper-
ties required.

Function Evaluation Phase: Afterwards, P; and P, execute mo on the same
inputs as in the committing phase; w9 is defined by the functionality
((Zl, CQ((EQ)), (1’2, Cl(l’l))) — (fl(xl,.TQ),fQ(.’ﬂl,l'g)). Note that P1 and PQ,
can use their state information from the previous phase in the function eval-
uation phase, too.

Next, we formalize the security definition for a cf-SFE using the real/ideal world
simulation paradigm.

THE REAL WORLD. In each execution, a non-uniform adversary A following
an arbitrary polynomial-time strategy can send messages in place of the cor-
rupted parties (whereas the honest parties continue to follow 7). Let i € {1,2}
be the index of the corrupted party. A real execution of 7 = (m1,72) on in-
puts (x1,x2), auxiliary input z to A and the security parameter A, denoted
by REAL;f7j4$(ZI)E7i(.'I:1,$2, A) is defined as the output of the honest party and the
adversary upon execution of 7.

THE IDEAL WORLD. Let ¢ € {1, 2} be the index of the corrupted party. We define
the ideal world in two steps. During the ideal execution, the honest party sends
its input z3_;, and a uniformly random string r3_; used by the commitment
scheme, to the trusted party. Party P; which is controlled by the ideal adversary
S, called the simulator, may either abort (sending a special symbol 1) or send
input 24, and an arbitrary randomness r; (not necessarily uniform) chosen based
on the auxiliary input z, and P;’s original input ;. Denote by ((z}, ), (z5,74))
the values received by the trusted party. If the trusted party receives 1, the
value L is forwarded to both P; and P, and the ideal execution terminates; else
the trusted party computes v; = Cy(z);7]) and vo = Co(xh;1}), respectively.
The TTP sends y3_; to S, which can either continue or abort by sending L to
the TTP. In case of an abort, the TTP sends L to the honest party; otherwise,
it sends ;.

In the second phase, the honest party continues the ideal execution by sending
to the TTP a continue flag, or abort by sending 1. S sends either L or continue
based on the auxiliary input z, P;’s original input, and the value y3_;. If the
trusted party receives 1, the value L is forwarded to both P; and P, and the
ideal execution terminates; else the trusted party computes y1 = f1 (2, %) (resp.

ya = fa(zy,25)).



The TTP sends y; to S. At this point, S can decide whether the trusted party
should continue, and thus send the output ys_; to the honest party, or halt, in
which case the honest party receives L. The honest party outputs the received
value. The simulator S outputs an arbitrary polynomial-time computable func-
tion of (z, z;,y;).

The ideal execution of f on inputs (x1, z2), auxiliary input z to S and security
parameter A\, denoted by IDEAL;ﬁEi'::EQ,S(z),i(xh 22, A) is defined as the output of
the honest party and the simulator.

EMULATING THE IDEAL WORLD. We define a secure commit-first protocol 7 as
follows:

Definition 1 (Commit-first Protocols). Let © and f be as above. We say
that 7 is a commit-first protocol for computing f = (f1, f2) in the presence of mali-
cious adversaries with abort if for every non-uniform probabilistic polynomial-time
adversary A in the real world there exists a non-uniform probabilistic polynomial-
time simulator S in the ideal world, such that for every i € {1,2},

{REAL“*SFE (1, 22, )\)}

_ cf—SFE
™, A(2) i =c {IDEALf,Cl,CQ,S(z),i(xla T2, )\)}

T1,T2,2,A T1,T2,2,A

where x1,29,2z € {0,1}* and X € N.

4 Rate-Limited Secure Function Evaluation

In this section, we introduce three notions for rate-limited secure function eval-
uation (RL-SFE). In particular, we augment the standard notion of two-party
SFE by allowing each player to monitor and/or limit, the number of distinct
inputs (the rate) the other player uses in multiple executions. The idea is that
each party can abort the protocol if the number of distinct inputs used in the
previous executions raises above a threshold n € N. We call this threshold the
rate limit, i.e. the maximum number of allowable executions with distinct inputs.

