
Efficient UC-Secure Authenticated
Key-Exchange for Algebraic Languages

Fabrice Ben Hamouda1, Olivier Blazy2, Céline Chevalier3, David Pointcheval1,
and Damien Vergnaud1

1 ENS, Paris, France †
2 Ruhr-Universität Bochum, Germany

3 Université Panthéon-Assas, Paris, France

Abstract. Authenticated Key Exchange (AKE) protocols enable two
parties to establish a shared, cryptographically strong key over an inse-
cure network using various authentication means, such as cryptographic
keys, short (i.e., low-entropy) secret keys or credentials. In this pa-
per, we provide a general framework, that encompasses several previous
AKE primitives such as (Verifier-based) Password-Authenticated Key Ex-
change or Secret Handshakes, we call LAKE for Language-Authenticated
Key Exchange.
We first model this general primitive in the Universal Composability
(UC) setting. Thereafter, we show that the Gennaro-Lindell approach
can efficiently address this goal. But we need smooth projective hash
functions on new languages, whose efficient implementations are of in-
dependent interest. We indeed provide such hash functions for languages
defined by combinations of linear pairing product equations.
Combined with an efficient commitment scheme, that is derived from the
highly-efficient UC-secure Lindell’s commitment, we obtain a very prac-
tical realization of Secret Handshakes, but also Credential-Authenticated
Key Exchange protocols. All the protocols are UC-secure, in the standard
model with a common reference string, under the classical Decisional
Linear assumption.

1 Introduction

The main goal of an Authenticated Key Exchange (AKE) protocol is to enable
two parties to establish a shared cryptographically strong key over an insecure
network under the complete control of an adversary. AKE is one of the most
widely used and fundamental cryptographic primitives. In order for AKE to be
possible, the parties must have authentication means, e.g. (public or secret) cryp-
tographic keys, short (i.e., low-entropy) secret keys or credentials that satisfy a
(public or secret) policy.

Motivation. PAKE, for Password-Authenticated Key Exchange, was formalized
by Bellovin and Merritt [5] and followed by many proposals based on different

† ENS, CNRS & INRIA – UMR 8548

2 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

cryptographic assumptions (see [1, 8] and references therein). It allows users
to generate a strong cryptographic key based on a shared “human-memorable”
(i.e. low-entropy) password without requiring a public-key infrastructure. In this
setting, an adversary controlling all communication in the network should not
be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz,
Durfee, Shankar, Smetters, Staddon and Wong [3] (see also [2,19]). It allows two
members of the same group to identify each other secretly, in the sense that each
party reveals his affiliation to the other only if they are members of the same
group. At the end of the protocol, the parties can set up an ephemeral session
key for securing further communication between them and an outsider is unable
to determine if the handshake succeeded. In case of failure, the players do not
learn any information about the other party’s affiliation.

More recently, Credential-Authenticated Key Exchange (CAKE) was pre-
sented by Camenisch, Casati, Groß and Shoup [8]. In this primitive, a common
key is established if and only if a specific relation is satisfied between credentials
hold by the two players. This primitive includes variants of PAKE and Secret
Handshakes, and namely Verifier-based PAKE, where the client owns a pass-
word pw and the server knows a one-way transformation v of the password only.
It prevents massive password recovering in case of server corruption. The two
players eventually agree on a common high entropy secret if and only if pw and
v match together, and off-line dictionary attacks are prevented for third-party
players.

Our Results. We propose a new primitive that encompasses most of the pre-
vious notions of authenticated key exchange. It is closely related to CAKE and
we call it LAKE, for Language-Authenticated Key-Exchange, since parties estab-
lish a common key if and only if they hold credentials that belong to specific
(and possibly independent) languages. The definition of the primitive is more
practice-oriented than the definition of CAKE from [8] but the two notions are
very similar. In particular, the new primitive enables privacy-preserving authen-
tication and key exchange protocols by allowing two members of the same group
to secretly and privately authenticate to each other without revealing this group
beforehand.

In order to define the security of this primitive, we use the UC framework and
an appropriate definition for languages that permits to dissociate the public part
of the policy, the private common information the users want to check and the
(possibly independent) secret values each user owns that assess the membership
to the languages. We provide an ideal functionality for LAKE and give efficient
realizations of the new primitive (for a large family of languages) secure under
classical mild assumptions, in the standard model (with a common reference
string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [8] for spe-
cific languages and we enlarge the set of languages for which we can construct
practical schemes. Notably, we obtain a very practical realization of Secret Hand-
shakes and a Verifier-based Password-Authenticated Key Exchange.

Efficient UC-Secure LAKE 3

Our Techniques. A general framework to design PAKE in the CRS model was
proposed by Gennaro and Lindell [17] in 2003. This approach was applied to
the UC framework by Canetti, Halevi, Katz, Lindell, and MacKenzie [11], and
improved by Abdalla, Chevalier and Pointcheval [1]. It makes use of the smooth
projective hash functions (SPHF), introduced by Cramer and Shoup [14]. Such
a hashing family is a family of hash functions that can be evaluated in two ways:
using the (secret) hashing key, one can compute the function on every point
in its domain, whereas using the (public) projection key one can only compute
the function on a special subset of its domain. Our first contribution is the
description of smooth projective hash functions for new interesting languages:
Abdalla, Chevalier and Pointcheval [1] explained how to make disjunctions and
conjunctions of languages, we study here languages defined by linear pairing
product equations on committed values.

In 2011, Lindell [20] proposed a highly-efficient commitment scheme, with a
non-interactive opening algorithm, in the UC framework. We will not use it in
black-box, but instead we will patch it to make the initial Gennaro and Lindell’s
approach to work, without zero-knowledge proofs [11], using the equivocability
of the commitment.

Language Definition. In [1], Abdalla et al. already formalized languages to be
considered for SPHF. But, in the following, we will use a more simple formalism,
which is nevertheless more general: we consider any efficiently computable binary
relation R : {0, 1}∗ × P × S → {0, 1}, where the additional parameters pub ∈
{0, 1}∗ and priv ∈ P define a language LR(pub, priv) ⊆ S of the words W such
that R(pub, priv,W) = 1:

– pub are public parameters;
– priv are private parameters the two players have in mind, and they should

think to the same values: they will be committed to, but never revealed;
– W is the word the sender claims to know in the language: it will be committed

to, but never revealed.

