
Non-Interactive Key Exchange

Eduarda S.V. Freire1,?, Dennis Hofheinz2,??, Eike Kiltz3,? ? ?, and
Kenneth G. Paterson1,†

1 Royal Holloway, University of London
2 Karlsruhe Institute of Technology

3 Ruhr-Universität Bochum

Abstract Non-interactive key exchange (NIKE) is a fundamental but
much-overlooked cryptographic primitive. It appears as a major contri-
bution in the ground-breaking paper of Diffie and Hellman, but NIKE has
remained largely unstudied since then. In this paper, we provide different
security models for this primitive and explore the relationships between
them. We then give constructions for secure NIKE in the Random Ora-
cle Model based on the hardness of factoring and in the standard model
based on the hardness of a variant of the decisional Bilinear Diffie Hell-
man Problem for asymmetric pairings. We also study the relationship
between NIKE and public key encryption (PKE), showing that a secure
NIKE scheme can be generically converted into an IND-CCA secure PKE
scheme. Our conversion also illustrates the fundamental nature of NIKE
in public key cryptography.

Keywords: non-interactive key exchange, public-key cryptography, pair-
ings.

1 Introduction

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables
two parties, who know each others’ public keys, to agree on a symmetric shared
key without requiring any interaction. The canonical example of a NIKE scheme
can be found in the seminal paper by Diffie and Hellman [1]: let G be a group
of prime order p with generator g, and assume Alice has public key gx ∈ G and
private key x ∈ Zp, while Bob has public key gy ∈ G and private key y ∈ Zp.
Then Alice and Bob can both compute the value gxy ∈ G without exchanging
any messages. More properly, Alice and Bob should hash this key together with
their identities in order to derive a symmetric key H(Alice, Bob, gxy).

? Eduarda S.V. Freire was supported by CAPES Foundation/Brazil on grant 0560/09-
0 and Royal Holloway, University of London.

?? Dennis Hofheinz was supported by a DFG grant (GZ HO 4534/2-1).
? ? ? Eike Kiltz was funded by a Sofja Kovalevskaja Award of the Alexander von Hum-

boldt Foundation and the German Federal Ministry for Education and Research.
† Kenneth G. Paterson was supported by EPSRC Leadership Fellowship

EP/H005455/1.

This example encapsulates in a nutshell all the basic features required of
a NIKE scheme: users should agree on some common parameters (p, G and g
here), then create their key pairs. Once these are computed and the public keys
distributed, any pair of users can set up a shared key without further exchange of
messages. The security properties desired of NIKE are, informally at least, clear:
compromise of one user’s private key should not affect the security of shared keys
between pairs of uncorrupted users; compromise of one shared key should not
undermine the security of other shared keys. Naturally, since the primitive is non-
interactive, one cannot hope to obtain any kind of forward security properties.
In practice, the public keys will be certified, and consideration needs to be given
to modelling the key registration process.

NIKE has real-world applications. In wireless and sensor networks, conserv-
ing battery power is a prime concern, and so the energy cost of communication
must be minimised. Thus using key establishment methods that minimise the
number of bits that need to be transmitted is of fundamental importance. In
particular, when faced with a jamming adversary, reducing the total number
of rounds of interaction needed to establish a key is particularly helpful. NIKE
is an excellent option in solving this problem, since a key can be established
with minimal communication and interaction: assuming the public keys are pre-
distributed, all that is needed is an exchange of identifiers for those keys, and of-
ten this exchange must take place anyway, in order to establish communications.
A recent paper [2] gives a detailed evaluation of the energy costs of interactive
and non-interactive key exchange protocols in the ID-based and PKI settings
for wireless communications with a jamming adversary, demonstrating that sig-
nificant energy savings can be made by adopting a non-interactive approach to
key establishment. Its non-interactive nature makes NIKE an abstract building
block that is qualitatively different from interactive key exchange: e.g., to achieve
deniable authentication, [3] explicitly requires a non-interactive key exchange.
But NIKE can also be used as a basis for interactive key exhange [4]: one can
use the shared key in a MAC to authenticate an exchange of ephemeral Diffie-
Hellman values. Finally, NIKE can be used to build very simple non-interactive
designated verifier signature schemes [5], again using the shared key in a MAC
to authenticate messages. Thus NIKE appears in various guises throughout the
literature.

Despite its appearing in the very first paper on public key cryptography, the
NIKE primitive has so far received scant attention as a primitive in its own right.
Cash, Kiltz and Shoup (CKS) [6] provided a basic security model for NIKE and
analysed the Diffie-Hellman-based scheme above, as well as a twinned variant of
it, in the Random Oracle Model (ROM). There is also some work in the ID-based
setting [7,8,9,10], also all restricted to the ROM.

Our contributions: Our contention is that NIKE is long overdue for more
serious attention and development. In this paper, we initiate the systematic study
of NIKE in the public key setting, providing: models and their relationships;
constructions for secure NIKE in the Random Oracle Model and in the standard
model in the challenging setting where the adversary can introduce arbitrary

2

public keys into the system; and a construction for IND-CCA secure public
key encryption (PKE) from any secure NIKE. Let us expand on each of these
contributions in turn.

Models: It would seem that definitions and security models for interactive key
exchange (e.g., [11,12,13,14]) could provide a natural starting point for formalis-
ing NIKE. However, here we take the CKS definition [6] for NIKE as our starting
point. One reason for using a case-tailored NIKE definition is simplicity: exist-
ing security models for interactive key exchange give considerable attention to
properties which are irrelevant in the NIKE setting. (For instance, forward se-
curity, multiple sessions, and in particular the pairing of sessions play no role
in a non-interactive setting.) Another reason for a case-tailored NIKE definition
is that we can focus on adversarial key registration queries; these are usually
only implicitly [14] (or not at all [11,13]) considered in the standard models for
interactive key exchange4. However, in our setting, adversarial key registrations
pose the main technical obstacle to achieve NIKE security, as we will explain
below.

