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Abstract. Homomorphic signatures are primitives that allow for pub-
lic computations for a class of specified predicates over authenticated
data. An enhanced privacy notion, called complete context-hiding secu-
rity, was recently motivated by Attrapadung et al. (Asiacrypt’12). This
notion ensures that a signature derived from any valid signatures is per-
fectly indistinguishable from a newly generated signatures (on the same
message), and seems desirable in many applications requiring to compute
on authenticated data. In this paper, we focus on two useful predicates
– namely, substring quotation predicates and linear dependency predi-
cates – and present the first completely context-hiding schemes for these
in the standard model. Moreover, our new quotable signature scheme is
the first such construction with signatures of linear size. In comparison
with the initial scheme of Ahn et al. (TCC 2012), we thus reduce the
signature size from O(n logn) to O(n), where n is the message size. Our
scheme also allows signing messages of arbitrary length using constant-
size public keys.

Keywords. Homomorphic signatures, provable security, privacy, un-
linkability, standard model.

1 Introduction

The recent years, much attention has been paid to homomorphic cryptographic
primitives, which make it possible to publicly compute over encrypted [24, 34]
or signed [30, 10, 12] datasets.

In the latter case, anyone holding signatures {σi = Sign(sk,mi)}ki=1 on mes-
sages {mi}ki=1 can publicly derive pairs (m,σ) = Evaluate(pk, {(mi, σi)}ki=1, f)
such that Verify(pk,m, σ) = 1, where m = f(m1, . . . ,mk) for certain functions
f . This has been possible for arithmetic functions [10, 22, 11, 12], logical predi-
cates [33, 26, 14, 15, 13] and other kinds of algebraic signatures [32, 8, 27, 28]. In
the case of arithmetic manipulations, homomorphic signatures notably allow
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untrusted remote parties (e.g. storage servers in cloud computing services) to
authenticate their calculations on the clients’ data. They also proved useful to
prevent pollution attacks in network coding [10, 3, 22].

At TCC 2012, Ahn et al. [4] defined the general notion of P -homomorphic
signature – for a predicate P – that captures all the aforementioned forms of ho-
momorphic signatures. Specifically, it allows anybody who sees a signature on a
message m to publicly obtain signatures on messages m′ such that P (m,m′) = 1.
Informally, a P -homomorphic signature is said unforgeable when a signature on
m only makes it possible to publicly derive signatures on messages m′ such that
P (m,m′) = 1. Ahn et al. also formalized a strong privacy property, called strong
context hiding, which mandates that original and derived signatures be uncon-
ditionally unlinkable.

Quite recently, Attrapadung, Libert and Peters [6] suggested even stronger
privacy notions, of which the strongest one is termed complete context-hiding
security. The difference between the definition of Ahn et al. [4] and the one of
[6] lies in that the former requires the unlinkability of derived signatures to only
honestly generated signatures. In contrast, the stronger complete context hiding
property [6] requires unlinkability with respect to any valid signatures, including
those signatures that might have been somehow maliciously re-randomized by
the adversary. Not achieving this kind of security may raise some concerns in
certain applications such as collusion attacks in network coding, as motivated
in [6].

So far, in the standard model, complete context-hiding security has been
achieved for only one specific kind of predicates, namely subset predicates [6].
For other predicates, completely context-hiding constructions are currently lack-
ing. In particular, this is true for substring quotations – which were addressed by
the main construction of [4] – and linear homomorphisms, that have been exten-
sively studied in recent years [10, 22, 11, 5, 16, 17, 20]. This paper aims at filling
these gaps by proposing the first completely context-hiding schemes for these
predicates. Along the way, we also improve upon the best previously achieved
efficiency for quoting predicates.

1.1 Related Work

Homomorphic signatures were first suggested by Desmedt [19] and further stud-
ied by Johnson, Molnar, Song and Wagner [30]. Later on, they were considered
by Boneh, Freeman, Katz and Waters [10] who used them to sign linear sub-
spaces so as to thwart pollution attacks in network coding. In the random oracle
model, Boneh et al. [10] described a pairing-based scheme with short per-vector
signatures. In a follow-up work, Gennaro, Katz, Krawczyk and Rabin [22] gave
an RSA-based linearly homomorphic system [22] over the integers in the random
oracle model. Boneh and Freeman [11] suggested to work over binary fields us-
ing lattices. They also motivated a notion, termed weak privacy, which requires
derived signatures not to leak the original dataset they were derived from.

Constructions in the standard model came out in two independent papers
by Attrapadung and Libert [5] and Catalano, Fiore and Warinschi [16, 17]. The
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construction of [5] was extended by Freeman [20] who defined a framework for
the design of linearly homomorphic signatures satisfying a stronger definition
of unforgeability. The latter framework of [20] was notably instantiated under
standard assumptions like RSA, Diffie-Hellman and, more efficiently, the Strong
Diffie-Hellman assumption. In the random oracle model, Boneh and Freeman
[12] designed lattice-based homomorphic signatures for multivariate polynomial
functions. Except [10, 5], all the aforementioned constructions are only weakly
context-hiding in the sense of [11].

Strongly context-hiding P -homomorphic signatures were recently given by
Ahn et al. [4] for both quoting and subset predicates. In [4], linearly homomor-
phic signatures [10, 11, 16, 20] were also shown to imply P -homomorphic signa-
tures allowing for the computation of weighted averages and Fourier transforms.
It was pinpointed in [4] that the Boneh et al. [10] system is strongly context-
hiding thanks to the uniqueness of its signatures (in the random oracle model).

In the standard model, the construction of Attrapadung and Libert [5] can
be proved strongly context hiding as well (unlike the schemes of [16, 17, 20])
but, as discussed in [6], it is demonstrably not completely context-hiding. At-
trapadung et al. [6] came close to filling this gap by describing a more efficient
strongly context-hiding realization simultaneously satisfying another privacy no-
tion which had been elusive so far. Still, their use of the dual system technique
[36, 23] prevented them from reaching the desired complete context-hiding level.
In the standard model, no completely context-hiding linearly homomorphic sig-
nature has ever been reported to date.