Our LAKE primitive, specific to two relations Ra and Rb, will allow two users,
Alice and Bob, owning a word Wa ∈ LRa

(pub, priva) and Wb ∈ LRb
(pub, privb)

respectively, to agree on a session key under some specific conditions: they first
both agree on the public parameter pub, Bob will think about priv′a for his
expected value of priva, Alice will do the same with priv′b for privb; eventually, if
priv′a = priva and priv′b = privb, and if they both know words in the languages,
then the key agreement will succeed. In case of failure, no information should
leak about the reason of failure, except the inputs did not satisfy the relations
Ra or Rb, or the languages were not consistent.

We stress that each LAKE protocol will be specific to a pair of relations
(Ra,Rb) describing the way Alice and Bob will authenticate to each other. This
pair of relations (Ra,Rb) specifies the sets Pa, Pb and Sa, Sb (to which the
private parameters and the words should respectively belong). Therefore, the
formats of priva, privb and Wa and Wb are known in advance, but not their
values. When Ra and Rb are clearly defined from the context (e.g., PAKE),
we omit them in the notations. For example, these relations can formalize:

4 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

– Password authentication: The language is defined by R(pub, priv,W) = 1⇔
W = priv, and thus pub = ∅. The classical setting of PAKE requires the
players A and B to use the same password W , and thus we should have
priva = priv′b = privb = priv′a = Wa = Wb;

– Signature authentication: R(pub, priv,W) = 1 ⇔ Verif(pub1, pub2,W) = 1,
where pub = (pub1 = vk, pub2 = M) and priv = ∅. The word W is thus a
signature of M valid under vk, both specified in pub;

– Credential authentication: we can consider any mix for vk and M in pub
or priv, and even in W , for which the relation R verifies the validity of the
signature. When M and vk are in priv or W , we achieve affiliation-hiding
property.

In the two last cases, the parameter pub can thus consist of a message on which
the user is expected to know a signature valid under vk: either the user knows
the signing key and can generate the signature on the fly to run the protocol,
or the user has been given signatures on some messages (credentials). As a
consequence, we just assume that, after having publicly agreed on a common
pub, the two players have valid words in the appropriate languages. The way
they have obtained these words does not matter.

Following our generic construction, private elements will be committed using
encryption schemes, derived from Cramer-Shoup’s scheme, and will thus have
to be first encoded as n-tuples of elements in a group G. In the case of PAKE,
authentication will check that a player knows an appropriate password. The
relation is a simple equality test, and accepts for one word only. A random
commitment (and thus of a random group element) will succeed with negligible
probability. For signature-based authentication, the verification key can be kept
secret, but the signature should be unforgeable and thus a random word W
should quite unlikely satisfy the relation. We will often make this assumption
on useful relations R: for any pub, {(priv,W) ∈ P × S,R(pub, priv,W) = 1} is
sparse (negligible) in P × S, and a fortiori in the set Gn in which elements are
first embedded.

2 Definitions

In this section, we first briefly recall the notations and the security notions of
the basic primitives we will use in the rest of the paper, and namely public
key encryption and signature. More formal definitions, together with the clas-
sical computational assumptions (CDH, DDH, and DLin) are provided in the
full version [6]: A public-key encryption scheme is defined by four algorithms:
param← Setup(1k), (ek, dk)← KeyGen(param), c← Encrypt(ek,m; r), and m←
Decrypt(dk, c). We will need the classical notion of IND-CCA security. A sig-
nature scheme is defined by the four following algorithms: param ← Setup(1k),
(vk, sk)← KeyGen(param), σ ← Sign(sk,m; s), and Verif(vk,m, σ). We will need
the classical notion of EUF-CMA security. In both cases, the global parameters
param will be ignored, included in the CRS. We will furthermore make use of
collision-resistant hash function families.

Efficient UC-Secure LAKE 5

2.1 Universal Composability

Our main goal will be to provide protocols with security in the universal compos-
ability framework. The interested reader is referred to [10, 11] for details. More
precisely, we will work in the UC framework with joint state proposed by Canetti
and Rabin [12] (with the CRS as the joint state). Since players are not individu-
ally authenticated, but just afterward if the credentials are mutually consistent
with the two players’ languages, the adversary will be allowed to interact on
behalf of any player from the beginning of the protocol, either with the creden-
tials provided by the environment (static corruption) or without (impersonation
attempt). As with the Split Functionality [4], according to whom sends the first
flow for a player, either the player itself or the adversary, we know whether this is
an honest player or a dishonest player (corrupted or impersonation attempt, but
anyway controlled by the adversary). Then, our goal will be to prove that the
best an adversary can do is to try to play against one of the other players, as an
honest player would do, with a credential it guessed or obtained in any possible
way. This is exactly the so-called one-line dictionary attack when one considers
PAKE protocols. In the adaptive corruption setting, the adversary could get
complete access to the private credentials and the internal memory of an honest
player, and then get control of it, at any time. But we will restrict to the static
corruption setting in this paper. It is enough to deal with most of the concrete
requirements: related credentials, arbitrary compositions, and forward-secrecy.
To achieve our goal, for a UC-secure LAKE, we will use some other primitives
which are secure in the classical setting only.

2.2 Commitment

Commitments allow a user to commit to a value, without revealing it, but with-
out the possibility to later change his mind. It is composed of three algorithms:
Setup(1k) generates the system parameters, according to a security parameter k;
Commit(`,m; r) produces a commitment c on the input message m ∈ M using

the random coins r
$← R, under the label `, and the opening information d;

while Decommit(`, c,m, d) opens the commitment c with the message m and the
opening information d that proves the correct opening under the label `.

Such a commitment scheme should be both hiding, which says that the com-
mit phase does not leak any information about m, and binding, which says that
the decommit phase should not be able to open to two different messages. Ad-
ditional features will be required in the following, such as non-malleability, ex-
tractability, and equivocability. We also included a label `, which can be empty or
an additional public information that has to be the same in both the commit and
the decommit phases. A labeled commitment that is both non-malleable and ex-
tractable can be instantiated by an IND-CCA labeled encryption scheme (see the
full version [6]). We will use the Linear Cramer-Shoup encryption scheme [13,21].
We will then patch it, using a technique inspired from [20], to make it addition-
ally equivocable (see Section 3). It will have an interactive commit phase, in two

6 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

rounds: Commit(`,m; r) and a challenge ε from the receiver, which will define an
implicit full commitment to be open latter.

2.3 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) systems have been defined by Cramer
and Shoup [14] in order to build a chosen-ciphertext secure encryption scheme.
They have thereafter been extended [1,7,17] and applied to several other prim-
itives. Such a system is defined on a language L, with five algorithms:

– Setup(1k) generates the system parameters, according to a security param-
eter k;

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W) derives the projection key hp, possibly depending on a

word W ;
– Hash(hk, L,W) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and

the witness w that W ∈ L.

