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Abstract. A discrete logarithm problem with auxiliary input (DLP-
wAI) is a problem to find α from G, αG, αdG in an additive cyclic
group generated by an element G of prime order r, and a positive inte-
ger d satisfying d|(r − 1). The infeasibility of this problem assures the
security of some cryptographic schemes. In 2006, Cheon proposed a novel
algorithm for solving DLPwAI (Cheon’s algorithm). This paper reports
our experimental results of Cheon’s algorithm by implementing it with
some speeding-up techniques. In fact, we have succeeded to solve DLP-
wAI on a pairing-friendly elliptic curve of 160-bit order in 1314 core
days. Implications of our experiments on cryptographic schemes are also
discussed.
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1 Introduction

Let G be an additive cyclic group generated by an element G of prime order
r. A discrete logarithm problem (DLP) is a problem to find α from G and αG.
In the general setting, DLP is considered to be infeasible, and the infeasibility
of DLP assures the security of some cryptographic schemes such as ECDH and
ECDSA. When G is defined on elliptic curves over finite fields, the currently best
algorithms for solving DLP require exponential time with regard to r, namely,
O(

√
r). In fact, Shanks’ baby-step giant-step (BSGS) method [20] requiresO(

√
r)

group operations in time and O(
√
r) group elements in space. On the other hand,

Pollard’s ρ-method also requires O(
√
r) in time, but much smaller elements in

space. Since the state-of-the-art record of solving DLP on elliptic curves is 112-
bit [7], 160-bit elliptic curves have been used as a secure parameter.

⋆ This research was done while she was a doctor student in Okayama University.



Table 1. Required time for solving DLPwAI

log2 r Required Time Sub-algorithm
(in bit) (by a single core)

Jao, Yoshida [17] 60 3 hours ρ-method

Izu, Takenaka, Yasuda [15, 16] 83 14 hours BSGS method

Sakemi et al. [21] 128 131 hours BSGS method

Sakemi et al. [22] 128 136 hours ρ-method

This paper 160 1314 days ρ-method

At the beginning of 2000’s, bilinear maps were introduced to establish efficient
cryptographic schemes with new functions, whose security rely on the infeasibil-
ity of newly proposed mathematical problems such as Bilinear Diffie-Hellmann
Problem (BDHP) [4], ℓ-Strong Diffie-Hellmann Problem (ℓ-SDHP) [2], ℓ-Bilinear
Diffie-Hellmann Inversion Problem (ℓ-BDHIP) [1], ℓ-simplified Strong Diffie-
Hellmann Problem (ℓ-sSDHP) [3], and ℓ-BDHEP [5]. In 2006, Cheon defined the
discrete logarithm problem with auxiliary input (DLPwAI) as a generarization
of some mathematical problems in the above [8]: find α from G, αG, αdG ∈ G
and a positive integer d satisfying d|(r − 1). Cheon also proposed a novel al-
gorithm for solving DLPwAI [8, 9]. The time complexity of Cheon’s algorithm

is O
(√

(r − 1)/d+
√
d
)
, and especially when d can be chosen as d ≈

√
r, the

complexity becomes O( 4
√
r), which is more efficient than that for solving DLP

in general groups (which requires O(
√
r)). Thus, it is indispensable to evaluate

the infeasibility of DLPwAI from implementational viewpoints in order to adopt
cryptographic schemes based on such new mathematical problems in practice.

In this paper, we investigate useful techniques for speeding up Cheon’s al-
gorithm, and demonstrate that it is possible to solve 160-bit DLPwAI over a
pairing-friendly elliptic curve within a practical time. Specifically, we clarify that
Cheon’s algorithm effectively works by using some accelerating techniques such
as a precomputation table technique effective for scalar multiplications needed
for the algorithm, the automorphism technique, and parallelization (see section 3
for details). In fact, we have successfully solved a DLPwAI in 25 days with about
160 cores (1314 days with a single core), which amounts USD 3,150 in Amazon
EC2, in a group with 160-bit order defined on the pairing-friendly elliptic curve
proposed by Barreto and Naehrig [6].