1.2 Our Contributions

Linear-Size Homomorphic Signatures for Quoting Substring. Given
a signature on a message m, quotable signatures allow for the public deriva-
tion of signatures on any substring of m. Ahn et al. [4] gave a system where
signatures have quasi-linear size: for a message consisting of n symbols, each
signature contains O(n log n) group elements1. Their construction is known to
be only strongly context-hiding (in the sense of [4]) and selectively unforgeable
in the random oracle model. It was argued that their scheme can be modified so
as to be proved fully unforgeable in the standard model using the dual system
encryption technique of Waters [36] (or, more precisely, its signature analogue
[23]). The latter inherently involves two distinct distributions of signatures satis-
fying the verification algorithm. The very existence of an alternative distribution
of valid signatures implies that the resulting system can hardly be completely
context-hiding.

The first contribution of this paper is a quotable signature scheme whose
design principle is very different from [4]. The new scheme is proved fully un-
forgeable in the standard model and also turns out to be the first completely

1 In the signature derivation algorithm of [4], two kinds of signatures can be produced.
Apart from Type I signatures, which are distributed as original signatures, Type II
signatures have O(logn)-size signatures but cannot be quoted any further.
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context-hiding quotable signature. Moreover, it improves upon the worst-case
efficiency of [4] in that a n-symbol message can be signed using O(n) group ele-
ments.

Our construction builds on the structure-preserving signature of Abe, Har-
alambiev and Ohkubo [1], which is used to sign individual message symbols. An
important property of the structure-preserving signature in [1] is that certain
signature components can serve as a commitment to the message. Our quotable
signature exploits this property to link signatures on individual symbols: each
symbol is signed with a commitment to the next symbol. Quotable signatures
are then obtained as a sequence of perfectly hiding commitments to these under-
lying signatures and non-interactive randomizable arguments of their validity.

Beyond its asymptotically shorter signatures, our scheme also allows sign-
ing messages of arbitrary length using a constant-size public key. In contrast,
[4] requires the key generation algorithm to define a logarithmic bound on the
maximal number of symbols in messages to be signed.

Completely Context-Hiding Linearly Homomorphic Signatures. We
provide the first completely context-hiding linearly homomorphic signature in
the standard model. So far, the random-oracle-based construction of Boneh et
al. [10] was the only linearly homomorphic signatures satisfying that level of
privacy. The scheme of [5] is strongly context-hiding in the standard model but,
as pointed out in [6], it falls short of the enhanced privacy level advocated by [6].

To bypass the latter limitation – which seems inherent to all signature schemes
[5, 23] based on the dual system technique – we take further advantage of the
malleability properties [7, 21] of Groth-Sahai proofs [25] and build on a linearly
homomorphic signature proposed by Attrapadung et al. [6]. The latter scheme
is only weakly context-hiding (i.e., the original message remains hidden as long
as the original signature is not given) as its signatures contain components that
cannot be randomized at each derivation and thus carry information about the
original signatures. Our idea is to replace these signature components by per-
fectly hiding commitments to these values. The commitments are accompanied
with non-interactive (randomizable) witness indistinguishable arguments that
committed values satisfy appropriate algebraic relations.

One difficulty to solve is that, in the underlying weakly context-hiding con-
struction [6], the “problematic” signature components are actually exponents
that the reduction has to compute in the security proof. When Groth-Sahai
proofs are used in their extractable mode, committed exponents cannot be fully
extracted from their commitments. To solve this problem, we need to modify
the weakly context-hiding scheme of [6] in such a way that its signatures only
consist of group elements. We were able to do this at the expense of relying on a
slightly stronger assumption in the security proof: instead of the standard Diffie-
Hellman assumption, the unforgeability now relies on the Flexible Diffie-Hellman
assumption [29], which is still a simple assumption.
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2 Background

2.1 Definitions for Homomorphic Signatures

Definition 1 ([4]). Let M be a message space and 2M be its powerset. Let
P : 2M ×M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [4], P i(M) is the set of messages derivable
from P i−1(M), where P 0(M) := {m′ ∈M | P (M,m′) = 1}. Finally, P ∗(M) :=
∪∞i=0P

i(M) denotes the set of messages derivable from M by iterated derivation.

Definition 2 ([4]). A P-homomorphic signature for a predicate P : 2M×M→
{0, 1} is a triple of algorithms (Keygen,SignDerive,Verify) with the following
properties.

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a key pair
(sk, pk). As in [4], the private key sk is seen as a signature on the empty
tuple ε ∈M.

SignDerive
(
pk, ({σm}m∈M ,M),m′

)
: is a possibly randomized algorithm that takes

as input a public key pk, a set of messages M ⊂ M, a corresponding set of
signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0, it
returns ⊥. Otherwise, it outputs a derived signature σ′

Verify(pk, σ,m): is a deterministic algorithm that takes as input a public key pk,
a signature σ and a message m. It outputs 0 or 1.

Note that the empty tuple ε ∈ M satisfies P (ε,m) = 1 for each message
m ∈ M. Similarly to [4], we define the algorithm Sign(pk, sk,m) that runs2

SignDerive(pk, (sk, ε),m) and returns the output. For any M = {m1, . . . ,mk} ⊂
M, we define Sign(sk,M) := {Sign(sk,m1), . . . ,Sign(sk,mk)} . Also, we write
Verify(pk,M, {σm}m∈M ) = 1 to express that Verify(pk,m, σm) = 1 for each
m ∈M .