The correctness of the scheme assures that if W is in L with w as a witness, then
the two ways to compute the hash values give the same result: Hash(hk, L,W) =
ProjHash(hp, L,W,w). In our setting, these hash values will belong to a group G.
The security is defined through two different notions: the smoothness property
guarantees that if W 6∈ L, the hash value is statistically indistinguishable from a
random element, even knowing hp; the pseudo-randomness property guarantees
that even for a word W ∈ L, but without the knowledge of a witness w, the
hash value is computationally indistinguishable from a random element, even
knowing hp.

3 Double Linear Cramer-Shoup Encryption (DLCS)

As explained earlier, any IND-CCA labeled encryption scheme can be used as
a non-malleable and extractable labeled commitment scheme: we will focus on
the DLin-based primitives, and thus the Linear Cramer-Shoup scheme (see the
full version [6]), we call LCS. Committed/encrypted elements will either directly
be group elements, or bit-strings on which we apply a reversible mapping G
from {0, 1}n to G. In order to add the equivocability, one can use a technique
inspired from [20]. See the full version [6] for more details, but we briefly present
the commitment scheme we will use in the rest of this paper in conjunction
with SPHF.

Linear Cramer-Shoup Commitment Scheme. The parameters, in the CRS,
are a group G of prime order p, with three independent generators denoted by
(g1, g2, g3)

$← G3, a collision-resistant hash function HK , and possibly an ad-
ditional reversible mapping G from {0, 1}n to G to commit bit-strings. From

9 scalars (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, one also sets, for i = 1, 2,

Efficient UC-Secure LAKE 7

ci = gxi
i g

x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . The public parameters consist of

the encryption key ek = (G, g1, g2, g3, c1, c2, d1, d2, h1, h2, HK), while the trap-
door for extraction is dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3). One can define the
encryption process:

LCS(`, ek,M ; r, s) def= (u = (gr1, g
s
2, g

r+s
3), e = M · hr1hs2, v = (c1d

ξ
1)r(c2d

ξ
2)s)

where ξ = HK(`,u, e). When ξ is specified from outside, one additionally denotes
it LCS∗(`, ek,M, ξ; r, s). The commitment to a message M ∈ G, or M = G(m)
for m ∈ {0, 1}n, encrypts M under ek: LCSCom(`,M ; r, s) def= LCS(`, ek,M ; r, s).
The decommit process consists of M and (r, s) to check the correctness of the
encryption. It is possible to do implicit verification, without any decommit in-
formation, but just an SPHF on the language of the ciphertexts of M that is
privately shared by the two players. Since the underlying encryption scheme is
IND-CCA, this commitment scheme is non-malleable and extractable.

Double Linear Cramer-Shoup Commitment Schemes. To make it equiv-
ocable, we double the commitment process, in two steps. The CRS additionally
contains a scalar ℵ $← Zp, one also sets, ζ = gℵ1 . The trapdoor for equivocability
is ℵ. The Double Linear Cramer-Shoup encryption scheme, denoted DLCS and
detailed in the full version [6] is

DLCS(`, ek,M,N ; r, s, a, b) def= (C←LCS(`, ek,M ; r, s), C′←LCS∗(`, ek, N, ξ; a, b))

where ξ = HK(`,u, e) is computed during the generation of C and transfered
for the generation of C′. As above, we denote DLCSCom denotes the use of
DLCS with the encryption key ek. The usual commit/decommit processes are de-
scribed in the full version [6]. On Figure 1, one can find the DLCSCom′ scheme
where one can implicitly check the opening with an SPHF. These two con-
structions essentially differ with χ = HK(C′) (for the SPHF implicit check)
instead of χ = HK(M, C′) (for the explicit check). We stress that with this al-
teration, the DLCSCom′ scheme is not a real commitment scheme (not formally
extractable/binding): in DLCSCom′, the sender can indeed encrypt M in C and
N 6= 1G in C′, and then, the global ciphertext C×C′ε contains M ′ = MNε 6= M ,
whereas one would have extracted M from C. But M ′ is unknown before ε is
sent, and thus, if one checks the membership of M ′ to a sparse language, it will
unlikely be true.

Multi-Message Schemes. One can extend these encryption and commitment
schemes to vectors of n messages (see the full version [6]). We will denote them
n-DLCSCom′ or n-DLCSCom for the commitment schemes. They consist in en-
crypting each message with independent random coins in Ci = (ui, ei, vi) but the
same ξ = HK(`, (ui), (ei)), together with independent companion ciphertexts C′i
of 1G, still with the same ξ for the doubled version. In the latter case, n indepen-
dent challenges εi

$← Z∗p are then sent to lead to the full commitment (Ci×C′εii)
with random coins zri = ri + εiai and zsi = si + εibi. Again, if one of the com-
panion ciphertext C′i does not encrypt 1G, the full commitment encrypts a vector
with at least one unpredictable component M ′i . Several non-unity components

8 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

Commit(`,M ; r, s, a, b, t) : for (r, s, a, b, t)
$← Z5

p

(C, C′)← DLCSCom(`,M, 1G; r, s, a, b)
χ = HK(C′), C′′ = gt1ζ

χ C, C′′−−−−−−→
ε←−−−−−− ε

$← Z∗pε
?

6= 0 mod p
z = (zr = r + εa mod p, zs = s+ εb mod p)

Decommit(`, C, C′, ε) : C′, t−−−−−−→ χ = HK(C′), C′′ ?= gt1ζ
χ

With z = (zr, zs), implicit check of C × C′ε ?= LCS∗(`, ek,M, ξ; zr, zs)

Fig. 1. DLCSCom′ Commitment Scheme for SPHF

in the companion ciphertexts would lead to independent components in the full
commitment. For languages sparse enough, this definitely turns out not to be in
the language.

4 SPHF for Implicit Proofs of Membership

In [1], Abdalla et al. presented a way to compute a conjunction or a disjunction
of languages by some simple operations on their projection keys. Therefore all
languages presented afterward can easily be combined together. However as the
original set of manageable languages was not really developed, we are going to
present several steps to extend it, and namely in order to cover some languages
useful in various AKE instantiations.

We will show that almost all the vast family of languages covered by the
Groth-Sahai methodology [18] can be addressed by our approach too. More pre-
cisely, we can handle all the linear pairing product equations, when witnesses are
committed using our above (multi-message) DLCSCom′ commitment scheme, or
even the non-equivocable LCSCom version. This will be strong enough for our ap-
plications. For using them in black-box to build our LAKE protocol, one should
note that the projection key is computed from the ciphertext C when using the
simple LCSCom commitment, but also when using the DLCSCom′ version. The
full commitment C × C′ε is not required, but ξ only, which is known as soon
as C is given (or the vector (Ci)i for the multi-message version). Of course, the
hash value will then depend on the full commitment (either C for the LCSCom
commitment, or C · C′ε for the DLCSCom′ commitment).