As far as the authors know, this is the largest result of solving DLPwAI by
Cheon’s algorithm (see Table 1). Note that solving DLP on this 160-bit elliptic
curve is regarded to be infeasible. Our result implies that, if USD 1,000,000 is
available, a DLPwAI on the 192-bit Barreto-Naehrig elliptic curve can be solved.
Implications of our experimental results to the security of some cryptographic
schemes are also discussed in this paper.
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Algorithm 1 Cheon’s Algorithm [8, 9]

Require: : G, G1 = αG, Gd = αdG ∈ G, d dividing r − 1
Ensure: : α ∈ Z/rZ
1: Find a generator ζ ∈ (Z/rZ)∗
2: Set ζd ← ζd

3: [Step 1] Find 0 ≤ k1 < (r − 1)/d such that Gd = ζk1
d G

4: Set ζe ← ζ(r−1)/d, Ge ← ζ−k1G1

5: [Step 2] Find 0 ≤ k2 < d such that Ge = ζk2
e G

6: Output ζk1+k2(r−1)/d

2 Preliminaries

This section introduces Cheon’s algorithm for solving DLPwAI [8, 9] and ρ-
method [19].

2.1 Cheon’s Algorithm

Let G = ⟨G⟩ be an additive cyclic group generated by an element G of prime
order r > 2. The discrete logarithm problem with auxiliary input (DLPwAI) is
a problem to find α on input G, G1 = αG, Gd = αdG ∈ G and an integer d
dividing r − 1. In 2006, Cheon proposed a novel algorithm for solving DLPwAI
(Cheon’s algorithm, [8, 9]), which is the center topic of this paper. Cheon’s algo-

rithm requires O
(√

(r − 1)/d+
√
d
)
group operations in time. Especially, when

d ≈
√
r, it only requires O( 4

√
r) operations, which is much smaller than required

in the baby-step giant-step (BSGS) method or in the ρ-method for solving DLP.
Let us briefly describe how Cheon’s algorithm works. A goal of Cheon’s al-

gorithm is to find an integer k ∈ Z/rZ such that α = ζk for a generator ζ
of the multiplicative group (Z/rZ)∗ (Note that the generator ζ can be found
efficiently). Here, such k is uniquely determined. In order to find k, Cheon’s
algorithm searches two integers k1, k2 such that k = k1 + k2(r − 1)/d satisfies
0 ≤ k1 < (r − 1)/d, 0 ≤ k2 < d in two steps (see Algorithm 1). Step 1 searches
an integer k1 such that Gd = ζk1

d G, since k1 satisfies αd = ζk1

d for ζd = ζd.
Similarly, Step 2 searches an integer k2 such that Ge = ζk2

e G, since k2 satisfies
α = ζk1ζk2

e for ζe = ζ(r−1)/d and Ge = ζ−k1G1.
In Cheon’s algorithm, searching k1 (resp. k2) in Step 1 (resp. Step 2) requires

another sub-algorithm. Since these problems are very similar to DLP in the
general setting, the baby-step giant-step method [20] or the ρ-method [19] can
be used as a sub-algorithm. Since this paper is interested in Cheon’s algorithm
combined only with the ρ-method, we briefly describe its outline in the next
subsection.

2.2 Pollard’s ρ-method

Pollard’s ρ-method is one of the algorithms for solving DLP [19], which finds a
solution α, from G, αG ∈ G of prime order r, whose time complexity is O(

√
r)
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because of the birthday paradox. Let us describe the outline in the context of
Cheon’s algorithm. Especially, since Step 1 and Step 2 of Cheon’s algorithm
(Algorithm 1) are almost the same, we focus only on Step 1.

The idea of the ρ-method in Step 1 of Cheon’s algorithm is to find a col-
lision F (i)(Gd) = F (j)(G) for a given function F : G → G, where F (i)(P ) =
F (F (i−1)(P )) and F (0)(P ) = P . For an efficient evaluation, the function F (P )
is desired to be (i) random as possible, and (ii) of the form F (P ) = ζf(P )P for
some function f on G. Such a function F is called a random-walk function. In
our experiment, we use

F (P ) : P 7→ ζ
fe(P )
d P

with a pseudo-random function fe : G → Z/eZ, where e = (r−1)/d and ζd = ζd.
By definition, we have

F (i)(Gd) = ζ
∑i−1

l=0 fe(F
(l)(Gd))

d Gd and F (j)(G) = ζ
∑j−1

l=0 fe(F
(l)(G))

d G.