The CKS security model for NIKE uses an indistinguishability- and game-
based approach to define security, with the adversary being required to distin-
guish real from random keys in responses to its test queries. The model does
allow the adversary to register public keys of his choice in the system and then
to make queries for the shared keys between these “corrupted” users and honest
(non-adversarially controlled) users, so-called corrupt reveal queries. This trans-
lates in the real world to minimising the assumptions made about certification
procedures followed by the Certification Authority (CA) in the PKI supporting
the NIKE: it means that the CA is not assumed to check that a public key sub-
mitted for certification has not been submitted before, and does not check that
the party submitting the public key knows the corresponding private key. The
model for NIKE in [6] is similar to, and presumably inspired by, the early work of
Shoup [12] on interactive key exchange, where capturing so-called PKI attacks,
also known as rogue-key attacks, was intrinsic to the security modelling. This
modelling approach is referred to elsewhere in the literature as the plain setting
(see [16,17] and the references therein) or the bare PKI setting [3]. The CKS
model is certainly more challenging than settings where proofs of knowledge or
proofs of possession of private keys are assumed to be given during registration,
or where the adversary must reveal its secret key directly (as with the knowl-
edge of secret key assumption used in [18,19]). However, the CKS model has
some shortcomings: the adversary is not allowed to directly query for the shared
keys held between pairs of honest users, but instead only gets to see real or
random values for these via test queries. Moreover the model does not allow an
adversary to query for the private keys of honestly registered users.

Therefore, as a necessary precursor to the further development of NIKE, we
start by exploring different models for NIKE and their relationships (Section 2).

4 We mention that some security analyses (e.g., [15]) and Shoup’s security model [12]
do explicitly consider adversarial key registration queries.

3

In summary, we introduce three new security models for NIKE and show that
they are all polynomially equivalent to one another and to the original CKS
model from [6]. One of our models, the m-CKS-heavy model, augments the
CKS model and effectively allows all conceivable queries, without allowing the
adversary to win trivially. It is our preferred security model for NIKE. Another
of our models, CKS-light, allows only two honest users, no corruption of honest
users, and a single test query. Thus it is particularly simple and so easy to use
when analyzing specific NIKE schemes; moreover our results showing equivalence
between the models ensure that security in this model implies security in the
preferred m-CKS-heavy model.

We stress that all these models allow the adversary to register public keys of
his choice in the system, so are in the plain setting.

Constructions for NIKE: In Section 4, we give two concrete constructions for
NIKE schemes meeting our CKS-light security definition, and hence secure in
our preferred m-CKS-heavy model (with dishonest key registrations).

Our two constructions are inspired by public key encryption (PKE) schemes
which are secure against chosen-ciphertext attacks (IND-CCA secure). We note
that dealing with corrupt reveal queries requires techniques to guard against ac-
tive attacks, which in part explains the connection to IND-CCA security. Indeed,
we will also show how to go in the reverse direction, converting any secure NIKE
scheme into an IND-CCA secure PKE scheme, see below. We stress, however,
that we cannot simply take any IND-CCA secure PKE scheme and directly inter-
pret it as a NIKE scheme.5 Rather, our constructions for NIKE exploit specific
properties of the underlying PKE schemes. In fact, our belief is that a generic
construction for secure NIKE from PKE is unlikely to be forthcoming.

The first scheme acts as a warm-up. It is provably secure under the fac-
toring assumption in the Random Oracle Model (ROM) and uses ideas from
[20] to analyse the basic Diffie-Hellman scheme, where keys are of the form
H(Alice, Bob, gxy), in the group of signed quadratic residues. We note that
closely related schemes were analysed in [6], but in different groups and under
different assumptions. Specifically, a twinned version of the scheme was proved
secure under the CDH assumption, while it is stated that the basic Diffie-Hellman
scheme is secure under the Strong DH assumption.

We remark that the latter claim of [6] is problematic. Concretely, the Strong
DH assumption is not (directly) sufficient to show that the basic Diffie-Hellman
scheme is secure. Namely, the corresponding security reduction requires two
DDH oracles – one for each of the two users sharing the key on which the
adversary wants to be challenged – while the Strong DH assumption supplies
only one. Certainly this problem could be solved instead by appealing to a suit-
able gap-DH assumption. We show how to overcome this problem in the group

5 One reason is that it is not clear what should correspond to the NIKE public key:
a PKE public key, a PKE ciphertext, or a combination of both? Besides, the cor-
responding security experiments for NIKE and PKE schemes are rather different:
there usually is one challenge ciphertext in a PKE security experiment, while there
are at least two challenge users in a NIKE security experiment.

4

of signed quadratic residues without the need to rely on a gap assumption. We
then proceed to sketch how to transport this scheme to the standard model,
under the additional assumption that the adversary only registers valid public
keys. Because of the extra assumption, this scheme does not strictly speaking
meet our security definitions, and would require validity to be enforced by some
means in an interactive registration protocol (for example, via a proof of correct-
ness of the public key). This limitation of our standard model, factoring-based
solution reflects the technical challenge involved in achieving our “bare PKI”
security notions.