Naturally, our security definitions for RL-SFE are concerned with multiple
executions of an SFE protocol and reduce to the standard simulation-based
definition (stand alone) for SFE, when applied to a single run. We call a sequence
of executions of a protocol 7 (11, 12)-limited if party P; (resp. P) can use at
most /1y (resp. ng) distinet inputs in the executions. In this work, we assume
that the executions take place sequentially, i.e. one execution after the other.
We emphasize that the inputs used by the parties in each execution can depend
on the transcripts of the previous executions, but honest parties will always use
fresh randomness in their computation.

We provide three security definitions for rate-limited SFE: (i) rate-hiding,
(ii) rate-revealing and (iii) pattern-revealing. In a rate-hiding RL-SFE, at the
end of each execution, the only information revealed to the parties (besides the
output from the function being computed), is whether the agreed-upon rate
limit (threshold) has been exceeded or not, but nothing else. In a rate-revealing
RL-SFE, in addition to the above, parties also learn the current rates (i.e.,



the number of distinct inputs used by their counterpart so far). Finally, in a
pattern-revealing RL-SFE, parties further learn the pattern of occurrences of
each others’ inputs in the previous executions. In particular, each party learns
which executions were invoked by the same input and which ones used different
ones, but nothing else.

HiGH LEVEL DESCRIPTION. Let f = (f1, f2) be a pair of polynomial-time func-
tions such that f; is of type f; : {0,1}* x{0,1}* — {0,1}*. Consider an arbitrary
number £ of sequential executions of two-party SFE protocol 7 for evaluating f
on parties’ inputs. During the j-th execution, party P; has input z] and should
learn y! = fi(2],3). We will define rate-limited SFE in the general case where
both parties are allowed to change their input in each execution. The case of
oracle attacks and secure metering, where one party’s input is fixed and the
other party’s input changes, are found as a special case. (In the case of secure
metering one can also think that a change in the service provider’s input reflects
a software update.)

In the ideal world, during the j-th execution, each party sends its input to a
trusted authority. The following is then performed for both ¢ = 1,2. The trusted
party checks whether value 2 was already sent in a previous execution; in case it
was not, a new entry (x{ ,7) is stored in an initially empty set X;. Otherwise, the
index j' < j corresponding to such input is recovered. Whenever #4&; exceeds
n; the trusted party aborts. Otherwise, the current outputs y; = f;(«],x}) are
computed. Finally: (i) in the rate-hiding definition party P; learns only yf ; (i)
in the rate-revealing definition party P; learns also #X3_;, i.e. the (partial)
total number of distinct inputs used by Ps_; until the j-th execution; (iii) in the
pattern-revealing definition party P; learns j', i.e. the index corresponding to the
query where x] was asked for the first time. Note that if the rate is exceeded,
the trusted party aborts here, but, equivalently, we could simply ignore this
execution and still allow to query previous inputs in subsequent executions.

We formalize the above intuitive security notions for all three flavors using the
simulation-based ideal/real world paradigm. We first review the real execution
which all three notions share.

THE REAL WORLD. In each execution, a non-uniform adversary A following an
arbitrary polynomial-time strategy can send messages in place of the corrupted
party (whereas the honest party continues to follow 7). Let i € {1,2} be the index
of the corrupted party. The j-th real execution of 7 on inputs (27, z3), auxiliary
input 27 to A and security parameter \, denoted by REAL;"A(zj),i(:E{, xé, A)j is
defined as the output of the honest party and the adversary in the j-th real exe-
cution of 7. We denote by REAL;‘,JL‘(Z)J.(xl7 X2, A, £) the accumulative distribution
at the end of the /-th execution, i.e.,

n _ n 1 .1 n VAW
REALZ 4(5),i(X1,X2, A, £) = REALZ g1y (@1, T3, A) 15+ - -, REALL 4,0y (27,25, A)e

z),i

where x; = (21,...,2), xo = (z3,...,2%) and z = (2},..., 2%).