Correctness. It is required that, for all key pairs (pk, sk)← Keygen(λ), for any
message set M ⊂ M, any message m′ ∈ M such that P (M,m′) = 1, the fol-
lowing conditions must be satisfied: (i) SignDerive(pk, (Sign(sk,M),M),m′) 6=⊥;
(ii) Verify

(
pk,m′,SignDerive(pk, (Sign(sk,M),M),m′)

)
= 1.

Definition 3 ([4]). A P -homomorphic signature (Keygen,SignDerive,Verify) is
said unforgeable if no probabilistic polynomial-time (PPT) adversary has non-
negligible advantage in this game:

1. The challenger generates (pk, sk)← Keygen(λ) and gives pk to the adversary
A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.

- Signing queries: A chooses a message m ∈ M. The challenger replies
by choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a
table T . The handle h is returned to A.

2 The intuition is that any message can be derived when the original message contains
the signing key.
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- Derivation queries: A chooses a vector of handles ~h = (h1, . . . , hk) and
a message m′ ∈M. The challenger retrieves the tuples {(hi,mi, σi)}ki=1

from T and returns ⊥ if one of these does not exist. Otherwise, it defines
M := (m1, . . . ,mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) = 1,
the challenger runs σ′ ← SignDerive

(
pk, ({σm}m∈M ,M),m′

)
, chooses a

handle h′, stores (h′,m′, σ′) in T and returns h′ to A.
- Reveal queries: A chooses a handle h. If no tuple of the form (h,m′, σ′)

exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. A outputs a pair (σ′,m′) and wins if: (i) Verify(pk,m′, σ′) = 1; (ii) If M ⊂
M is the set of messages in Q, then m′ 6∈ P ∗(M).

Ahn et al. [4] formalized a strong notion of privacy that captures the inability of
distinguishing derived signatures from original ones, even when these are given
along with the private key. In [4], it was shown that, if a scheme is strongly con-
text hiding, then Definition 3 can be simplified by only providing the adversary
with an ordinary signing oracle.

As noted in [6], specific applications may require an even stronger definition.
In particular, the following definition makes sense when homomorphic signa-
ture schemes are randomizable and/or the verification algorithm accepts several
distributions of valid-looking signatures.

Definition 4 ([6]). A homomorphic signature (Keygen,Sign,SignDerive,Verify)
is completely context hiding for the predicate P if, for all key pairs (pk, sk)←
Keygen(λ), for all message sets M ⊂M∗ and m′ ∈M such that P (M,m′) = 1,
for all {σm}m∈M such that Verify(pk,M, {σm}m∈M ) = 1, the following distribu-
tions are statistically close

{(sk, {σm}m∈M , Sign(sk,m′))}sk,M,m′ ,{(
sk, {σm}m∈M , SignDerive

(
pk, ({σm}m∈M ,M),m′

))}
sk,M,m′ .

2.2 Hardness Assumptions

We consider bilinear maps e : G × G → GT over groups of prime order p. In
these groups, we rely on the following hardness assumptions.

Definition 5 ([9]). The Decision Linear Problem (DLIN) in G consists
in distinguishing the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz),
with a, b, c, d R← Z∗p, z R← Z∗p. The Decision Linear Assumption is the in-
tractability of DLIN for any PPT distinguisher D.

We also use a weaker variant of an assumption used in [29, 31]. The latter is a
variant of the Diffie-Hellman assumption, which posits the infeasibility of finding
a pair (gµ, gab·µ) given (g, ga, gb) ∈ G3.

Definition 6. The Flexible Diffie-Hellman Problem (FlexDH) in G, is
given (g, ga, gb), where a, b R← Zp, to find a triple (gµ, ga·µ, gab·µ) ∈ G3 such
that µ 6= 0.
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The FlexDH assumption is known to imply the intractability of distinguishing
gabc from random given (g, ga, gb, gc). For this reason, it can be seen as a simple
assumption.

Finally, we also use the following q-type assumption.

Definition 7 ([1]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃

)
∈ G8 as well as a set of

q tuples (zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), (1)

e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),

to find a new tuple (z?, r?, s?, t?, u?, v?, w?) ∈ G7 satisfying (1) and such that
z? 6∈ {1G, z1, . . . , zq}.

2.3 Structure-Preserving Signatures

Many protocols require to sign elements of bilinear groups while preserving
their structure and, in particular, without hashing them. Abe, Haralambiev and
Ohkubo [1, 2] (AHO) described such a signature. The description below assumes
common public parameters pp =

(
(G,GT ), g

)
consisting of symmetric bilinear

groups (G,GT ) of prime order p > 2λ, where λ ∈ N and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
per message to be signed, choose generators Gr, Hr

R← G. Pick γz, δz
R← Zp

and γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγzr , Hz = Hδz

r and

Gi = Gγir , Hi = Hδi
r for each i ∈ {1, . . . , n}. Finally, choose αa, αb

R← Zp and
define A = e(Gr, g

αa) and B = e(Hr, g
αb). The public key is defined to be

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using the private
key sk = (αa, αb, γz, δz, {γi, δi}ni=1), choose ζ, ρa, ρb, ωa, ωb

R← Zp and com-
pute θ1 = gζ as well as

θ2 = gρa−γzζ ·
n∏
i=1

M−γii , θ3 = Gωar , θ4 = g(αa−ρa)/ωa ,

θ5 = gρb−δzζ ·
n∏
i=1

M−δii , θ6 = Hωb
r , θ7 = g(αb−ρb)/ωb ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7.
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Verify(pk, σ, (M1, . . . ,Mn)): given a signature σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7,
return 1 if and only if these values satisfy the equalities

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏
i=1

e(Gi,Mi)

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏
i=1

e(Hi,Mi).

The scheme is known [1, 2] to be existentially unforgeable under chosen-
message attacks under the q-SFP assumption, where q is the number of signing
queries.