Our second NIKE scheme is provably secure in the standard model and com-
bines a specific weak Programmable Hash Function [21] whose output lies in a
pairing group and a Chameleon hash function [22]. This enables the simulation
in our security proof for the scheme to handle the tricky queries for shared keys
involving an honestly generated public key and an adversarially chosen public
key. Similar ideas were used in the context of HIBE in [23]. We also make use
of the pairing to provide a means of checking that public keys coming from the
adversary are in some sense well-formed. We work with asymmetric pairings for
efficiency at high security levels (and because it does not add any real complex-
ity to the description of our scheme). The scheme’s security relies on a natural
variant of the Decisional Bilinear Diffie-Hellman (DBDH) assumption for the
asymmetric setting.

From NIKE to PKE: In Section 5, we explore the connections between NIKE
and public key encryption (PKE). That such connections exist should not be too
much of a surprise: it is folklore that the ElGamal encryption scheme [24] can
be seen as arising from the Diffie-Hellman NIKE scheme by making the sender’s
key pair (gx, x) ephemeral and using the receiver’s public key gy to create the
basis for a shared key gxy. Similar connections were explored in the ID-based
setting in [10].

In our setting with dishonest key registrations, we provide a simple, generic
construction for PKE from NIKE that is also in the spirit of the original Diffie-
Hellman–to–ElGamal conversion. The construction takes a NIKE scheme that is
secure in our CKS-light model (with dishonest key registrations) and a strongly
one-time secure signature scheme as inputs, and produces from these components
a Key Encapsulation Mechanism (KEM) that we prove to be IND-CCA secure.
A secure PKE from such a KEM can be obtained using standard results. At a
high level, the key pair for the KEM is a randomly generated key pair (pk, sk)
from the NIKE scheme, ciphertexts are also randomly generated public keys pk′

from the NIKE scheme (together with a one-time signature that binds the public
key to an identity), while the encapsulated key is the shared key computed from
sk′ and pk; the receiver computes the same key from sk and pk′, assuming the
one-time signature verifies. In order to prove the KEM to be IND-CCA secure,
we exploit the presence of corrupt reveal queries in the NIKE security model in
an essential way to handle certain decapsulation queries. The resulting KEM is
almost as efficient as the underlying NIKE scheme.

5

The fact that secure NIKE implies IND-CCA-secure PKE, one of the most
important primitives in cryptography, illustrates the fundamental role and utility
of NIKE. We believe that this connection should spur further research on the
topic.

2 Non-interactive Key Exchange and Security Models

2.1 Non-interactive Key Exchange

Following [6], we formally define a Non-Interactive Key Exchange (NIKE) scheme
in the public key setting to be a collection of three algorithms: CommonSetup,
NIKE.KeyGen and SharedKey together with an identity space IDS and a shared
key space SHK. Note that identities in the scheme and security model are merely
used to track which public keys are associated with which users – we are not in
the identity-based setting.

– CommonSetup: On input 1k, outputs params, a set of system parameters.
– NIKE.KeyGen: On input params and an identity ID ∈ IDS, outputs a pub-

lic key/secret key pair (pk, sk). This algorithm is probabilistic and can be
executed by any user. We assume, without loss of generality, that params is
included in pk.

– SharedKey: On input an identity ID1 ∈ IDS and a public key pk1 along with
another identity ID2 ∈ IDS and a secret key sk2, outputs either a shared
key in SHK for the two identities, or a failure symbol ⊥. This algorithm is
assumed to always output ⊥ if ID1 = ID2.

For correctness, we require that, for any pair of identities ID1, ID2, and corre-
sponding key pairs (pk1, sk1) and (pk2, sk2), algorithm SharedKey satisfies the
constraint:

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1).

2.2 Definitions of Security for Non-interactive Key Exchange

Cash, Kiltz and Shoup [6] proposed a security model for NIKE schemes in the
public key setting, denoted here by the CKS model. This model abstracts away
all considerations concerning certification and PKI in a particularly nice way.
It allows an adversary to obtain honestly generated public keys, but also to
then associate such public keys with other identities, and to register dishonestly
generated public keys (for which the adversary need not know the corresponding
private keys). This dishonest key registration (DKR) setting (abstractly) models
a PKI where minimal assumptions are made about the actions of the Certificate
Authority (CA): the CA is not assumed to check that a public key has not been
previously registered to another user, and does not demand a proof of knowledge
or possession of the private key when issuing a certificate on a public key. This
conservative approach to modelling is fully appropriate given the great diversity

6

in how CAs operate in the real world. The model can be seen as a natural
adaptation of the approach of Shoup [12] for modelling interactive key exchange
to the NIKE setting and is analogous to the plain setting studied in [16,17].

However, there are some obvious omissions from the model, including the
ability of an adversary to “corrupt” honestly generated public keys to learn
the corresponding private keys, and the ability of a user to directly learn the
key shared between two honest parties in the system (which could be possible,
for example, because of cryptanalysis of a scheme making use of the shared
key). Equivalent queries in the ID-based setting were permitted in the model
introduced in [10].

For this reason, we augment the original CKS model with the “missing”
queries, introducing the m-CKS-heavy model. We regard this as providing the
“correct” model for NIKE. We also introduce two further models, the CKS-
heavy and CKS-light models. These differ from m-CKS-heavy and the original
CKS model only in the numbers and types of query that the adversary is allowed
to make. Next we present in detail the m-CKS-heavy model. Then in Table 1 we
summarize the differences between these security models in the DKR setting.

The m-CKS-heavy model: Our model is stated in terms of a game between an
adversary A and a challenger C. In this game, C takes as input the security
parameter 1k, runs algorithm CommonSetup of the NIKE scheme and gives A
params. The challenger takes a random bit b and answers oracle queries for A
until A outputs a bit b̂. The challenger answers the following types of queries for
A:

– Register honest user ID : A supplies an identity ID ∈ IDS. On input params
and ID, the challenger runs NIKE.KeyGen to generate a public key/secret
key pair (pk, sk) and records the tuple (honest , ID, pk, sk). The challenger
returns pk to A.