This will be relevant to our AKE problem: equality of two passwords, in
PAKE protocols; corresponding signing/verification keys associated with a valid
signature on a pseudonym or a hidden identity, in secret handshakes; valid cre-
dentials, in CAKE protocols. All those tests are quite similar: one has to show
that the ciphertexts are valid and that the plaintexts satisfy the expected rela-
tions in a group. We first illustrate that with commitments of Waters signatures
of a public message under a committed verification key. We then explain the
general method. The formal proofs are provided in the full version [6].

Efficient UC-Secure LAKE 9

4.1 Commitments of Signatures

Let us consider the Waters signature [22] in a symmetric bilinear group, and
then we just need to recall that, in a pairing-friendly setting (p,G,GT , e), with
public parameters (F , g, h), and a verification key vk, a signature σ = (σ1, σ2)
is valid with respect to the message M under the key vk if it satisfies e(σ1, g) =
e(h, vk) · e(F(M), σ2).

A similar approach has already been followed in [7], however not with a
Linear Cramer-Shoup commitment scheme, nor with such general languages. We
indeed first consider the language of the signatures (σ1, σ2) ∈ G2 of a message
M ∈ {0, 1}k under the verification key vk ∈ G, where M is public but vk is
private: L(pub, priv), where priv = vk and pub = M . One will thus commit the
pair (vk, σ1) ∈ G2 with the label ` = (M,σ2) using a 2-DLCSCom′ commitment
and then prove the commitment actually contains (vk, σ1) such that e(σ1, g) =
e(h, vk) · e(F(M), σ2). We insist on the fact that σ1 only has to be encrypted,
and not σ2, in order to hide the signature, since the latter σ2 is a random group
element. If one wants unlinkability between signature commitments, one simply
needs to re-randomize (σ1, σ2) before encryption. Hence σ2 can be sent in clear,
but bounded to the commitment in the label, together with the pub part of
the language. In order to prove the above property on the committed values,
we will use conjunctions of SPHF: first, to show that each commitment is well-
formed (valid ciphertexts), and then that the associated plaintexts verify the
linear pairing equation, where the committed values are underlined: e(σ1, g) =
e(h, vk) · e(F(M), σ2) Note that vk is not used as a committed value for this
verification of the membership of σ to the language since this is the verification
key expected by the verifier, specified in the private part priv, which has to be
independently checked with respect to the committed verification key. This is
enough for the affiliation-hiding property. We could consider the similar language
where M ∈ {0, 1}k is in the word too: e(σ1, g) = e(h, vk) · e(F(M), σ2), and then

one should commit M , bit-by-bit, and then use a (k+2)-DLCSCom′ commitment.

4.2 Linear Pairing Product Equations

Instead of describing in details the SPHF for the above examples, let us show it
for a more general framework: we considered

e(σ1, g) = e(h, vk) · e(F(M), σ2) or e(σ1, g) = e(h, vk) · e(F(M), σ2),

where the unknowns are underlined. These are particular instantiations of t
simultaneous equations(∏

i∈Ak

e(Yi,Ak,i)
)
·
(∏
i∈Bk

Zizk,i

)
= Bk, for k = 1, . . . , t,

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and
Bk ⊆ {m + 1, . . . , n} are public, but the Yi ∈ G and Zi ∈ GT are simultane-
ously committed using the multi-message DLCSCom′ or LCSCom commitments

10 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

scheme, in G or GT respectively. This is more general than the relations cov-
ered by [8], since one can also commit scalars bit-by-bit. In the full version [6],
we detail how to build the corresponding SPHF, and prove the soundness of
our approach. For the sake of clarity, we focus here to a single equation only,
since multiple equations are just conjunctions. We can even consider the simpler
equation

∏i=m
i=1 Zi

zi = B, since one can lift any ciphertext from G to a cipher-
text in GT , setting Zi = e(Yi,Ai), as well as, for j = 1, 2, 3, Gi,j = e(gj ,Ai)
and for j = 1, 2, Hi,j = e(hj ,Ai), Ci,j = e(cj ,Ai), Di,j = e(dj ,Ai), to lift
all the group basis elements. Then, one transforms Ci = LCS∗(`, ek,Yi, ξ; zi) =

(ui = (g
zri
1 , g

zsi
2 , g

zri+zsi
3), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)zri · (c2dξ2)zsi) into (Ui =

(G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)zri · (Ci,2Dξ

i,2)zsi). En-
cryptions of Zi originally in GT use constant basis elements for j = 1, 2, 3,
Gi,j = Gj = e(gj , g) and for j = 1, 2, Hi,j = Hj = e(hj , g), Ci,j = Cj = e(cj , g),
Di,j = Dj = e(dj , g).

The commitments have been generated in G and GT simultaneously using the
m-DLCSCom′ version, with a common ξ, where the possible combination with
the companion ciphertext to the power ε leads to the above Ci, thereafter lifted to
GT . For the hashing keys, one picks random scalars (λ, (ηi, θi, κi, µi)i=1,...,m)

$←
Z4m+1
p , and sets hki = (ηi, θi, κi, λ, µi). One then computes the projection keys

as hpi = (gηi1 g
κi
3 h

λ
1 (c1d

ξ
1)µi , gθi2 g

κi
3 h

λ
2 (c2d

ξ
2)µi) ∈ G2. The hash value is∏

i

e(uηii,1 · u
θi
i,2 · u

κi
i,3 · e

λ
i · v

µi

i ,Ai)× B
−λ =

∏
i

e(hp
zri
i,1 hp

zsi
i,2 ,Ai),

where Ai is the constant used to compute Zi = e(Yi,Ai) and to lift ciphertexts
from G to GT , or Ai = gzi if the ciphertext was already in GT . These evaluations
can be computed either from the commitments and the hashing keys, or from
the projection keys and the witnesses. We insist on the fact that, whereas the
hash values are in GT , the projection keys are in G even if the ciphertexts are
initially in GT . We stress again that the projection keys require the knowledge of
ξ only: known from the LCSCom commitment or the first part C of the DLCSCom′

commitment.