As pointed out in [1, 2], signature components {θi}7i=2 can be publicly re-
randomized so as to obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on
(M1, . . . ,Mn). After each randomization, we have θ′1 = θ1 whereas {θ′i}7i=2 are
uniformly distributed among the set of group elements (θ2, . . . , θ7) for which the
equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) · e(θ3, θ4) and e(Hr, θ

′
5) · e(θ′6, θ′7) =

e(Hr, θ5) · e(θ6, θ7) hold. As a result, {θ′i}i∈{3,6} are statistically independent of
the message and other signature components.

It was also observed [1, 2] that signature components (θ3, θ6) can be used
as a commitment to the message. Under the q-SFP assumption, it is infeasible
to find signatures σ = (θ1, . . . , θ7), σ′ = (θ′1, . . . , θ

′
7) on two distinct messages

M,M ′ such that (θ3, θ6) = (θ′3, θ
′
6). This is true even if the adversary has access

to a signing oracle and obtains signatures on both M and M ′.

2.4 Groth-Sahai Proof Systems

In [25], Groth and Sahai described efficient non-interactive witness indistin-
guishable (NIWI) proof systems that can be based on the DLIN assumption.
In this case, they use prime order groups and a common reference string con-
taining three vectors ~f1, ~f2, ~f3 ∈ G3, where ~f1 = (f1, 1, g), ~f2 = (1, f2, g) for
some f1, f2 ∈ G. To commit to a group element X ∈ G, the prover chooses

r, s, t R← Z∗p and computes ~C = (1, 1, X) · ~f1
r
· ~f2

s
· ~f3

t
. On a perfectly sound

common reference string, we have ~f3 = ~f1
ξ1 · ~f2

ξ2
where ξ1, ξ2 ∈ Z∗p. Commit-

ments ~C = (fr+ξ1t1 , fs+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) are extractable commitments whose
distribution is that of Boneh-Boyen-Shacham (BBS) ciphertexts [9]: committed
values can be extracted using β1 = logg(f1), β2 = logg(f2). In the witness indis-

tinguishability (WI) setting, vectors ~f3 is chosen outside the span of (~f1, ~f2), so

that ~C is a perfectly hiding commitment. Under the DLIN assumption, the two
kinds of CRS are computationally indistinguishable.

To provide evidence that committed variables satisfy a set of relations, the
prover computes one commitment per variable and one proof element per re-
lation. Such efficient NIWI proofs are available for pairing-product equations,
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which are relations of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (2)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (2))
only cost 3 group elements each.

Belenkiy et al. [7] showed that Groth-Sahai proofs are perfectly randomizable.

Given commitments {~CXi}ni=1 and a NIWI proof ~πPPE that committed variables
{X}ni=1 satisfy (2), anyone can publicly (i.e., without knowing the witnesses)

compute re-randomized commitments {~CX ′
i
}ni=1 and a re-randomized proof ~π′PPE

of the same statement. Moreover, {~CX ′
i
}ni=1 and ~π′PPE are distributed as freshly

generated commitments and proof. This property was notably used in [21, 18].

3 Linear-Size Quotable Signatures

In quotable signatures, given a signature on some message, one should only be
able to derive signatures on arbitrary substrings of the original message. The
message space M is also defined as the set of strings M := Σ∗, where Σ is a
set of symbols. The predicate P is univariate (i.e., |M | = 1) and defined to have
P
(
{Msg1},Msg2

)
= 1 whenever Msg2 is a substring of Msg1.

The scheme bears resemblance with the homomorphic signature for subset
predicates of [6] which also builds on structure-preserving signatures. In fact,
the construction is itself a structure-preserving quotable signature as it allows
signing sequences of group elements.

We actually use a variant of the unbounded AHO signature scheme which
allows signing messages of arbitrary length with a public key of fixed size. In [1],
this is achieved by taking advantage of the property called “signature binding”
(and proved in [1, Lemma 3]), which informally says that signature compo-
nents (θ3, θ6) can be used as a commitment to the message: namely, given only
the public key and access to a signing oracle, unless the scheme is existentially
forgeable under chosen-message attacks, it is infeasible to come up with two dis-
tinct messages (M1, . . . ,Mn), (M ′1, . . . ,M

′
n) with corresponding valid signatures

σ = (θ1, . . . , θ7) and σ′ = (θ′1, . . . , θ
′
7) such that θ3 = θ′3 and θ6 = θ′6. This

remains true even if (M1, . . . ,Mn) and (M ′1, . . . ,M
′
n) are both submitted to the

signing oracle during the game. Using this observation, a basic signature scheme
where the message space is G3 can be turned into an “unbounded” structure-
preserving signature, where the signer can sign messages of arbitrary length.
The idea is to use signature components {(θi,3, θi,6)}ni=1 to link adjacent mes-
sage blocks together: each block mi ∈ G is signed along with the (θi−1,3, θi−1,6)
components of the signature on the previous block mi−1 ∈ G. In our scheme, we
proceed in the same way but, unlike [1], we do not encode the total number of
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blocks within the message. This modification allows anyone to quote signatures
by removing portions of the chain in its extremities. In order to prevent illegal
combinations of two different chains, the signer processes the last block mn of
each message (m1, . . . ,mn) by signing it with a pair of random group elements
(θ̃3, θ̃6) which are part of the private key. This allows us to prove security using
the same arguments as in [1].

For the sake of privacy, the components of {σi}ni=1 are not explicitly given out
but only appear within perfectly hiding Groth-Sahai commitments accompanied
with appropriate NIWI arguments. At each signature derivation, commitments
and NIWI arguments are suitably re-randomized.

An important difference with the construction for subset predicates in [6], is
that underlying AHO signatures entirely appear in committed form. The reason
is that using (θi,3, θi,6) in the chaining process prevents their re-randomization.
For this reason, they also have to be committed so that we need to work with
quadratic pairing-product equations.