– Register corrupt user ID : In this type of query, A supplies both an iden-
tity ID ∈ IDS and a public key pk. The challenger records the tuple
(corrupt , ID, pk,⊥). We stress that A may make multiple “Register corrupt
user ID” queries for the same ID during the experiment. In that case, only
the most recent (corrupt , ID, pk,⊥) entry is kept.

– Extract queries: Here A supplies an identity ID that was registered as an
honest user. The challenger looks for a tuple (honest , ID, pk, sk) containing
ID and returns sk to A.

– Reveal queries: HereA supplies a pair of registered identities ID1, ID2, subject
only to the restriction that at least one of the two identities was registered
as honest. The challenger runs SharedKey using the secret key of one of the
honest identities and the public key of the other identity and returns the
result to A. Note that here the adversary is allowed to make reveal queries
between two users that were originally registered as honest users. We denote
by honest reveal the queries involving two honest users and by corrupt reveal
the queries involving an honest user and a corrupt user.

7

Model
Register Register

Extract
Honest Corrupt

Test
Honest Corrupt Reveal Reveal

CKS-light 2 X 7 7 X 1
CKS X X 7 7 X X
CKS-heavy X X X X X 1
m-CKS-heavy X X X X X X

Table 1. Types of queries for different security models in the dishonest key registration
(DKR) PKI model (aka plain/bare model). Notation: Xmeans that an adversary is
allowed to make an arbitrary number of queries; 7 means that no queries can be made;
numbers represent the number of queries allowed to an adversary.

– Test queries: Here A supplies two distinct identities ID1, ID2 that were both
registered as honest. The challenger returns ⊥ if ID1 = ID2. Otherwise, it
uses the bit b to answer the queries. If b = 0, the challenger runs SharedKey
using the public key for ID1 and the secret key for ID2 and returns the result
to A. If b = 1, the challenger generates a random key, records it for later,
and returns that key to the adversary. In this case, to keep things consistent,
the challenger returns the same random key for the pair ID1, ID2 every time
A queries for their paired key, in either order.

A’s queries may be made adaptively and are arbitrary in number. To prevent
trivial wins for the adversary, no query to the reveal oracle is allowed on any
pair of identities selected for test queries (in either order), and no extract query
is allowed on any of the identities involved in test queries. Also, we demand that
no identity registered as corrupt can later be the subject of a register honest
user ID query, and vice versa.

When the adversary finally outputs b̂, it wins the game if b̂ = b. For an
adversary A, we define its advantage in this security game as:

Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, qT) = |Pr[b̂ = b]− 1/2|

where qH , qC , qE , qHR, qCR and qT are the numbers of register honest user ID
queries, register corrupt user ID queries, extract queries, honest reveal queries,
corrupt reveal queries and test queries made by A, respectively. We say that a
NIKE scheme is (t, ε, qH , qC , qE , qHR, qCR, qT)-secure in the m-CKS-heavy model
if there is no adversary with advantage at least ε that runs in time t and makes
at most qH register honest user ID queries, etc. Informally, we say that a NIKE
scheme is m-CKS-heavy secure if there is no efficient adversary having non-
negligible advantage in k, where efficient means that the running time and num-
bers of queries made by the adversary are bounded by polynomials in k.

Comparing the models: Table 1 outlines the properties of our other security
models in the DKR setting, in terms of restrictions on the queries that can
be made by the adversary. It is apparent that the m-CKS-heavy model is the
strongest model. It differs from the CKS-heavy model only in allowing multiple
test queries. The m-CKS-heavy model represents a strengthening of the original

8

CKS model by allowing extract and honest reveal queries, whereas the CKS
model only allows the adversary to gain information about honestly generated
shared keys via test queries. The CKS-light model is simplest of all, involving
only two honestly registered identities, removing the extract and honest reveal
queries, and allowing only a single test query. We prove that it is polynomially
equivalent to the m-CKS-heavy model. In fact, we prove the following theorem:

Theorem 1. The m-CKS-heavy, CKS-heavy, CKS and CKS-light security mod-
els are all polynomially equivalent.

Proof. See the full version [25].

Thus, while the m-CKS-heavy model is our preferred model, it suffices to
analyse schemes in the CKS-light model if one is not overly concerned about
concrete security. However, we note that various factors are involved in the re-
ductions. In particular a factor of qT qH

2 is lost in going from the m-CKS-heavy
to the CKS-light model. This reflects the proof techniques used in establishing
the bounds, specifically the use of hybrid arguments. It is an interesting open
problem to either prove tighter relations between the models, or to prove that
such results are not possible.

3 Intractability Assumptions

3.1 The Group of Signed Quadratic Residues, the BBS generator,
and the Strong Diffie-Hellman Assumption

The factoring assumption: Let n(k) be a function and δ a constant with 0 ≤ δ <
1/2. Let RSAgen be an algorithm with input 1k that generates elements (N,P,Q)
such that N = PQ is an n-bit Blum integer and all prime factors of φ(N)/4 are
pairwise distinct and have at least δn bits. These conditions ensure that (JN , ·)
is cyclic and that the square g of a random element in Z∗N , generates QRN with
high probability. That is, 〈g〉 = QRN . For such N , we recall the definition of
the group of signed quadratic residues QR+

N from [20] (see also [26,27]) which
is defined as the set {|x| : x ∈ QRN}, where |x| is the absolute value when
representing elements of ZN as the set {−(N −1)/2, . . . , (N −1)/2}. (QR+

N , ·) is
a cyclic group of order φ(N)/4 whose elements are efficiently recognisable given
only N as input.