5 Language-Authenticated Key Exchange

5.1 The Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake

(first provided in [11]) to more complex languages: the players agree on a common
secret key if and only if they own words that lie in the languages the partners
have in mind. More precisely, after an agreement on pub between Pi and Pj
(modeled here by the use of the split functionality, see below), player Pi uses
a word Wi belonging to Li = LRi

(pub, privi) and it expects its partner Pj to
use a word Wj belonging to the language L′j = LRj

(pub, priv′j), and vice-versa
for Pj and Pi. We assume relations Ri and Rj to be specified by the kind of

Efficient UC-Secure LAKE 11

The functionality Flake is parametrized by a security parameter k and a public
parameter pub for the languages. It interacts with an adversary S and a set of
parties P1,. . . ,Pn via the following queries:

– New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi, Li =
L(pub, privi), L

′
j = L(pub, priv′j)) from Pi,

• If this is the first NewSession-query with identifier sid, record the tuple
(Pi, Pj ,Wi, Li, L

′
j , initiator). Send (NewSession; sid, Pi, Pj , pub, initiator)

to S and Pj .
• If this is the second NewSession-query with identifier sid and if

there is a record (Pj , Pi,Wj , Lj , L
′
i, initiator), then record the tu-

ple (Pj , Pi,Wj , Lj , L
′
i, initiator,Wi, Li, L

′
j , receiver) and send the answer

(NewSession; sid, Pi, Pj , pub, receiver) to S and Pj .

– Key Computation: Upon receiving a query (NewKey : sid) from S, if there
is a record of the form (Pi, Pj ,Wi, Li, L

′
j , initiator,Wj , Lj , L

′
i, receiver) and

this is the first NewKey-query for session sid, then
• If (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj), then pick a

random key sk of length k and store (sid, sk). If one player is corrupted,
send (sid, success) to the adversary.

• Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is
corrupted.

– Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S, then

• if there is a record of the form (sid, sk′), then, if both players are uncor-
rupted, output (sid, sk′) to Pi. Otherwise, output (sid, sk) to Pi.

• if there is a record of the form (sid,⊥), then pick a random key sk′ of
length k and output (sid, sk′) to Pi.

Fig. 2. Ideal Functionality Flake

protocol we study (PAKE, Verifier-based PAKE, secret handshakes, . . .) and
so the languages are defined by the additional parameters pub, privi and privj
only: they both agree on the public part pub, to be possibly parsed in a different
way by each player for each language according to the relations. Note however
that the respective languages do not need to be the same or to use similar
relations: authentication means could be totally different for the 2 players. The
key exchange should succeed if and only if the two following pairs of equations
hold: (L′i = Li and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj).

Description. In the initial Fpake functionality [11], the adversary was given ac-
cess to a TestPwd-query, which modeled the on-line dictionary attack. But it is
known since [4] that it is equivalent to use the split functionality model [4], gen-
erate the NewSession-queries corresponding to the corrupted players and tell the
adversary (on behalf of the corrupted player) whether the protocol should suc-
ceed or not. Both methods enable the adversary to try a credential for a player
(on-line dictionary attack). The second method (that we use here) implies allow-
ing S to ask NewSession-queries on behalf of the corrupted player, and letting
it to be aware of the success or failure of the protocol in this case: the adver-
sary learns this information only when it plays on behalf of a player (corruption

12 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

Given the functionality Flake, the split functionality sFlake proceeds as follows:

– Initialization:

• Upon receiving (Init, sid, pubi) from party Pi, send (Init, sid, Pi, pubi) to the
adversary.

• Upon receiving a message (Init, sid, Pi, H, pub, sidH) from S, where H =
{Pi, Pj} is a set of party identities, check that Pi has already sent
(Init, sid, pubi) and that for all recorded (H ′, pub′, sidH′), either H = H ′,
pub = pub′ and sidH = sidH′ or H and H ′ are disjoint and sidH 6= sidH′ . If
so, record the pair (H, pub, sidH), send (Init, sid, sidH , pub) to Pi, and invoke

a new functionality (Flake, sidH , pub) denoted as F (H,pub)
lake and with set of

honest parties H.

– Computation:

• Upon receiving (Input, sid,m) from party Pi, find the setH such that Pi ∈ H,

the public value pub recorded, and forward m to F (H,pub)
lake .

• Upon receiving (Input, sid, Pj , H,m) from S, such that Pj /∈ H, forward m

to F (H,pub)
lake as if coming from Pj .

• When F (H,pub)
lake generates an output m for party Pi ∈ H, send m to Pi. If

the output is for Pj /∈ H or for the adversary, send m to the adversary.

Fig. 3. Split Functionality sFlake

or impersonation attempt). This is any way an information it would learn at
the end of the protocol. We insist that third parties will not learn whether the
protocol succeeded or not, as required for secret handshakes. To this aim, the
NewKey-query informs in this case the adversary whether the credentials are
consistent with the languages or not. In addition, the split functionality model
guarantees from the beginning which player is honest and which one is con-
trolled by the adversary. This finally allows us to get rid of the TestPwd-query.
The Flake functionality is presented in Figure 2 and the corresponding split
functionality sFlake in Figure 3, where the languages are formally described and
compared using the pub and priv parts.

The security goal is to show that the best attack for the adversary is a basic
trial execution with a credential of its guess or choice: the proof will thus consist
in emulating any real-life attack by either a trial execution by the adversary,
playing as an honest player would do, but with a credential chosen by the ad-
versary or obtained in any way; or a denial of service, where the adversary is
clearly aware that its behavior will make the execution fail.

5.2 A Generic UC-Secure LAKE Construction

Intuition. Using smooth projective hash functions on commitments, one can
generically define a LAKE protocol as done in [1]. The basic idea is to make the
player commit to their private information (for the expected languages and the
owned words), and eventually the smooth projective hash functions will be used
to make implicit validity checks of the global relation.

Efficient UC-Secure LAKE 13

To this aim, we use the commitments and associated smooth projective
hash functions as described in Sections 3 and 4. More precisely, all examples
of SPHF in Section 4 can be used on extractable commitments divided into
one or two parts (the non-equivocable LCSCom or the equivocable DLCSCom′

commitments, see Figure 1). The relations on the committed values will not be
explicitly checked, since the values will never be revealed, but will be implicitly
checked using SPHF. It is interesting to note that in both cases (one-part or
two-part commitment), the projection key will only depend on the first part of
the commitment.

As it is often the case in the UC setting, we need the initiator to use
stronger primitives than the receiver. They both have to use non-malleable and
extractable commitments, but the initiator will use a commitment that is addi-
tionally equivocable, the DLCSCom′ in two parts ((Ci, C′i) and Comi = Ci · C′i

ε
),

while the receiver will only need the basic LCSCom commitment in one part
(Comj = Cj).