In the following, when X ∈ G (resp. X ∈ GT ), the notation ι(X) (resp.
ιGT (X)) will be used to denote the vector (1, 1, X) ∈ G3 (resp. the 3 × 3 ma-
trix containing X in position (3, 3) and 1GT everywhere else). Finally, we also
use a symmetric bilinear map F : G3 × G3 → G9

T such that, for any two vec-

tors ~X = (X1, X2, X3) ∈ G3 and ~Y = (Y1, Y2, Y3) ∈ G3, F ( ~X, ~Y ) is defined to

be F ( ~X, ~Y ) = F̃ ( ~X, ~Y )1/2 · F̃ (~Y , ~X)1/2, where the non-commutative mapping

F̃ : G3×G3 → G9
T sends ( ~X, ~Y ) onto the matrix F̃ ( ~X, ~Y ) of entry-wise pairings

(i.e., containing e(Xi, Yj) in its entry (i, j)).

Keygen(λ): given a security parameter λ ∈ N, choose bilinear groups (G,GT )
of prime order p > 2λ.

1. Choose a Groth-Sahai CRS f = (~f1, ~f2, ~f3) for the perfect WI setting.

More precisely, choose ~f1 = (f1, 1, g), ~f2 = (1, f2, g), and ~f3 = ~f1
ξ1 · ~f2

ξ2 ·
(1, 1, g)−1, with f1, f2, g

R← G, ξ1, ξ2
R← Zp.

2. Generate a key pair (skaho, pkaho) for the AHO signature in order to sign
messages consisting of three group elements. This key pair consists of
skaho =

(
αa, αb, γz, δz, {γi, δi}3i=1

)
and

pkaho =
(
Gr, Hr, Gz = Gγzr , Hz = Hδz

r ,

{Gi = Gγir , Hi = Hδi
r }3i=1, A, B

)
.

3. Choose two uniformly random group elements θ̃3, θ̃6
R← G.

The public key consists of pk :=
(

(G,GT ), f , pkaho

)
whereas the private

key is defined to be sk =
(
skaho, (θ̃3, θ̃6)

)
. The public key defines the set of

symbols Σ = G.

Sign(sk,Msg): given sk =
(
skaho, (θ̃3, θ̃6)

)
and a length-n message Msg =

(m1, . . . ,mn) ∈ Gn, for some n ∈ poly(λ) and where mi ∈ G for each
i ∈ {1, . . . , n}, do the following.
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1. Define (θn+1,3, θn+1,6) = (θ̃3, θ̃6). Then, for k ∈ {3, 6}, compute Groth-

Sahai commitments ~Cθn+1,k
= ι(θn+1,k) · ~f1

rθn+1,k · ~f2
sθn+1,k · ~f3

tθn+1,k .
2. For each j = n down to 1, generate an AHO signature (θj,1, . . . , θj,7)

on the message (mj , θj+1,3, θj+1,6) ∈ G3. For each k ∈ {1, . . . , 7} and
j ∈ {1, . . . , n}, generate commitments

~Cθj,k = ι(θj,k) · ~f1
rθj,k · ~f2

sθj,k · ~f3
tθj,k .

Next, generate NIWI aruments ~πaho,j,1, ~πaho,j,2 ∈ G9 that committed
variables (θj,1, θj,2, θj,3, θj,4, θj,5, θj,6, θj,7) satisfy

A · e(G1,mj)
−1 = e(Gz, θj,1) · e(Gr, θj,2) · e(θj,3, θj,4)

·e(G2, θj+1,3) · e(G3, θj+1,6)

B · e(H1,mj)
−1 = e(Hz, θj,1) · e(Hr, θj,5) · e(θj,6, θj,7) (3)

·e(H2, θj+1,3) · e(H3, θj+1,6)

These equations are quadratic, so that {~πaho,j,1, ~πaho,j,2}nj=1 consist of 9
group elements each.

3. Return the signature

σ =
(
{~Cθn+1,k

}k∈{3,6},
{
{~Cθj,k}7k=1, ~πaho,j,1, ~πaho,j,2

}n
j=1

)
. (4)

SignDerive(pk,Msg,Msg′, σ): given the public key pk as well as two messages
Msg = (m1, . . . ,mn) ∈ Gn and Msg′ = (m′1, . . . ,m

′
n′) ∈ Gn′

, return ⊥ if
Msg′ is not a substring of Msg. Otherwise, there exists i ∈ {1, . . . , n−n′+1}
such that Msg′ = (m′1, . . . ,m

′
n′) = (mi, . . . ,mi+n′−1). Then, parse σ as in

(4) and, for each i ∈ {1, . . . , n′}, conduct the following steps.

1. Define the sub-signature

σ̃ =
(
{~Cθi+n′,k}k∈{3,6},

{
{~Cθi+j,k}7k=1, ~πaho,i+j,1, ~πaho,i+j,2

}n′−1
j=0

)
.

2. Re-randomize ~C ′θi+j,k = ~Cθi+j,k · ~f1
r′θi+j,k · ~f2

s′θi+j,k · ~f3
t′θi+j,k for j = 0

to n′ − 1 and k = 1 to 7. Likewise, compute re-randomized versions
{~C ′θi+n′,k

}k∈{3,6} of {~Cθi+n′,k}k∈{3,6}. Finally, re-randomize the proofs

{~πaho,i+j,1 = (~πi+j,1, ~πi+j,2, ~πi+j,3)}n
′−1
j=0

and
{~πaho,i+j,2 = (~πi+j,4, ~πi+j,5, ~πi+j,6)}n

′−1
j=0

as suggested in [7].
3. Return the signature

σ′ =
(
{~C ′θi+n′,k

}k∈{3,6},
{
{~C ′θi+j,k}

7
k=1, ~π

′
aho,i+j,1, ~π

′
aho,i+j,2

}n′−1
j=0

)
. (5)
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Verify(pk,Msg, σ): given pk, a signature σ and a message Msg = (m1, . . . ,mn) ∈
Gn, parse σ as per (4) and do the following. For j = 1 to n, return 0 if
~πaho,j,1 = (~πj,1, ~πj,2, ~πj,3) and ~πaho,j,2 = (~πj,4, ~πj,5, ~πj,6) do not satisfy the
equations below. Otherwise, return 1.