For any algorithm A, we write

Advfac
A,RSAgen(k) = Pr[{P,Q} $←− A(N) : (N,P,Q)

$←− RSAgen(1k)].

The factoring assumption for RSAgen is that Advfac
A,RSAgen(k) is negligible for all

PPT algorithms A.

9

The BBS generator: Let BBSN : QR+
N → {0, 1}k be the Blum-Blum-Shub pseu-

dorandom number generator. (That is, BBSN (X) = (lsbN (X), lsbN (X2), . . . ,

lsbN (X2k−1

)), where lsbN (X) denotes the least significant bit of X ∈ QR+
N .)

Recall that the factoring assumption implies the computational indistinguisha-
bility of the distributions

(N,X2k ,BBSN (X)) and (N,X2k , R),

where N
$←− RSAgen(1k), and X

$←− QR+
N and R

$←− {0, 1}k are chosen uniformly.
(See also [28, Theorem 2] for a summary why this holds.) Concretely, under the
factoring assumption, the advantage

AdvBBS
B,RSAgen(k) :=

∣∣∣Pr[B(N,X2k ,BBSN (X)) = 1]− Pr[B(N,X2k , R) = 1]
∣∣∣

is negligible for any PPT adversary B.

The Strong DH assumption: In [20] it is shown that if the factoring assumption
holds, then the Strong DH assumption holds relative to RSAgen. This assumption
is that there is no PPT algorithm having non-negligible advantage in solving the
CDH problem on input (N, g,X, Y) when given an oracle for DDHg,X(·, ·). Here
g is a randomly selected generator of QR+

N , X and Y are selected uniformly from

QR+
N , the solution to the CDH problem is defined as g(dloggX)(dloggY), and the

DDH oracle DDHg,X(Ŷ , Ẑ) returns 1 if Ŷ dloggX = Ẑ and 0 otherwise.
We will require a variant of the Strong DH assumption, which we name

the Double Strong DH (DSDH) assumption. This can be stated as follows. Let
(N,P,Q) ← RSAgen(1k) and let g be a randomly selected generator of QR+

N ,
and X, Y be selected uniformly from QR+

N . Then the Double Strong DH prob-
lem is to solve the CDH problem on input (N, g,X, Y), that is to compute

g(dloggX)(dloggY), when given oracles for DDHg,X(·, ·) and DDHg,Y (·, ·). The
DSDH assumption relative to RSAgen is that there is no PPT algorithm having
non-negligible advantage in solving this problem.

Theorem 2. If the factoring assumption holds relative to RSAgen, then the
DSDH assumption also holds relative to RSAgen. In particular, for every algo-
rithm A solving the Double Strong DH problem, there exists a factoring algorithm
B (with roughly the same running time as A) such that

Advdsdh
A,RSAgen(k) ≤ Advfac

B,RSAgen(k) +O(2−δn(k)).

Proof. The original proof of [20, Theorem 2] shows how to handle a single DDH
oracle DDHg,X(·, ·). By symmetry of the set-up used in the proof, the same
procedure can also be used to (simultaneously) handle the oracle DDHg,Y (·, ·).

3.2 Parameter generation algorithms for Asymmetric Pairings

Our pairing based scheme will be parameterized by a type 2 pairing parameter
generator, denoted by G2. This is a polynomial time algorithm that on input

10

a security parameter 1k, returns the description of three multiplicative cyclic
groups G1, G2 and GT of the same prime order p, generators g1, g2 for G1, G2

respectively, and a bilinear non-degenerate and efficiently computable pairing e :
G1×G2 → GT . We assume that G2 also outputs the description of an efficiently
computable isomorphism ψ : G2 → G1 and that g1 = ψ(g2). Throughout, we
write PG2 = (G1,G2,GT , g1, g2, p, e, ψ) for a set of groups and other parameters
with the properties just described.

3.3 The Decisional Bilinear Diffie-Hellman Assumption for Type 2
Pairings (DBDH-2)

Let PG2 = (G1,G2,GT , g1, g2, p, e, ψ) as above. We consider the following ver-
sion of the Decisional Bilinear Diffie-Hellman problem for type 2 pairings, as
introduced by Galindo in [29]: Given (g2, g

a
2 , g

b
2, g

c
1, T) ∈ G3

2×G1×GT as input,
the problem is to decide whether or not T = e(g1, g2)abc, where g1 = ψ(g2). More
formally, we associate the following experiment to a type 2 pairing parameter
generator G2 and an adversary B.

Experiment Expdbdh-2
B,G2 (k)

PG2
$←− G2(1k)

a, b, c, z
$←− Zp

β
$←− {0, 1}

If β = 1 then T ← e(g1, g2)abc else T ← e(g1, g2)z

β′
$←− B(1k,PG2, ga2 , g

b
2, g

c
1, T)

If β = β′ then return 0 else return 1

The advantage of B in the above experiment is defined as

Advdbdh-2
B,G2 (k) =

∣∣∣∣Pr[Expdbdh-2
B,G2 (k) = 1]− 1

2

∣∣∣∣ .
We say that the DBDH-2 assumption relative to G2 holds if Advdbdh-2

B,G2 is negli-
gible in k for all PPT algorithms B.