THE IDEAL WORLD. The trusted party keeps two sets &7, and X5 initially set
to 0. Let ¢ € {1,2} be the index of the corrupted party. During the j-th ideal



execution, the honest party sends its input to the trusted party. Party P;, which
is controlled by the ideal adversary S, called the simulator, may either abort
(sending a special symbol L) or send input :v’ to the trusted party chosen based
on the auxiliary input 27, P;’s orlgmal 1nput xz, and its view in the previous
J — 1 ideal executions. Denote with (xl ,x2 J) the values received by the trusted
party (note that if ¢ = 2 then 2 = 27).

If the trusted party receives L, the value L is forwarded to both P, and P,
and the ideal execution terminates; else when the trusted party receives xllj as
the first party’s input, it checks whether an entry (:c'f ,7") € Xy already exists; if
so, it sets J; = j'. Otherwise, it creates a new entry (x&j,j), adds it to X;, and
sets J; = j. An identical procedure is applied to input of the second party x’Qj to
determine an index Js. At the end of the j-th ideal execution if o1 := #X; >
or o9 1= #X5 > ny, the value L is forwarded to both P, and P2 and the ideal
execution terminates. Otherwise, the pair (y?,13) = (f1(z?,25), fo(2?, 2)) is
computed.

At this point, the ideal executions will be different depending on the variant
of RL-SFE being considered.

Rate-Hiding The trusted party forwards to the malicious party F; the output
y!. At this point, S can decide whether the trusted party should continue,
and thus send the pair y3_; to the honest party, or halt, in which case the
honest party receives 1.

Rate-Revealing The trusted party forwards to the malicious party F; the pair
(y!,05-;). At this point, S can decide whether the trusted party should
continue, and thus send the pair (yg_i,oi) to the honest party, or halt, in
which case the honest party receives 1.

Pattern-Revealing The trusted party forwards to the malicious party P; the
pair (y],J3—;). The integer 1 < J;_; < j represents the index of the first
execution where the input a:?,;_i has been used. At this point, S can decide

whether the trusted party should continue, and thus send the pair (ygﬂ-, Ji)
to the honest party, or halt, in which case the honest party receives L.

The honest party outputs the received value. The Simulator S outputs an arbi-
trary polynomial-time computable function of (zj z;, Toyl).

The j-th ideal execution of f on inputs (whmz) auxiliary input z/ to S
and security parameter A, denoted by IDEALY S( Yy (2,2}, \); is defined as the

output of the honest party and the simulator in the above j-th ideal execution.
Here, X € {RH RR, PR} determines the flavor of rate-limited SFE. We denote

by IDEALf S( )i (x1,X2, A, £) the accumulative distribution at the end of the ¢-th
execution, i.e.,

IDEALY () (X1, X2, A, £) = IDEALT S0y (21,2, A1, -, IDBALT 0 (2, 25, \)e
where x; = (21,...,2), xo = (z3,...,2%) and z = (2},..., 2%).

EMULATING THE IDEAL WORLD. Roughly speaking, ¢ sequential executions of
a protocol 7 are secure under the rate limit 1 = (1, ny) if the real executions



can be simulated in the above mentioned ideal world. More formally, we define
a secure (111, 12)-limited protocol 7 as follows:

Definition 2 (RL-SFE). Let m and f be as above, and consider £ = poly()\)
sequential executions of protocol w. For X € {RH,RR,PR}, we say protocol
is a secure X n-limited SFE for computing f = (f1, f2), in presence of malicious
adversaries with abort with n = (1, n.), if for every non-uniform probabilistic
polynomial-time adversary A there exists a non-uniform probabilistic polynomial-
time simulator S, such that for every i € {1,2},

{REAL;L’A(Z)’Z-(Xl, X2, A, 6)} =, {IDEAL?:S)((Z)’i(Xl, X2, A,E)}

X1,X2,%Z,A X1,X2,Z,A

where X1,%2,2z € ({0,1}*)¢, such that |x1[j]| = |x2[j]| for all j, and X € N.

It is easy to see that the rate-hiding notion is strictly stronger than the rate-
revealing notion, which in turn is strictly stronger than the pattern-revealing
notion. A proof to this fact can be found in the full version [I1].