ιGT (A) / F
(
ι(G1), ι(mj)

)
= F

(
ι(Gz), ~Cθj,1

)
· F
(
ι(Gr), ~Cθj,2

)
· F
(
~Cθj,3 ,

~Cθj,4
)

·F
(
ι(G2), ~Cθj+1,3

)
· F
(
ι(G3), ~Cθj+1,6

)
·

3∏
k=1

F
(
~πj,k, ~fk

)
(6)

ιGT (B) / F
(
ι(H1), ι(mj)

)
= F

(
ι(Hz), ~Cθj,1

)
· F
(
ι(Hr), ~Cθj,5

)
· F
(
~Cθj,6 ,

~Cθj,7
)

·F
(
ι(H2), ~Cθj+1,3

)
· F
(
ι(H3), ~Cθj+1,6

)
·

3∏
k=1

F
(
~πj,k+1, ~fk

)
.

Unlike the scheme of [4], the above system allows signing arbitrarily long
messages with a public key of constant size whereas [4] requires to set a loga-
rithmic bound on the length of signed messages at key generation. The signature
length is asymptotically optimal: a n-symbol message can be signed using 39n+6
group elements.

On the other hand, we lose a useful feature of the construction in [4]. The
latter allows the derivation algorithm to produce two kinds of derived signatures:
when the message m′ consists of ` symbols, Type I signatures contain O(` log `)
group elements and support subsequent quoting. Alternatively, the quoting al-
gorithm can derive a much shorter Type II signature, which comprises O(log `)
elements, but cannot be quoted any further. In our scheme, the quoter can only
produce Type I signatures and does not have the same flexibility as in [4].

We now turn to the security of the scheme and first observe that it is clearly
completely context-hiding due to the use of a witness indistinguishable Groth-
Sahai CRS.

Theorem 1. The above quotable signature scheme is completely context hiding.

Proof. The proof follows from the fact that each signature only consists of per-
fectly hiding commitments and perfectly NIWI arguments, which can be per-
fectly re-randomized at each derivation. ut

The unforgeability relies on the DLIN assumption and the security properties
of AHO signatures, as established by Theorem 2.

Theorem 2. The scheme is existentially unforgeable against chosen-message
attacks under the (q · L + 1)-SFP and DLIN assumptions, where q denotes the
maximal number of signing queries and L is the maximal number of symbols per
signing query.

Proof. Since the scheme is completely context hiding, we only need to prove
unforgeability using the simpler definition where the adversary A only has a
signing oracle. The proof uses a sequence of games where, for each i, Si stands
for the event that A produces a valid forgery in Gamei.
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Game0: This is the real game. We denote by S0 the event that the adversary A
manages to output a successful forgery. Obviously, A’s advantage is Pr[S0].

Game1: We change the generation of the public key and set up f = (~f1, ~f2, ~f3) as

a perfectly sound Groth-Sahai CRS. Concretely, the challenger B chooses ~f3
in the span of ~f1 = (f1, 1, g) and ~f2 = (1, f2, g), where f1 = gφ1 and f2 = gφ2 ,
for random chosen φ1, φ2

R← Zp. Signing queries are answered as in Game0,

using the private key (skaho, (θ̃3, θ̃6)) and generating NIWI arguments faith-
fully. Under the DLIN assumption, this change should not significantly affect
A’s behavior and we have |Pr[S1]−Pr[S0]| ≤ AdvDLIN(B). Note that the re-
duction is immediate as B does not need the trapdoor (φ1, φ2) at any time. In
Game1, perfectly hiding Groth-Sahai commitments (and NIWI arguments)
are traded for perfectly binding commitments (and perfectly sound proofs).

Game2: This game is identical to Game 1 except that we bring a conceptual
change in the generation of sk. Instead of merely choosing (θ̃3, θ̃6) at ran-
dom, the challenger B picks a uniformly random group element m̃ R← G and
computes an AHO signature {θ̃k}7k=1 on the “dummy” message (m̃, 1, 1).

The resulting (θ̃3, θ̃6) are included in the private key sk whereas m̃ and
{θ̃k}k∈{1,2,4,5,7} are retained by B. We argue that this change does not alter

A’s view whatsoever since (θ̃3, θ̃6) have the same distribution either way.
Indeed, in Game2, they remain uniformly distributed in G2 and statistically
independent of the message m̃ and other signature components. We have
Pr[S2] = Pr[S1].

In Game2, B uses the values (φ1, φ2) = (logg(f1), logg(f2)) that were defined
in Game1. When A outputs a forgery σ? on a message (m?

1, . . . ,m
?
n?), B uses

(φ1, φ2) to extract (θ?n?+1,3, θ
?
n?+1,6) as well as a sequence of AHO signatures

{σ?j = (θ?j,1, . . . , θ
?
j,7)}n?j=1 from the Groth-Sahai commitments contained in σ?.

The perfect soundness of {~π?aho,j,1, ~π?aho,j,2}n
?

j=1 guarantees that extracted values

(m?
1, . . . ,m

?
n?), {σ?j }n

?

j=1 and (θ?n?+1,3, θ
?
n?+1,6) satisfy equations (3).

In Game2, we can prove that event S2 occurs with negligible probability
if the (q · L + 1)-SFP assumption holds. Indeed, if A is successful in Game3,
{σ?j = (θ?j,1, . . . , θ

?
j,7)}n?j=1 is a sequence of valid AHO signatures on the messages

{(m?
j , θ

?
j+1,3, θ

?
j+1,6)}n?j=1 but (m?