4 Constructions for Non-interactive Key Exchange

4.1 A Construction in the Random Oracle Model from Factoring

We specify how to build a NIKE scheme, NIKEfac, that is secure in the CKS-light
security model under the factoring assumption relative RSAgen in the ROM. Our
scheme makes use of a hash function H : {0, 1}∗ → {0, 1}k which is modelled as
a random oracle in the security proof. The component algorithms of the scheme
NIKEfac are defined as follows:

11

CommonSetup(1k) NIKE.KeyGen(params, ID)

(N,P,Q)
$←− RSAgen(1k) x

$←− ZbN/4c;
g

$←− QR+
N , where 〈g〉 = QR+

N X ← gx

params← (H,N, g) pk ← X; sk ← x
Return params Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 6∈ QR+

N or pk2 6∈ QR+
N return ⊥

else if

{
ID1 < ID2 return H(ID1, ID2, pk1

sk2)

ID2 < ID1 return H(ID2, ID1, pk1
sk2)

Here we are assuming that the identities ID come from a space with a natural
ordering <.

Theorem 3. The scheme NIKEfac is secure in the ROM under the factoring
assumption relative to RSAgen. In particular, suppose A is an adversary against
NIKEfac in the CKS-light security model. Then there exists a factoring adversary
C with:

AdvCKS-light
A,NIKEfac

(k) ≤ Advfac
C,RSAgen(k) +O(2−δn(k)).

Proof. See the full version [25].

4.2 Towards a factoring-based scheme in the standard model

The security proof of NIKEfac above crucially uses the statistical properties of
the random oracle H. If we accept an interactive key registration, we can however
give a factoring-based NIKE scheme in the standard model. The basis of this
scheme is the factoring-based IND-CCA secure encryption scheme of Hofheinz
and Kiltz [28]. However, in adapting their scheme to the NIKE setting, we will
have to find a way to simultaneously cope with two challenge ciphertexts (which
correspond to the public keys of the challenge identities). To cope with this
modified setting, we will set up a simulation that is able to decrypt all but two
ciphertexts (resp. NIKE public keys).

In our description, let RSAgen as before, let ChamH : {0, 1}∗ × RCham →
Z2k be a chameleon hash function [22]. Now consider the following scheme
NIKEfac-int:

CommonSetup(1k)

(N,P,Q)
$←− RSAgen(1k)

g, u0, u1, u2
$←− QR+

N ,
where 〈g〉 = QR+

N

hk, ck
$←− Cham.KeyGen(1k)

params← (N, g, u0, u1, u2, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− ZbN/4c; r

$←− RCham

Z ← gx·2
3k

;
t← ChamHhk(Z||ID; r)

Y ← u0u
t
1u2

t2 ; X ← Y x

pk← (Z,X, r); sk← x
Return (pk, sk)

12

SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 6∈ QR+

N ×QR+
N ×RCham or sk2 6∈ ZbN/4c return ⊥

Parse pk1 =: (Z1, X1, r1) and sk2 =: x2

Return BBSN (Zx2·22k
1)

Note that correctness of the scheme follows from Zx2·22k
1 = gx1·x2·25k =

Zx1·22k
2 . To prove security, we need to rely on the consistency of public keys.

Concretely, the security reduction we will give can only authentically answer
corrupt reveal queries for corrupt user keys pk = (Z,X, r) that satisfy Z =

gx·2
3k

, X = (u0u
t
1u
t2

2)x for t = ChamHhk(Z||ID; r) and some x. Unlike in our
upcoming pairing-based scheme, this kind of consistency is not (obviously) ef-
ficiently verifiable. Hence, the key registration process must ensure that only
consistent user keys are registered, e.g., by having the user prove consistency in
zero-knowledge (interactively, using x as witness).

On top of assuming consistent keys, we will also have to make an assumption
about the distribution of (or rather, the ability to generate) primes. Namely, we
will need to assume a PPT algorithm PrimeGen that, on input a 2k-bit prime ρ,
outputs a prime α such that α mod ρ has statistical distance O(2−k) from the
uniform distribution over Zρ. Such an algorithm PrimeGen exists. This is an easy
consequence of Dirichlet’s theorem on the distribution of primes in arithmetic
progressions: our generator simply samples integers of the form α0 + i · ρ for
uniformly chosen α0 ∈ Zρ and i = 1, 2, . . ., and checks them for primality. This
algorithm can be rigorously proven to be efficient under the Generalized Riemann
Hypothesis.

Theorem 4. Under the factoring assumption relative to RSAgen, given an al-
gorithm PrimeGen as above, and assuming that the chameleon hash function
ChamH is collision-resistant, the scheme NIKEfac-int is secure against all adver-
saries that only register consistent (in the sense above) user keys. In particular,
suppose A is such an adversary against NIKEfac in the CKS-light security model.
Then there exists a BBS distinguisher B and a collision-finder ACH with:

AdvCKS-light
A,NIKEfac-int

(k) ≤ AdvBBS
B,RSAgen(k) + Advcoll

ACH,ChamH(k) +O(2−k). (1)

Proof. See the full version [25].