Thus, one can find k1 by computing

k1 =

i−1∑
l=0

fe(F
(l)(Gd))−

j−1∑
l=0

fe(F
(l)(G)) mod (r − 1)/d

from a collision F (i)(Gd) = F (j)(G). Since the image of the function F has
(r−1)/d elements, the time complexity of Step 1 is O(

√
(r − 1)/d) (if the KKM

method [18] is used, which will be described later).
In the ρ-method, the distinguished element technique [23] reduces the num-

ber of elements to be stored. An element which satisfies the specific condition
(the least significant 6 bits of an element are zero, for example) is called a dis-
tinguished element. With this technique, one has to store elements F (l)(Gd) and
F (l)(G) only when they are distinguished elements. Note that there exists a col-
lision on the distinguished elements: in fact, for a collision F (i)(Gd) = F (j)(G),
we have F (i+1)(Gd) = F (j+1)(G), F (i+2)(Gd) = F (j+2)(G), · · · , and thus, we
eventually have a collision F (i+w)(Gd) = F (j+w)(G) on the distinguished ele-
ments for an integer w. The space complexity (also the number of elements) can
be reduced to 1/w with arbitrary parameter w, while the time complexity is

increased to O
(√

(r − 1)/d+ w
)
. However, the increase can be neglected since

w ≪ (r − 1)/d in practice.

3 Implementation

This section describes our strategy for implementing Cheon’s algorithm.

3.1 Evaluating F (X)

In Cheon’s algorithm, the most computationally heavy operation is the evalua-
tion of the function F (l)(P ) = F (F (l−1)(P )), which consists of
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1. Evaluate fe(F
(l−1)(P )),

2. Compute ζ
fe(F

(l−1)(P ))
d as an exponentiation in (Z/rZ)∗,

3. Compute ζ
fe(F

(l−1)(P ))
d P as a scalar multiplication in G.

In our implementation, an element P ∈ G is represented by a pair of x-coordinate
and y-coordinate, and we used the pseudo-random function fe(P ) = x(P ) mod e,
where x(P ) is the x-coordinate of P . Thus, procedure 1 is negligible compared
to procedure 2 and 3.

Procedure 3 computes a scalar multiplication of a fixed element P indepen-
dent from l, so that a precomputation table for scalar multiplications is sig-
nificantly effective (KKM method, [18]). Let us describe the KKM method for
a scalar multiplication δP (δ ∈ Z/rZ, P ∈ G). For a fixed integer c (which
will be optimized later) and n = ⌈ c

√
r⌉, obtain the n-array expansion of the

scalar δ =
∑c−1

l=0 δln
l (0 ≤ δl < n). For all 0 ≤ l < c and 0 ≤ l′ < n, compute

S(l, l′) = l′nlP and store them in a table in advance to the scalar multiplications.
Then, the scalar multiplication δP is computed by

δP = δ0P + δ1nP + · · ·+ δc−1n
c−1P

= S(0, δ0) + S(1, δ1) + · · ·+ S(c− 1, δc−1).

Note that the precomputation table can be computed by at most cn additions.
Similar to procedure 3, procedure 2 also computes an exponentiation of a

fixed element ζd independent from l, so that the KKM method can be applied
to procedure 2 in the same way.

3.2 Using Automorphisms

If there exists an efficiently computable automorphism ϕ : G → G of order m
on a group G satisfying the condition ϕ(P ) = ζsdP for an integer s, the random-
walk function F (P ) : G → G can be extended to the random-walk function
F̃ (P ) : G/∼ϕ→ G/∼ϕ on the set G/∼ϕ of the equivalence classes. Here, two
elements P, Q are in the same equivalence class if and only if there exists an
integer l such that P = ϕ(l)(Q) (0 ≤ l < m). Since the number of elements in
G/∼ϕ is reduced to 1/m, the ρ-method can be sped-up by a factor of

√
m.

In our experiment, the pairing-friendly elliptic curve introduced by Barreto-
Naehrig (BN curve, [6]) is used. The BN curve is an elliptic curve y2 = x3+b (b ∈
Fp) defined over a prime field Fp satisfying 3|(p − 1). On the BN curve, there
exist the negation map (P 7→ −P ) which is an automorphism of order 2, and,
in addition, the automorphism of order 3 [13]. For an element P = (x, y) ∈ G,
the map ϕ3(P ) = (ϵx, y) = γP is an automorphism of order 3, where ϵ is a fixed
primitive cube root of a unity in Fp and γ ∈ (Z/rZ)∗ satisfies γ2 + γ + 1 ≡
0 mod r, i.e. γ is a primitive cube root of unity in (Z/rZ)∗. Such automorphism
ϕ3 can be computed with one multiplication in Fp only.