5 Compilers for Rate-Limited SFE

In this section, we introduce our three compilers to transform an arbitrary (two-
party) c¢f-SFE protocol into a rate-limited protocol for the same functionality.

Our first compiler Yry achieves the notion of rate-hiding RL-SFE through the
use of general ZK proofs and (additively) homomorphic public key encryption.
Our second compiler Yrg achieves the notion of rate-revealing RL-SFE and is
more efficient in that it needs to prove a simpler statement and does not rely
on homomorphic encryption. Our last compiler ¥pr introduces essentially no
overhead and avoids the use of general ZK proofs, yielding our third notion of
pattern-revealing RL-SFE.

Let 77 be a two-party (single-run) commit-first protocol for secure function
evaluation of a function f = (fi, f2) (cf. Definition [I). Our compilers get as
input (a description of) 7, together with the rate n = (/1,212), and the number
of executions ¢, and output (a description of) 7y < ¥(mys, n,£). The compilers
are functionality preserving, meaning that protocol 7 repeatedly computes the
same functionality f.

Due to space limitations, in this section we only provide a full description
and analysis for the rate-revealing compiler. The other two compilers (rate-hiding
Urn, and pattern-revealing Wpr) are only covered at a high level here. The com-
plete descriptions and analyses are given in the full version of this paper [I1].

5.1 A Rate-Hiding Compiler

THE OVERVIEW. We naturally divide the cf-SFE protocol into a committing
phase and a function evaluation phase and introduce a new phase in between
where P, and P» convince each other that they have not exceeded the rate limit.



The latter step is achieved as follows. Whenever one of the parties is going to use
a “fresh” input, it transmits an encryption of “1” to the other party; otherwise,
it sends an encryption of “0”. The encryptions are obtained using a CPA-secure
(homomorphic) PKE scheme (G, E, D). Then, the party proves in ZK that “the
last commitment transmitted hides an already used input and it encrypted 0,
or the last commitment transmitted hides a fresh input and it encrypted 1 and
the sum of all the plaintexts, encrypted until now, does not exceed the rate”. A
successful verification of this proof convinces the other party that the rate is not
exceeded, leaking nothing more than this. We instantiate such ZK proofs for the
OPE problem in Section[7} Notice that to generate such a proof each party needs
to store all the ciphertexts transmitted to the other player, together with all the
inputs and randomness used to generate the previous commitments. On the
other hand, to verify the other party’s proof, one needs to store the ciphertexts
and the commitments received in all earlier executions. The remainder of the
messages exchanged during each execution, however, can be discarded.

Theorem 1. Let ¢ be a cf-SFE securely evaluating function f and (é, E, D) be
a CPA-secure PKE scheme. Then Ty <— Wrn(my, 74,12, ¢) is a secure rate-hiding
(nq,ne)-limited protocol for the function f.

5.2 A Rate-Revealing Compiler

THE OVERVIEW. Once again, we divide the cf-SFE protocol into a committing
phase and a function evaluation phase and introduce a new phase in between
where P; and P» convince each other that the current input has already been
used in a previous execution. Note that the parties need to maintain a state
variable I collecting the input commitments sent and received in all earlier
executions. During the j-th execution, given a list of input commitments (and
the corresponding inputs and randomness) for all the previous executions, party
P; can prove in ZK that the input commitment generated in the current execution
is for the same value as one of the commitments collected previously. Party Ps_;
also needs to collect the same set of commitments in order to verify the statement
proven by P;. The remainder of the messages exchanged during each execution,
however, can be discarded. We note that while in general efficient ZK proofs of
repeated inputs might be hard to find, for discrete-logarithm based statements,
there exist efficient techniques for proving such statements. We refer the reader
to the full version for more details. We also instantiate such ZK proofs for the
OPE problem in Section [7] A complete description of the compiler is depicted
in Figure [1] We prove the following result:

Theorem 2. Let wy be a cf-SFE securely evaluating function f. Then Ty
Urr(T s, 1,9, 0) s a secure rate-revealing (nu,mnp)-limited protocol for f.