4.3 A Construction in the Standard Model from Pairings

We specify how to build a NIKE scheme, NIKEdbdh-2, that is secure in the CKS-
light security model under the DBDH-2 assumption in the standard model. Our
construction makes use of a tuple PG2 = (G1,G2,GT , g1, g2, p, e, ψ), output by
a parameter generator G2, and a chameleon hash function ChamH : {0, 1}∗ ×
RCham → Zp. This can be instantiated efficiently using the discrete-log based
construction from [22]. The component algorithms of the scheme NIKEdbdh-2 are
defined as follows:

13

CommonSetup(1k)

PG2
$←− G2(1k),

where PG2 = (G1,G2,GT , g1, g2, p, e, ψ)

u0, u1, u2, S
$←− G∗1

hk, ck
$←− Cham.KeyGen(1k)

params← (PG2, u0, u1, u2, S, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− Zp; r

$←− RCham

Z ← gx2 ;
t← ChamHhk(Z||ID; r);

Y ← u0u
t
1u2

t2 ; X ← Y x

pk ← (X,Z, r); sk ← x
Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If ID1 = ID2 return ⊥
Parse pk1 as (X1, Z1, r1) and sk2 as x2
t1 ← ChamHhk(Z1||ID1; r1)

If e(X1, g2) 6= e(u0u
t1
1 u2

t1
2

, Z1)
then K1,2 ←⊥
else K1,2 ← e(Sx2 , Z1)

Return K1,2

The check in the SharedKey algorithm for valid public keys can be implemented
by evaluating the bilinear map twice. It is clear that SharedKey defined in this
way satisfies the requirement that entities ID1 and ID2 are able to compute
a common key. To see this, note that e(Sx2 , Z1) = e(S, g2)x1,x2 . The identity
space for this construction, IDS, is {0, 1}∗, while the space of shared keys is
SHK = GT . Public keys and parameters are compact. For example, at the 128-
bit security level, using BN curves [30] and point compression, public keys consist
of 768 bits plus an element from RCham.

As stated before, we can prove the above NIKE scheme to be secure under the
DBDH-2 assumption in the sense of the CKS-light security model. Interestingly,
our scheme can be generalised to use any weak (2,poly)-PHF [21] in combination
with a chameleon hash function. That is, Y (in the NIKE.KeyGen algorithm)
would be the output of the weak (2,poly)-PHF on input t, where t is the output of
the chameleon hash function. We have given a specific construction here because
suitable weak PHFs are currently rare. A further generalisation of our scheme
could use any randomised (2,poly)-PHF and avoid the chameleon hash, but no
constructions for these are currently known.

Theorem 5. Assume ChamH is a family of chameleon hash functions. Then
NIKEdbdh-2 is secure under the DBDH-2 assumption relative to generator G2.
In particular, suppose A is an adversary against NIKEdbdh-2 in the CKS-light
security model. Then there exists a DBDH-2 adversary B with:

Advdbdh-2
B,G2 (k) ≥ AdvCKS-light

A,NIKEdbdh-2
(k)−Advcoll

ACH,ChamH(k).

Proof. See the full version [25].

14

5 From Non-interactive Key Exchange to Public Key
Encryption

We give a conversion that takes a NIKE scheme that is secure in the CKS-light
security model plus a strongly one-time secure signature (OTS) scheme, and
produces from it a KEM that is IND-CCA secure. From such a KEM, it is easy
to construct an IND-CCA secure public key encryption scheme [31].

The formal definitions of KEM and OTS schemes and their security can be
found in the full version [25].

5.1 The Conversion from NIKE to KEM

We now present our conversion from a NIKE scheme to a KEM. For a NIKE
scheme NIKE and an OTS scheme OTS, we construct a KEM KEM(NIKE, OTS) with
the following algorithms:

– KEM.KeyGen(1k): This algorithm runs the algorithm CommonSetup(1k) of
NIKE to obtain a set of system parameters, params. Then it picks ID ∈ IDS
uniformly and runs NIKE.KeyGen(params, ID) to obtain a key pair (pk, sk).
It sets pkKEM = (params, ID, pk) and skKEM = (ID, sk).

– Enc(pkKEM): This algorithm parses pkKEM as (params, ID, pk), runs OTSKeyGen
to obtain a pair (vk , sigk). This is repeated until vk 6= ID. Next, it runs
NIKE.KeyGen(params, ID′ = vk) of NIKE to obtain a key pair (pk′, sk′) and
runs OTSSign(sigk , pk′) to obtain σ, a signature on pk′. It then runs
SharedKey(ID, pk, ID′ = vk , sk′) of scheme NIKE to obtain a key K ∈ SHK.
The output is (K,C = (vk , pk′, σ)).

– Dec(skKEM, C): This algorithm first parses C as (vk , pk′, σ) and skKEM as
(ID, sk). Next, it runs OTSVfy(vk , pk′, σ) and returns ⊥ if the output is
reject or if vk = ID. Otherwise, it runs SharedKey(ID′ = vk , pk′, ID, sk)
and outputs the result, which may be ⊥.

Notice that the ciphertexts in this scheme consist of a verification key from
the OTS scheme, a public key from the NIKE scheme, and a one-time signature,
while the encapsulated keys are elements of SHK. As our next result shows, the
resulting KEM is automatically IND-CCA secure if the NIKE scheme is secure
in the CKS-light security model.

Theorem 6. Suppose the NIKE scheme NIKE is secure in the CKS-light se-
curity model and OTS is a strongly secure one-time signature scheme. Then
KEM(NIKE, OTS) is an IND-CCA secure KEM. More precisely, for any adver-
sary A against KEM(NIKE, OTS), there exists an adversary B against NIKE in the
CKS-light security model or an adversary C against OTS having the same advan-
tage. Moreover, if A makes qD decapsulation queries, then B makes qD register
corrupt user queries and qD corrupt reveal queries, while B’s running time is
roughly the same as that of A.

Proof. See the full version [25].

15

Applying the above construction to the pairing-based NIKE scheme from the
previous section results in an IND-CCA secure KEM with public keys (ID, pk)
that consist of an identity string, two group elements (one in G1 and one in G2),
and a key for the Chameleon hash function. Ciphertexts are slightly longer, con-
taining in addition a verification key and a signature from the one-time signature
scheme6.