As already explained, SPHF will be used to implicitly check whether (L′i = Li
and Wi ∈ Li) and (L′j = Lj and Wj ∈ Lj). But since in our instantiations
private parameters priv and words W will have to be committed, the structure
of these commitments will thus be publicly known in advance: commitments of
P-elements and S-elements. Section 6 discusses on the languages captured by
our definition, and illustrates with some AKE protocols. However, while these
P and S sets are embedded in Gn from some n, it might be important to prove
that the committed values are actually in P and S (e.g., one can have to prove
it commits bits, whereas messages are first embedded as group elements in G of
large order p). This will be an additional language-membership to prove on the
commitments.

This leads to a very simple protocol described on Figure 4. Note that if a
player wants to make external adversaries think he owns an appropriate word, as
it is required for Secret Handshakes, he can still play, but will compute everything
with dummy words, and will replace the ProjHash evaluation by a random value,
which will lead to a random key at the end.

Security Analysis. Since we have to assume common pub, we make a first
round (with flows in each direction) where the players send their contribution,
to come up with pub. These flows will also be used to know if there is a player
controlled by the adversary (as with the Split Functionality [4]). In case the
languages have empty pub, these additional flows are not required, since the
Split Functionality can be applied on the committed values. The signing key for
the receiver is not required anymore since there is one flow only from its side.
This LAKE protocol is secure against static corruptions. The proof is provided
in the full version [6], and is in the same vein as the one in [1,11]. However, it is
a bit more intricate:

– in PAKE, when one is simulating a player, and knows the adversary used
the correct password, one simply uses this password for the simulated player.
In LAKE, when one knows the language expected by the adversary for the

14 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

Execution between Pi and Pj , with session identifier sid.

– Preliminary Round: each user generates a pair of signing/verification keys
(SK,VK) and sends VK together with its contribution to the public part of the
language.

We denote by `i the label (sid, ssid, Pi, Pj , pub,VKi,VKj) and by `j the label
(sid, ssid, Pi, Pj , pub,VKj ,VKi), where pub is the combination of the contribu-
tions of the two players. The initiator now uses a word Wi in the language
L(pub, privi), and the receiver uses a word Wj in the language L(pub, privj), possi-
bly re-randomized from their long-term secrets (*). We assume commitments and
associated smooth projective hash functions exist for these languages.

– First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′

commitment on (privi, priv
′
j ,Wi) in (Ci, C′i), where Wi has been randomized in

the language, under the label `i. It also computes a Pedersen commitment on
C′i in C′′i (with random exponent t). It then sends (Ci, C′′i) to Pj ;

– Second Round: user Pj (with random tape ωj) computes a multi-LCS commit-
ment on (privj , priv

′
i,Wj) in Comj = Cj , with witness r, where Wj has been

randomized in the language, under the label `j . It then generates a challenge
ε on Ci and hashing/projection keys (**) hki and hpi associated to Ci (which
will be associated to the future Comi). It finally signs all the flows using SKj
in σj , and sends (Cj , ε, hpi, σj) to Pi;

– Third Round: user Pi first checks the signature σj , computes Comi = Ci ×C′i
ε

and witness z (from ε and ωi), it generates hashing/projection keys hkj and
hpj associated to Comj . It finally signs all the flows using SKi in σi, and sends
(C′i, t, hpj , σi) to Pj ;

– Hashing: Pj first checks the signature σi and the correct opening of C′′i into
C′i, it computes Comi = Ci × C′i

ε
.

Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), `j ,Comj)

×ProjHash(hpi, {(privi, priv
′
j)} × L(pub, privi), `i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv
′
i)} × L(pub, privj), `j ,Comj ; r)

×Hash(hki, {(priv′i, privj)} × L(pub, priv′i), `i,Comi)

(*) As explained in Section 1, recall that the languages considered depend
on two possibly different relations, namely Li = LRi(pub, privi) and Lj =
LRj (pub, privj), but we omit them for the sake of clarity. We assume they are
both self-randomizable.
(**) Recall that the SPHF is constructed in such a way that this projection key
does not depend on C′i and is indeed associated to the future whole Comi.

Fig. 4. Language-based Authenticated Key Exchange from a Smooth Projective Hash
Function on Commitments

Efficient UC-Secure LAKE 15

simulated player and has to simulate a successful execution (because of suc-
cess announced by the NewKey-query), one has to actually include a correct
word in the commitment: smooth projective hash functions do not allow the
simulator to cheat, equivocability of the commitment is the unique trapdoor,
but with a valid word. The languages must allow the simulator to produce
a valid word W in L(pub, priv), for any pub and priv ∈ P provided by the
adversary or the environment. This will be the case in all the interesting
applications of our protocol (see Section 6): if priv defines a Waters’ verifica-
tion key vk = gx, with the master key s such that h = gs, the signing key is
sk = hx = vks, and thus the simulator can sign any message; if such a master
key does not exist, one can restrict P, and implicitly check it with the SPHF
(the additional language-membership check, as said above). But since a ran-
dom word is generated by the simulator, we need the real player to derive a
random word from his own word, and the language to be self-randomizable.

– In addition, as already noted, our commitment DLCSCom′ is not formally
binding (contrarily to the much less efficient one used in [1]). The adversary
can indeed make the extraction give M from Ci, whereas Comi will eventually
contain M ′ if C′i does not encrypt (1G)n. However, since the actual value
M ′ depends on the random challenge ε, and the language is assumed sparse
(otherwise authentication is easy), the protocol will fail: this can be seen as
a denial of service from the adversary.

Theorem 1. Our LAKE scheme from Figure 4 realizes the sFlake functionality
in the Fcrs-hybrid model, in the presence of static adversaries, under the DLin
assumption and the security of the One-Time Signature.

Actually, from a closer look at the full proof, one can notice that Comj = Cj
needs to be extractable, but IND− CPA security is enough, which leads to a
shorter ciphertext (2 group elements less if one uses a Linear ciphertext instead
of LCS). Similarly, one will not have to extract Wi from Ci when simulating
sessions where Pi is corrupted. As a consequence, only the private parts of the
languages have to be committed to in Comi in the first and third rounds, whereas
Wi can be encrypted independently with an IND− CPA encryption scheme in the
third round only (5 group elements less in the first round, and 2 group elements
less in the third round if one uses a Linear ciphertext instead of LCS).

6 Concrete Instantiations and Comparisons

In this section, we first give some concrete instantiations of several AKE proto-
cols, using our generic protocol of LAKE, and compare the efficiencies of those
instantiations.