Let us consider when these automorphisms satisfy the condition ϕ(P ) = ζsdP
on the BN curve.

5



– Negation map: Since −1 = ζ(r−1)/2 ∈ (Z/rZ)∗, the negation map satisfies
the condition if 2d|(r − 1). The ρ-method can be sped-up by

√
2 with the

negation map.
– Automorphism ϕ3: Since γ is a primitive cubic root of a unity in (Z/rZ)∗,

γ can be represented by γ = ζ(r−1)/3. Thus, the automorphism satisfies
the condition if 3d|(r − 1). The ρ-method can be sped-up by

√
3 with the

automorphism ϕ3.

As a result of the above analysis, the time complexity of Cheon’s algorithm can be

reduced to T̃ = O
(√

e/gcd(d, 6) +
√

d/gcd(e, 6)
)
by using the automorphism

technique.
For a random-walk function F̃ of additive type such as Teske’s adding walk

[24] or the function proposed by [12], the function F̃ on G/∼ϕ can fall into short
cycles, which are called “fruitless cycles”, and hence the optimal speed-up cannot
be expected in general [11][12]. However, since our random-walk function is of
multiplicative type, our function on G/∼ϕ rarely falls into fruitless cycles. There-
fore, using both the negation map and the automorphism ϕ3, the time complexity

of the algorithm can be reduced to T̃ = O
(√

e/gcd(d, 6) +
√
d/gcd(e, 6)

)
.

When the above automorphism technique is used, all elements have to be
converted to the representative elements of equivalence classes. In our implemen-
tation, the representative element is the smallest element when a concatenation
x(P )||y(P ) is regarded as an integer. Since there are at most 6 elements in an
equivalence class, and x-coordinates of a half coincide with those of another half,
only one multiplication in Fp is enough to compute the representative element.

3.3 Parallelization

The ρ-method can be sped-up by parallelization. However, in order to make paths
different, initial elements are randomized in the following way [9]: when a core
computes F (l)(Gd), F (l)(G) for Step 1, two random integers cL, cR are assigned
to this core and initial points are converted to G′

d = ζcLd Gd and G′ = ζcRd G.
Then, one can find k1 by computing

k1 =

(
i−1∑
l=0

fe(F
(l)(G′

d)) + cL

)
−

(
j−1∑
l=0

fe(F
(l)(G′) + cR

)
mod (r − 1)/d

from a collision F (i)(G′
d) = F (j)(G′). Note that since all converted initial points

can be regarded as scalar multiple point of G, Gd, or Ge, the KKM method can
be applied to the conversion.

In our experiment, we also developed a management system for parallelized
ρ-method. Outline of the system is described in the appendix.

4 Experimental Results

This section reports our experimental results of Cheon’s algorithm for the pairing-
friendly elliptic curve with 160-bit order. We have successfully solved a DLPwAI
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on this curve in 1314 core days. We emphasize that DLP on the same elliptic
curve has been believed to be secure.

4.1 Parameters

We used an additive cyclic group G with order r on the pairing-friendly elliptic
curve E : y2 = x3 + 3 over a prime field Fp introduced by Barreto-Naehrig [6].
Concrete values of these parameters are summarized in the following:

p = 1461501624496790265145448589920785493717258890819 (160-bit)

#G = 1461501624496790265145447380994971188499300027613 (160-bit, prime)

r = 1461501624496790265145447380994971188499300027613 (160-bit)

r − 1 = 22 · 3 · 12132793 · 164442871007 · 448873741399 · 135993458106516349

where #G denotes the number of elements in the additive group G = E(Fp). In
our implementation, we used the following parameters:

d = 2 · 3 · 12132793 · 135993458106516349 (84-bit)

e = (r − 1)/d = 2 · 164442871007 · 448873741399 (77-bit)

ζ = 2

where the generator ζ ∈ (Z/rZ)∗ was selected as the smallest one. With these
parameters, Step 1 can be sped-up by

√
2, and Step 2 can be sped-up by

√
6

with the automorphism technique, and the estimated time complexity is 240.5.
We selected the solution α as 49 decimal places of the circle ratio π:

α = 1415926535897932384626433832795028841971693993751 (160-bit)

We used a base point G whose x-coordinate coincides 48 decimal places of the
Napier’s constant. Then, coordinates of G, G1 = αG, Gd = αdG are as follows:

x(G) = 718281828459045235360287471352662497757247093699

y(G) = 267920135876087743710291823125072055976344820822

x(G1) = 673981942030616258426617938323441969041367773762

y(G1) = 1145655312172916339251351940414297415585122330072

x(Gd) = 1132176601528857211869915802893630944932743676162

y(Gd) = 948528425611362859774760991656937949436755965122

With these parameters, we have optimized n = 220, c = 8 for the KKM
method. With this optimization, one F -evaluation requires 24 µseconds (on Intel
core i7 2.93GHz) while 980 µseconds without KKM.