6 Conclusions and Open Problems

We provided different security models for NIKE and explored the relationships
between them. We then gave constructions for secure NIKE in the ROM and in
the standard model. We also studied the relationship between NIKE and PKE,
showing that a secure NIKE implies an IND-CCA secure PKE scheme.

There are several interesting open problems that arise from our work. One is
to construct pairing-free NIKE schemes in the standard model. A challenge to
doing so is that our pairing-based construction uses the pairing in a fundamental
way in order to provide a publicly computable check on the validity of public
keys. The RSA/factoring setting seems particularly challenging in this respect
– we recall that our standard model, factoring-based scheme required that the
adversary only register valid public keys, a condition that could be enforced in
practice by having an interactive key registration protocol and insisting on proofs
of validity during that protocol. Clearly, it is desirable from both a practical and
a theoretical perspective to obtain schemes that are secure in the plain setting,
where no such protocol is required.

Another open problem is to construct ID-based NIKE schemes that are prov-
ably secure in the standard model, moving beyond the ROM schemes analysed
in [8,10]. Starting with known IBE schemes may be profitable, but the fact
that these generally have randomised private key generation algorithms seems
to make it hard to work backwards from IBE to ID-based NIKE.

Finally, it would be interesting to consider three-party NIKE schemes based
on Joux’s protocol [32]. Currently, there is no security model for such schemes,
and no constructions which can handle adversarially-generated public keys.

References

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6) (1976) 644654

2. Çağatay Çapar, Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer,
M.: Signal-flow-based analysis of wireless security protocols. Information and
Computation (to appear)

3. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In Reingold, O., ed.: TCC. Volume 5444 of Lecture Notes in
Computer Science., Springer (2009) 146–162

6 Arguably, one might also include the public parameters params when evaluating the
public key size.

16

4. Boyd, C., Mao, W., Paterson, K.G.: Key agreement using statically keyed au-
thenticators. In Jakobsson, M., Yung, M., Zhou, J., eds.: ACNS. Volume 3089 of
Lecture Notes in Computer Science., Springer (2004) 248–262

5. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In Maurer, U.M., ed.: EUROCRYPT. Volume 1070 of Lecture Notes
in Computer Science., Springer (1996) 143–154

6. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lecture Notes in Computer
Science., Springer (2008) 127–145

7. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security. (2000) 26–28

8. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on
pairings. Discrete Applied Mathematics 154(2) (2006) 270–276

9. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.:
Strongly-resilient and non-interactive hierarchical key-agreement in MANETs. In
Jajodia, S., López, J., eds.: ESORICS. Volume 5283 of Lecture Notes in Computer
Science., Springer (2008) 49–65

10. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptography 52(2) (2009) 219–241

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In Stinson,
D.R., ed.: CRYPTO. Volume 773 of Lecture Notes in Computer Science., Springer
(1993) 232–249

12. Shoup, V.: On formal models for secure key exchange (version 4) (1999)
13. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure

against dictionary attacks. In Preneel, B., ed.: EUROCRYPT. Volume 1807 of
Lecture Notes in Computer Science., Springer (2000) 139–155

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In Pfitzmann, B., ed.: EUROCRYPT. Volume 2045 of
Lecture Notes in Computer Science., Springer (2001) 453–474

15. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In
Shoup, V., ed.: CRYPTO. Volume 3621 of Lecture Notes in Computer Science.,
Springer (2005) 546–566

16. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a
general forking lemma. In Juels, A., Wright, R.N., di Vimercati, S.D.C., eds.:
ACM Conference on Computer and Communications Security, ACM (2006) 390–
399

17. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Naor, M., ed.: EUROCRYPT. Volume
4515 of Lecture Notes in Computer Science., Springer (2007) 228–245

18. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Desmedt, Y., ed.: Public
Key Cryptography. Volume 2567 of Lecture Notes in Computer Science., Springer
(2003) 31–46

19. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In Vaudenay, S., ed.: EU-
ROCRYPT. Volume 4004 of Lecture Notes in Computer Science., Springer (2006)
465–485

20. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications.
In Halevi, S., ed.: CRYPTO. Volume 5677 of Lecture Notes in Computer Science.,
Springer (2009) 637–653

17

21. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions.
In Lee, D.H., Wang, X., eds.: ASIACRYPT. Volume 7073 of Lecture Notes in
Computer Science., Springer (2011) 647–666

22. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. (2000)
23. Chatterjee, S., Sarkar, P.: Generalization of the selective-ID security model for

HIBE protocols. In Yung, M., Dodis, Y., Kiayias, A., Malkin, T., eds.: Public
Key Cryptography. Volume 3958 of Lecture Notes in Computer Science., Springer
(2006) 241–256

24. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985) 469–472

25. Freire, E.S., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange.
Cryptology ePrint Archive, Report 2012/xxx (2012) http://eprint.iacr.org/.

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989) 186–208

27. Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits.
Journal of Cryptology 13(2) (2000) 221–244

28. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In Joux, A., ed.: EUROCRYPT. Volume 5479 of Lecture Notes in Computer
Science., Springer (2009) 313–332

29. Galindo, D.: Boneh-Franklin identity based encryption revisited. In Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M., eds.: ICALP. Volume 3580
of Lecture Notes in Computer Science., Springer (2005) 791–802

30. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In
Preneel, B., Tavares, S.E., eds.: Selected Areas in Cryptography. Volume 3897 of
Lecture Notes in Computer Science., Springer (2005) 319–331

31. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33 (2003) 167–226

32. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In Bosma, W.,
ed.: ANTS. Volume 1838 of Lecture Notes in Computer Science., Springer (2000)
385–394

18