5.3 A Pattern-Revealing Compiler

In this section, we introduce a more efficient compiler Wpr for designing rate-
limited SFE. Given as input a cf-SFE protocol, our compiler Ypgr outputs a



Rate-Revealing Compiler Ugg:

Given as input a commit-first protocol ¢ = (71'}7 71'?), arate 1 = (21, /12), and a number of executions
¢, the compiled protocol 7y is made of three phases, described below. Party P1 and P> keep the
state variables I, I'; := 0, respectively. For each execution j € [¢], Ty proceeds as follows.

Committing Phase: Parties P; and P, holding respectively inputs :L{ and 3, run the protocol
77,1‘ yielding the output (v} = C(pk,, #3;73), 7 = C(pky,2;79)).

Proof of Repeated-Input Phase: Consider the following language: L; = {r €
Cok; = A(x,mr')st.y = Cpk;, ;1) A Clpky,x;7r") € Iz_;}, and let (Pr,Vr) be a ZK
proof system for £;. The following is executed for all i € {1,2}. When the input =] of party
P; is not fresh—i.e., it has already been used in a previous execution—PF; plays the role of
the prover in (Pr,Vr). When the input z! is fresh, P; just forwards the empty string e. Also,
party P; plays the role of the verifier in (Pr,Vr) (with Ps_; being the prover and L3_; being
the underlying language). If the value € is received or if the verification of the proof fails, P;
updates the rate by letting s; := 7; — 1 and the state by letting I := I3 U {7}_;}. Otherwise,
if the verification is successful, the state and rate information will not be modified.

Protocol Emulation Phase: P; and P> run the protocol 71'? on the same inputs as in the com-
mitting phase, yielding the output (y7,y3).

Fig.1: A compiler for rate-revealing rate-limited SFE.

weaker form of rate-limited SFE where each party not only learns the current
rate for its counterpart during each execution, but also the pattern of already
used inputs. The main advantage is that this new compiler adds very little
overhead to the original cf-SFE.

THE OVERVIEW. The idea is as follows. Besides their input, each party also
stores a secret key for a PRF (a different key for each party). Before invoking
the commit-first SFE protocol, each player generates the randomness it needs
for the committing phase by applying the PRF on the chosen input for this
execution. With this modification in place, the committing phase for each party
becomes deterministic. If a party uses the same input in two executions, the two
commitments its counterpart receives will be identical. As a result, to prove a
repeated-input, each party can compare the commitment for the current execu-
tion with those used in the previous ones, and determine if the input is new or
being repeated (hence also revealing the pattern). Note that the commitments
still provide the required hiding and binding properties. The only overhead im-
posed by this compiler is the application of a PRF to generate the randomness
for the committing phase.

Theorem 3. Let wy be a c¢f-SFE securely evaluating function f. Then Ty
Upr(ms, 1, N, L) is a secure pattern-revealing (i, nyp)-limited SFE for f.

6 Making the Compilers Stateless

One drawback of the compilers described in the previous section is that both
P; and P; need to maintain state. To some extent, this assumption is necessary.
It is not too hard to see that RL-SFE is impossible to achieve if neither party
is keeping any information about the previous executions (we omit a formal



argument of this statement). However, as discussed earlier, in many natural
client-server applications of SFE in the real world, it is reasonable to assume
that the servers keep state, while the clients typically do not.

In this section, we show how to modify the compilers from Section [5|in such
a way that only one of the parties needs to keep state. Our solution is efficient
and works for all three compilers we discussed earlier. Throughout this section,
we assume P; is the client and P, is the server. Server Py receives no output (as
it is usually the case in the client-server setting) and wants to enforce the rate
limit n for the client. Although P; does not maintain any state, it needs to make
sure that P, handles the rate, honestly. On the other hand, the server also needs
to be convinced that the client is not cheating, by exceeding the rate limit n.