6.1 Possible Languages

As explained above, our LAKE protocol is provably secure for self-randomizable
languages only. While this notion may seem quite strong, most of the usual lan-
guages fall into it. For example, in a PAKE or a Verifier-based PAKE scheme,

16 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

the languages consist of a single word and so trivially given a word, each user
is able to deduce all the words in the language. One may be a little more wor-
ried about Waters Signature in our Secret Handshake, and/or Linear pairing
equations. However the self-randomizability of the languages is easy to show:

– Given a Waters signature σ = (σ1, σ2) over a message m valid under a
verification key vk, one is able to randomize the signature into any signature
over the same message m valid under the same verification key vk simply by
picking a random s and computing σ′ = (σ1 · F(m)s, σ2 · gs).

– For linear pairing equations, with public parameters Ai for i = 1, . . . ,m
and γi for i = m + 1, . . . , n, and B, given (X1, . . . ,Xm,Zm+1, . . . ,Zn) veri-
fying

∏m
i=1 e(Xi,Ai) ·

∏n
i=m+1Z

γi
i = B, one can randomize the word in the

following way:
• If m < n, one simply picks random (X ′1, . . . ,X ′m), (Z ′m+1, . . . ,Z ′n−1) and

sets Z ′n = (B/(
∏m
i=1 e(X ′i ,Ai) ·

∏n−1
i=m+1Z ′i

γi))1/γn ,
• Else, if m = n > 1, one picks random r1, . . . , rn−1 and set X ′i = Xi · Arin ,

for i = 1, . . . ,m− 1 and X ′m = Xm ·
∏m−1
i=1 A

−ri
i ,

• Else m = n = 1, this means only one word satisfies the equation. So we
already have this word.

As we can see most of the common languages manageable with a SPHF are
already self-randomizable. We now show how to use them in concrete instantia-
tions.

6.2 Concrete Instantiations

Password-Authenticated Key Exchange. Using our generic construction,
we can easily obtain a PAKE protocol, as described on Figure 5, where we
optimize from the generic construction, since pub = ∅, removing the agreement
on pub, but still keeping the one-time signature keys (SKi,VKi) to avoid man-
in-the-middle attacks since it has another later flow: Pi uses a password Wi and
expects Pj to own the same word, and thus in the language L′j = Li = {Wi};
Pj uses a password Wj and expects Pi to own the same word, and thus in the
language L′i = Lj = {Wj}; The relation is the equality test between privi and
privj , which both have no restriction in G (hence P = G). As the word Wi, the

language private parameters privi of a user and priv′j of the expected language
for the other user are the same, each user can commit in the protocol to only
one value: its password.

We kept the general description and notations in Figure 5, but Cj can be a
simply IND− CPA encryption scheme. It is quite efficient and relies on the DLin
assumption, with DLCS for (Ci, C′i) and thus 10 group elements, but a Linear
encryption for Cj and thus 3 group elements. Projection keys are both 2 group
elements. Globally, Pi sends 13 groups elements plus 1 scalar, a verification key
and a one-time signature, while Pj sends 5 group elements and 1 scalar: 18
group elements and 2 scalars in total. We can of course instantiate it with the
Cramer-Shoup and ElGamal variants, under the DDH assumption: Pi sends 8

Efficient UC-Secure LAKE 17

Pi uses a password Wi and Pj uses a password Wj . We denote ` = (sid, ssid, Pi, Pj).

– First Round: Pi (with random tape ωi) first generates a pair of sign-
ing/verification keys (SKi,VKi) and a DLCSCom′ commitment on Wi in
(Ci, C′i), under `i = (`,VKi). It also computes a Pedersen commitment on
C′i in C′′i (with random exponent t). It then sends (VKi, Ci, C′′i) to Pj ;

– Second Round: Pj (with random tape ωj) computes a LCSCom commitment
on Wj in Comj = Cj , with witness r, under the label `. It then generates a
challenge ε on Ci and hashing/projection keys hki and the corresponding hpi
for the equality test on Comi (”Comi is a valid commitment of Wj”, this only
requires the value ξi computable thanks to Ci). It then sends (Cj , ε, hpi) to Pi;

– Third Round: user Pi can compute Comi = Ci × C′i
ε

and witness z (from ε
and ωi), it generates hashing/projection keys hkj and hpj for the equality test
on Comj . It finally signs all the flows using SKi in σi and send (C′i, t, hpj , σi)
to Pj ;

– Hashing: Pj first checks the signature and the validity of the Pedersen com-
mitment (thanks to t), it computes Comi = Ci × C′i

ε
. Pi computes Ki and Pj

computes Kj as follows:

Ki = Hash(hkj , L
′
j , `,Comj) · ProjHash(hpi, Li, `i,Comi; z)

Kj = ProjHash(hpj , Lj , `,Comj ; r) · Hash(hki, L
′
i, `i,Comi)

Fig. 5. Password-based Authenticated Key Exchange

groups elements plus 1 scalar, a verification key and a one-time signature, while
Pj sends 3 group elements and 1 scalar (all group elements can be in the smallest
group): 11 group elements and 2 scalars in total.

Verifier-based PAKE. The above scheme can be modified into an efficient
PAKE protocol that is additionally secure against server compromise: the so-
called verifier-based PAKE, where the client owns a password pw, while the
server knows a verifier only, such as gpw, so that in case of break-in to the server,
the adversary will not immediately get all the passwords.

To this aim, as usually done, one first does a PAKE with gpw as common
password, then asks the client to additionally prove it can compute the Diffie-
Hellman value hpw for a basis h chosen by the server. Ideally, we could implement
this trick, where the client Pj just considers the equality test between the gpw

and the value committed by the server for the language L′i = Lj , while the server
Pi considers the equality test with (gpw, hpw), where h is sent as its contribution
to the public part of the language by the server Li = L′j . Since the server
chooses h itself, it chooses it as h = gα, for an ephemeral random α, and can
thus compute hpw = (gpw)α. On its side, the client can compute this value since
it knows pw. The client could thus commit to (gpw, hpw), in order to prove its
knowledge of pw, whereas the server could just commit to gpw. Unfortunately,
from the extractability of the server commitment, one would just get gpw, which
is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and
they both run the previous PAKE protocol with (gpw, hpw) as common password,

18 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

and mutually checked: h is seen as the pub part, hence the preliminary flows are
required.

Credential-Authenticated Key Exchange. In [8], the authors proposed in-
stantiations of the CAKE primitive for conjunctions of atomic policies that are

defined algebraically by relations of the form
∏k
j=1 g

Fj

j = 1 where the gj ’s are
elements of an abelian group and Fj ’s are integer polynomials in the variables
committed by the users.