1, . . . ,m
?
n?) is not a subsequence involved in any

of the signing queries. We can thus distinguish two situations.

Case A. There exists j† ∈ {1, . . . , n} such that B never had to sign the message
(m?

j† , θ
?
j†+1,3, θ

?
j†+1,6) in any signing query.

Case B. The messages {(m?
j , θ

?
j+1,3, θ

?
j+1,6)}n?j=1 were all signed by B at some

point of the game but not all of them were involved in the same query. This
covers the case of an adversary mixing substrings of two different messages
for which it received signatures.

In Case A, it is immediate that A necessarily broke the chosen-message security
of the AHO signature: the reduction B simply outputs (m?

j† , θ
?
j†+1,3, θ

?
j†+1,6) and

the signature σ?j† .
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We are thus left with Case B for which we know that (m?
1, θ

?
2,3, θ

?
2,6) was

involved in the κ-th signing query Msgκ = (mκ,1, . . . ,mκ,nκ), for some integers
κ ∈ {1, . . . , q} and nκ ∈ {1, . . . , L}. Let {(θκ,j,1, . . . , θκ,j,7)}nκj=1 be the AHO sig-
natures that were used to answer the κ-th signing query. Let also t ∈ {1, . . . , nκ}
be such that (mκ,t, θκ,t+1,3, θκ,t+1,6) = (m?

1, θ
?
2,3, θ

?
2,6).

We now define j? to be the largest index in {1, . . . , n? − 1} such that

(mκ,t+j?−1, θκ,t+j?,3, θκ,t+j?,6) = (m?
j? , θ

?
j?+1,3, θ

?
j?+1,6).

At this step, we further consider two sub-cases of Case B:

Case t+ j? < nκ + 1: Since mκ,t+j? 6= mj?+1 or (θκ,t+j?+1,3, θκ,t+j?+1,6) 6=
(θ?j?+2,3, θ

?
j?+2,6), the signature binding property of the AHO signature is

broken since we have two distinct messages whose signatures share the same
θ?j?+1,3, θ

?
j?+1,6 components. As implied by the results of [1], this contradicts

the (q · L + 1)-SFP assumption since B computes at most q · L + 1 AHO
signatures.

Case t+ j? = nκ + 1: We have the equality

(θ?j?+1,3, θ
?
j?+1,6) = (θκ,nκ+1,3, θκ,nκ+1,6) = (θ̃3, θ̃6),

which means that (m?
j? , θ

?
j?+1,3, θ

?
j?+1,6) was the message of an “end-of-

chain” signature produced by B. Said otherwise, this is a forgery where
(m?

1, . . . ,m
?
n?) is a super-string of (mκ,t, . . . ,mκ,nk). In this case, thanks

to the modification introduced in Game2, B knows {θ̃k}k∈{1,2,4,5,7} as well

as a dummy message m̃ such that (θ̃1, . . . , θ̃7) is a valid AHO signature
on (m̃, 1, 1). With overwhelming probability, we obtain distinct messages
(m̃, 1, 1) and (m?

j?+1, θ
?
j?+2,3, θ

?
j?+2,6) that share the same signature com-

ponents (θ?j?+1,3, θ
?
j?+1,6) = (θ̃3, θ̃6). Indeed, the pair (θ̃3, θ̃6) is statistically

independent of the dummy message m̃ and the latter was uniformly chosen
in G. It comes that we can only have m?

j?+1 = m̃ by pure chance.

In Case B, the signature binding property of AHO signatures is thus broken
either way and we can eventually write Pr[S2] ≤ 2·Adv(q·L+1)-SFP(B), where the
factor 2 accounts for the fact that the reduction has to guess beforehand which
of Case A or Case B will come about. Depending on this guess, B undertakes
to either attack the standard unforgeability of AHO signatures or, alternatively,
break their signature-binding property. In either case, B answers A’s queries by
invoking the signing oracle in its interaction with the appropriate challenger.

Putting the above altogether, we find the upper bound

Pr[S0] ≤ AdvDLIN(B) + 2 ·Adv(q·L+1)-SFP(B)

on the forger’s advantage. ut

4 Completely Context-Hiding Linearly Homomorphic
Signatures

We now turn to linearly homomorphic signatures for which the syntax and the
security definitions of Section 2 can be simplified as explained in [6].
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Our starting point is the weakly context-hiding linearly homomorphic signa-
ture of [6]. Its public key includes group elements gα, v and {gi}ni=1, where n is
the dimension of vectors to be signed. Signatures of vectors ~v = (v1, . . . , vn) are
of the form (σ1, σ2, s) =

(
(
∏n
i=1 g

vi
i · vs)α ·HG(τ)r, gr, s

)
, where r, s ∈R Zp and

τ identifies the linear subspace.
The reason why the scheme is only weakly context-hiding is that the sig-

nature component s cannot be re-randomized. Hence, it always allows linking
a derived signature to those it was obtained from. To render the scheme com-
pletely context-hiding, we need to modify the signing algorithm so as to hide
s ∈ Zp. In signatures, the exponent s is replaced by Groth-Sahai commitments
to group elements (gs, gα·s), where gα is the public key, together with NIWI
arguments that these are correctly formed. Then, the randomizability properties
of Groth-Sahai proofs come in handy to guarantee that derived signatures will
be statistically independent of original signatures.

In the notations hereunder, for any h ∈ G and ~g = (g1, g2, g3) ∈ G3, E(h,~g)
stands for the vector

(
e(h, g1), e(h, g2), e(h, g3)

)
∈ G3

T .

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ),
choose bilinear groups (G,GT ) of prime order p > 2λ.