THE OVERVIEW. Note that in the stateful versions of our compilers, P; needs
to keep state in order to generate a ZK proof of repeated inputs, and verify the
corresponding statement being proven by Ps. Since we are only enforcing the
rate for P;, we can eliminate the latter ZK proofs, and focus on the first one.
Although our approach is general, for the sake of simplicity, we describe it in
relation to our rate-revealing compiler from Section [5.2] The same idea can be
applied to make the other compilers stateless. The basic idea is simple: We ask
the server to store the list of all the commitments previously sent by P sends
the list to the client, during each run. For this simple approach to work, we need
to address several important issues:

— For the client to learn the current rate and the previously queried inputs
before each execution, it needs to store these values on the server side in a
secure way. This can be easily addressed by having P; encrypt the message
and randomness for each commitment (using a symmetric-key encryption)
and send it along with the commitment itself. P; will just keep the private
key for the encryption scheme.

— The client needs to verify that the list of commitments it receives from the
server are the original commitments it sent in the previous executions. To do
S0, in each run P; computes a MAC ¢ of the string obtained by hashing all
the commitments (i.e., the concatenation of the list it obtains from the server
and the one it creates in the current execution) and sends it to the serverﬁ
In each execution, it requests this MAC, the list of commitments along with
the ciphertext storing the inputs and random coins from the server. Due to
the unforgeability of the MAC, the server will only be able to use a correct
list of commitments, previously issued and MACed by the client itself.

— It may seem that the above solution still allows the server to cheat and only
send a subset of the commitment list along with a tag generated for that
subset in one of the earlier executions, to the client. This would potentially
make the input to the current execution look “new” and allow the server to
decrease the rate. The client would not be able to detect this attack since it
does not keep state and does not know the total number of commitments.

4 To save on computation, one could let the client obtain the previous hash value and
compute the new one via incremental hashing [9/4].



However, a more careful inspection shows that the above does not really
constitute an attack. In fact, the tag ¢ already binds the current rate to the
current list of commitments, and prevents the server from decreasing the
rate in this fashion. In particular, it is hard for the server to cook-up a state
such that the verification of the tag is successful, and the client will think
its rate is already exceeded when it is not. Essentially, coming up with such
a state requires to find a collision in H or forging a tag for a fake list of
commitments.

A detailed description of the compiler ¥rr and a proof of the following theorem
are given in our full version [I1].

Theorem 4. Let 7y be a ¢f-SFE securely evaluating function f = (f1,—) and
(G, T,V) be a UNF-CMA MAC scheme, (é, E, D) be a CPA-secure PKE scheme,
and H being picked from a family of CRHFs. Then, Ty <+ Wrr(my, 1, L) is a
secure rate-revealing n-limited protocol for f.

7 Rate-Limited OPE

Hazay and Lindell [I6] design an efficient two-party protocol for oblivious poly-
nomial evaluation (OPE) with security against malicious adversaries. In an OPE
protocol, the first party holds a value ¢ while the second party holds a polyno-
mial p of degree d. Their goal is to let the first party learn p(t) without reveal-
ing anything else. The protocol takes advantage of an additively homomorphic
encryption scheme (Paillier’s encryption) and efficient ZK proofs of a few state-
ments related to the encryption scheme. While the authors (only) prove security
against malicious adversaries, we observe that, with a small modification, their
construction is indeed a commit-first protocol for OPE as well.

FIRST PARTY’S COMMITMENT. Consider an additively homomorphic encryption
scheme (G, E,D). The first few steps performed by the first party (the party
holding the value t) are as follows: (i) it runs the key generation for the en-
cryption scheme to generate a key pair (pk,sk) < G(1*), accompanied by a
ZK proof of knowledge of the secret key; (ii) then, it encrypts powers of ¢, i.e.
E(pk, ), E(pk, t2),...,E(pk,t?), and sends the resulting ciphertexts along with a
ZK proof of the validity of the ciphertexts to the other party.

We observe that sending E(pk,t) and a ZK proof of its validity constitutes a
commitment by the first party to its input ¢. This commitment scheme realizes
the ideal functionality of the first phase in our definition of commit-first proto-
cols. (Recall that this means the simulator can extract both the input and the
randomness used to generate the commitment.) In particular, a careful inspec-
tion of the security proof of [16] reveals that the simulator can extract both ¢
and the randomness used to encrypt it during the simulation. Extracting the
randomness is possible since in Paillier’s encryption scheme, given the secret key
sk and a ciphertext ¢, one can recover both the randomness and the message.