The core of their constructions relies on their practical UC zero-knowledge
proof. There is no precise instantiation of such proof, but it is very likely to be
inefficient. Their proof technique indeed requires to transform the underlying
Σ-protocols into corresponding Ω-protocols [16] by verifiably encrypting the
witness. An Ω-protocol is a Σ-protocol with the additional property that it
admits a polynomial-time straight-line extractor. Since the witnesses are scalars
in their algebraic relations, their approach requires either inefficient bit-per-bit
encryption of these witnesses or Paillier encryption in which case the problem
of using group with different orders in the representation and in the encryption
requires additional overhead.

Even when used with Σ-protocols, their PAKE scheme without UC-security,
requires at least two proofs of knowledge of representations that involve at least
30 group elements (if we assume the encryption to be linear Cramer Shoup), and
some extra for the last proof of existence (cf. [9]), where our PAKE requires less
than 20 group elements. Anyway they say, their PAKE scheme is less efficient
than [11], which needed 6 rounds and around 30 modular exponentiations per
user, while our efficient PAKE requires less than 40 exponentiations, in total, in
only 3 rounds. Our scheme is therefore more efficient than the scheme from [11]
for the same security level (i.e. UC-security with static corruptions).

Secret-Handshakes. We can also instantiate a (linkable) Secret Handshakes
protocol, using our scheme with two different languages: Pi will commit to a
valid signature σi on a message mi (his identity for example), under a private
verification key vki, and expects Pj to commit to a valid signature on a message
m′j under a private verification key vk′j ; but Pj will do analogously with a sig-

nature σj on mj under vkj , while expecting a signature on m′i under vk′i. The
public parts of the signature (the second component) are sent in clear with the
commitments.

In a regular Secret Handshakes both users should use the same languages.
But here, we have a more general situation (called dynamic matching in [2]):
the two participants will have the same final value if and only if they both
belong to the organization the other expects. If one lies, our protocol guarantees
no information leakage. Furthermore, the semantic security of the session is
even guaranteed with respect to the authorities, in a forward-secure way (this
property is also achieved in [19] but in a weaker security model). Finally, our
scheme supports revocation and can handle roles as in [2].

Standard secret handshakes, like [2], usually work with credentials delivered
by a unique authority, this would remove our need for a hidden verification
key, and private part of the language. Both users would only need to commit

Efficient UC-Secure LAKE 19

to signatures on their identity/credential, and show that they are valid. This
would require a dozen of group elements with our approach. Their construction
requires only 4 elements under BDH, however it relies on the asymmetric Waters
IBE with only two elements, whereas the only security proof known for such
IBE [15] requires an extra term in G2 which would render their technique far
less efficient, as several extra terms would be needed to expect a provably secure
scheme. While sometimes less effective, our LAKE approach can manage Secret
Handshakes, and provide additional functionalities, like more granular control on
the credential as part of them can be expressly hidden by both the users. More
precisely, we provide affiliation-hiding property and let third parties unaware of
the success/failure of the protocol.

Unlinkable Secret-Handshakes. Moving the users’ identity from the public
pub part to individual private priv part, and combining our technique with [7],
it is also possible to design an unlinkable Secret Handshakes protocol [19] with
practical efficiency. It illustrates the case where committed values have to be
proven in a strict subset of G, as one has to commit to bits: the signed message
M is now committed and not in clear, it thus has to be done bit-by-bit since the
encoding G does not allow algebraic operations with the content to apply the
Waters function on the message. It is thus possible to prove the knowledge of a
Waters signature on a private message (identity) valid under a private verification
key. Additional relations can be required on the latter to make authentication
even stronger.

Acknowledgments

This work was supported in part by the European Commission through the
FP7-ICT-2011-EU-Brazil Program under Contract 288349 SecFuNet and the
ICT Program under Contract ICT-2007-216676 ECRYPT II.

References

1. Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hash-
ing for conditionally extractable commitments. In CRYPTO 2009, LNCS 5677,
pages 671–689. Springer, August 2009.

2. Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes
with dynamic and fuzzy matching. In NDSS 2007. The Internet Society, Febru-
ary / March 2007.

3. Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Stad-
don, and Hao-Chi Wong. Secret handshakes from pairing-based key agreements.
In IEEE Symposium on Security and Privacy, pages 180–196. IEEE Computer
Society, 2003.

4. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
computation without authentication. In CRYPTO 2005, LNCS 3621, pages 361–
377. Springer, August 2005.

20 F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud

5. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security
and Privacy, pages 72–84. IEEE Computer Society Press, May 1992.

6. Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. Efficient UC-secure authenticated key-exchange for algebraic
languages. In PKC 2013, LNCS. Springer, 2013. Full version available from the
web page of the authors or from http://eprint.iacr.org/2012/284.

7. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-
preserving protocols with smooth projective hash functions. In TCC 2012, LNCS
7194, pages 94–111. Springer, March 2012.

8. Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential
authenticated identification and key exchange. In CRYPTO 2010, LNCS 6223,
pages 255–276. Springer, August 2010.

9. Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical
universally composable zero-knowledge protocols. In ASIACRYPT 2011, LNCS,
pages 449–467. Springer, December 2011.

10. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

11. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In EUROCRYPT 2005,
LNCS 3494, pages 404–421. Springer, May 2005.

12. Ran Canetti and Tal Rabin. Universal composition with joint state. In
CRYPTO 2003, LNCS 2729, pages 265–281. Springer, August 2003.

13. Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of
the Moore-Penrose pseudoinverse and its application to secure linear algebra. In
CRYPTO 2007, LNCS 4622, pages 613–630. Springer, August 2007.

14. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT 2002,
LNCS 2332, pages 45–64. Springer, April / May 2002.

15. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE.
In CT-RSA 2010, LNCS 5985, pages 148–164. Springer, March 2010.

16. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, April 2006.

17. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenti-
cated key exchange. In EUROCRYPT 2003, LNCS 2656, pages 524–543. Springer,
May 2003.

18. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In EUROCRYPT 2008, LNCS 4965, pages 415–432. Springer, April 2008.

19. Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and conditional
oblivious transfer. In CRYPTO 2009, LNCS 5677, pages 90–107. Springer, August
2009.

20. Yehuda Lindell. Highly-efficient universally-composable commitments based on the
DDH assumption. In EUROCRYPT 2011, LNCS 6632, pages 446–466. Springer,
May 2011.

21. Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074, 2007.

22. Brent R. Waters. Efficient identity-based encryption without random oracles. In
EUROCRYPT 2005, LNCS 3494, pages 114–127. Springer, May 2005.