1. Choose α R← Zp, g, v R← G and u0, u1, . . . , uL
R← G, for some L ∈ poly(λ).

Elements (u0, . . . , uL) ∈ GL+1 will define hash function HG : {0, 1}L →
G mapping any L-bit string m = m[1] . . .m[L] ∈ {0, 1}L onto a hash

value HG(m) = u0 ·
∏L
i=1 u

m[i]
i .

2. Pick gi
R← G for i = 1 to n. Also, define the identifier space T := {0, 1}L.

3. Generate Groth-Sahai common reference string f = (~f1, ~f2, ~f3) for the

perfect WI setting. Namely, choose vectors ~f1 = (f1, 1, g), ~f2 = (1, f2, g),

as well as ~f3 = ~f1
ξ1 · ~f2

ξ2 · (1, 1, g)−1, with f1, f2
R← G, ξ1, ξ2

R← Zp.
The private key is sk := α and the public key consists of

pk :=
(

(G,GT ), g, gα, v, {gi}ni=1, {ui}Li=0, f
)
.

Sign(sk, τ, ~v): given a vector ~v = (v1, . . . , vn) ∈ Znp , a file identifier τ ∈ {0, 1}L
and the private key sk = α ∈ Zp, do the following.

1. Choose r, s R← Zp and compute

σ1 = (gv11 · · · gvnn · vs)α ·HG(τ)r, σ2 = gr, σ3 = gs, σ4 = gα·s.

2. Compute commitments to (σ1, σ3, σ4). Namely, for each j ∈ {1, 3, 4},
choose rσj , sσj , tσj

R← Zp and compute ~Cσj = (1, 1, σj)· ~f1
rσj · ~f2

sσj · ~f3
tσj .

3. Generate a NIWI proof that (σ1, σ3, σ4) ∈ G3 satisfy the linear equations

e(σ1, g) = e(

n∏
i=1

gvii , g
α) · e(v, σ4) · e(HG(τ), σ2), (7)

e(σ3, g
α) = e(g, σ4). (8)
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These proofs are obtained as

~π1 = (π1,1, π1,2, π1,3) =
(
grσ1 · v−rσ4 , gsσ1 · v−sσ4 , gtσ1 · v−tσ4

)
~π2 = (π2,1, π2,2, π2,3) =

(
(gα)rσ3 · g−rσ4 , (gα)sσ3 · g−sσ4 , (gα)tσ3 · g−tσ4

)
,

which satisfy the equations

E(g, ~Cσ1) = E
( n∏
i=1

gvii , (1, 1, g
α)
)
· E(v, ~Cσ4) (9)

·E
(
HG(τ), (1, 1, σ2)

)
·

3∏
j=1

E(π1,j , ~fj)

E(gα, ~Cσ3
) = E(g, ~Cσ4

) ·
3∏
j=1

E(π2,j , ~fj). (10)

The signature consists of σ =
(
~Cσ1

, σ2, ~Cσ3
, ~Cσ4

, ~π1, ~π2
)
∈ G16.

SignDerive(pk, τ, {(βi, σ(i))}`i=1): given pk, a file identifier τ and ` tuples (βi, σ
(i)),

parse each signature σ(i) as σ(i) =
(
~Cσi,1 , σi,2,

~Cσi,3 ,
~Cσi,4 , ~πi,1, ~πi,2

)
∈ G16.

1. Choose r̃ R← Zp. Then, compute σ2 =
∏`
i=1 σ

βi
i,2 · gr̃ and

~Cσ1 =
∏̀
i=1

~Cβiσi,1 · (1, 1, HG(τ)r̃) ~Cσ3 =
∏̀
i=1

~Cβiσi,3
~Cσ4 =

∏̀
i=1

~Cβiσi,4

as well as ~π1 =
∏`
i=1 ~π

βi
i,1 and ~π2 =

∏`
i=1 ~π

βi
i,2.

2. Re-randomize commitments ~Cσ1
, ~Cσ3

, ~Cσ4
and the proofs ~π1, ~π2. Finally,

return the re-randomized signature σ′ =
(
~C ′σ1

, σ′2,
~C ′σ3

, ~C ′σ4
, ~π′1, ~π

′
2

)
.

Verify(pk, τ, ~y, σ): given pk, a signature σ =
(
~Cσ1

, σ2, ~Cσ3
, ~Cσ4

, ~π1, ~π2
)
∈ G16

and a message (τ, ~y), where τ ∈ {0, 1}L and ~y = (y1, . . . , yn) ∈ (Zp)n, return

⊥ if ~y = ~0. Otherwise, return 1 if and only if equations (9)-(10) are satisfied.

The properties of Groth-Sahai proofs guarantee that the scheme is completely
hiding as established by Theorem 3.

Theorem 3. The scheme is completely context hiding.

Proof. The statement follows from the fact that, on a perfectly hiding CRS
(~f1, ~f2, ~f3), all commitments are perfectly hiding and arguments are perfectly

WI. Moreover, signature components σ2, commitments ~Cσ1 ,
~Cσ3 ,

~Cσ4 and ~π1, ~π2
are perfectly re-randomized by the derivation algorithm. For this reason, the
output of SignDerive has the same distribution as a fresh signature. ut

In the proof of unforgeability, we will need a slightly stronger (but still sim-
ple) assumption than the standard CDH assumption.
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The proof assumes that the adversary only obtains signatures on linearly
independent vectors. This is not a limitation since, in practice, one usually aug-
ments the signed vectors (e.g., by unit vectors) so that they are always linearly
independent. As in [20] and [6, Appendix F], we also assume that a given pair
(τ,~v) is always signed using the same s. This can be enforced by deriving s from
a pseudo-random function of τ and ~v.

Theorem 4. The scheme is unforgeable assuming that the DLIN and FlexDH
assumption both hold in the group G. (The proof is given in the full version of
the paper).
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