SECOND PARTY’S COMMITMENT. The commitment of the second party to its
input polynomial is slightly more subtle, and requires a small modification to the



original design. In the first few steps, the second party does the following: (i) it
runs the key generation to generate a key pair (pk’, sk’) < G(1*), accompanied by
a ZK proof of knowledge of the secret key; (ii) it computes ((E(pk’, q1), E(pk’, p—
q1)), .-, (E(pk’, gs), E(pk’, p—gs)) where ¢;’s are random polynomials of degree d
for some security parameter s; (iii) it sends all the ciphertext pairs along with ZK
proofs of the fact that the homomorphic addition of every pair encrypts the same
polynomial (i.e., p), to the first party. We need to slightly modify this step to
realize our ideal commitment functionality: For the first pair of ciphertexts, the
second party will also include a ZK proof of validity of (E(pk’, q1), E(pk’,p—q1)).

The pair of ciphertexts (E(pk’,q1), E(pk’,p — ¢1)) and the accompanied ZK
proof of their validity, constitute the commitment by the second party to its
input polynomial p. Once again, we note that the simulator in the proof is able
to extract g1, p, and the randomness used in the two encryptions, due to the
randomness recovering property of Paillier’s encryption. The proof of security
provided in [16] can be easily modified to show the commit-first property of the
above-mentioned variant of their OPE construction.

Claim. The modified oblivious polynomial evaluation protocol of [16] is a commit-
first SFE with security against malicious adversaries.

7.1 ZK Proofs for Rate-Limited OPE

We now explain how to derive rate-limited OPE protocols from the scheme
of [16], by giving concrete instantiation of our compilers from Section [5| and @

RATE-REVEALING OPE. Consider first our rate-revealing compiler from Fig-
ure [I} A proof of repeated-input, here, is equivalent to proving a statement for
the following language:

£ () — (pk,é,c1,...,¢,) s N7 s.t. (pk,sk) < G(1*,7) and
") = (D(sk, &) = D(sk,c1) V...V D(sk, &) = D(sk, c,)) ’

where the ciphertexts cq,...,c, are encryptions of the inputs for n previous
executions of the OPE protocol. The ciphertext ¢ is the encryption of the input
for the current execution.

Such a proof can be obtained by exploiting ZK proofs for the languages
L7 and L™ defined in [16]. Informally, a valid proof of a statement in the
language L£7°'° says that a ciphertext is an encryption of 0. Language L™
allows us to prove that given three ciphertexts, one of them decrypts to the
product of the other two underlying plaintexts. Denote the plaintext for each ¢;
by m; and the one for ¢ by m. The high level idea is to have the prover compute
E(pk, (1 — mq) - - (M — my,)), prove correctness of this computation and show
that the final ciphertext is an encryption of zero. This clearly ensures correctness
when the current input equals one of the inputs used in previous executions. See
the full version [I1]] for a complete description.

RATE-HIDING OPE. In the rate-hiding case, besides a standard proof of the
statement “a ciphertext is a valid encryption of bit 4", the prover also needs



to prove that: (i) “the current commitment corresponds to a fresh input”; (ii)
“given a collection of ciphertexts, the sum of the corresponding plaintexts is
below some threshold n”.

Note that a proof for the first statement is equivalent to proving that an
element is not in L£°P® (denoted by L£°P¢). Moreover, we show that a proof for
the second statement can also be reduced to a proof of membership in £°P¢ by
relying on the homomorphic properties of the underlying encryption scheme. It
remains to show ZK proofs for £°PC. It is possible to do so using range proofs,
but we show a simple and more efficient construction.

Using techniques of [I0], the proofs discussed above can be combined (via
conjuctive/disjunctive formulas) to generate a ZK proof of membership for the
language used in our rate-hiding compiler. A detailed description of the compiler
and the proof of the theorem below is given in this paper’s full version [I1].
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