4.2 Results

This section reports experimental results for solving DLPwAI. Required re-
sources are summarized in Table 2.
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Table 2. Required resource for solving a 160-bit DLPwAI

CPU (Hz) # of PCs # of cores Time

Step 1

Q9450 (2.66GHz) 8 32 7 days

Step 2

Q9450 (2.66GHz) 8 32 18 days

Q9450 (3.00GHz) 8 32 13 days

X3460 (2.80GHz) 10 80∗ 1 day

Pentium D (3.40GHz) 9 18 1 day

*Hyper-Threading is used

Step 1 Step 1 required 7 days with 8 PCs (Intel Core2 Quad CPU Q9450
2.66GHz), namely 32 cores: 16 cores are used for computing F (l)(G′

d) while
other 16 cores are for computing F (l)(G′). The required storage for distin-
guished elements was 53.3 MByte in total. Obtained partial solution was k1 =
108516124982482634887141.

Step 2 Step 2 was estimated to require 4.7 times more cores compared to
Step 1. Thus, we used many PCs with different specifications as in Table 2.
Thanks to the flexibility of our management system for the parallelization, PCs
are invested one-by-one (see Figure 1). In total, Step 2 required 18 days with
35 PCs (162 cores), more precisely 1090 core days. The required storage for
distinguished elements was 256 MByte in total. Obtained partial solution was
k2 = 6016166550002150274479850 and k is obtained by

k = k1 + k2(r − 1)/d

= 888155679312448193339542847931449754121424529241.

Consequently, the final solution α is obtained by

α = ζk mod r

= 1415926535897932384626433832795028841971693993751,

which required 1314 core days in total.

4.3 Discussion

Let us estimate the required monetary cost of our experiment on Amazon Elastic
Compute Cloud (Amazon EC2), a service to provide resizable computing envi-
ronment in the cloud. In Amazon EC2, various instances corresponding to CPU
power, memory size, and storage size are available. For our experiments, high-
spec CPUs and large memory (for the KKM method) are required. Thus, the
high-CPU extra-large instance (Memory: 7 GB, Cores: 8 (in virtual)) is adapted,
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Fig. 1. One-by-one investment in Step 2

which requires USD 0.1 per hour per 1 virtual core. Since our experiment re-
quired 1314 core days (T = 240.5), it is estimated to cost USD 3,150 in Amazon
EC2. If USD 1,000,000 is available, it is estimated to use 320 times more PCs
(T = 248.3) than the experiment. With this environment and if the parameter d
can be selected as d ≈ 4

√
r, it is possible to solve a DLPwAI on an elliptic curve

with 193.2-bit order.
On the other hand, if USD 1,000,000 is available for the same parameters

(namely, a group with 160-bit order), the parameter d can be reduced to d = 264,
while d was optimized as d ≈ 4

√
r in our experiment. Effects of this reduction

will be discussed in the next section.

5 Feedback to Cryptographic Schemes

In recently proposed cryptographic schemes, the infeasibility of new mathemati-
cal problems are assumed. For example, ℓ-BDHEP is used in Boneh, Gentry,
and Waters’ broadcast encryption system [5], where ℓ-BDHEP is the prob-

lem to find e(G, Ĝ)α
ℓ+1

for a given bilinear map e : G × Ĝ → GT on input

G, αG, . . . , αℓG, αℓ+2G, . . . , α2ℓG ∈ G and Ĝ ∈ Ĝ, where G = ⟨G⟩, Ĝ = ⟨Ĝ⟩,
and GT is a multiplicative group with order r. Let d be the largest divisor of
(r − 1) among 2, 3, . . . , ℓ, ℓ+ 2, . . . , 2ℓ. As shown in section 4.3, if the param-
eter d can be selected as d ≈ 280 and a 160-bit elliptic curve is used, Cheon’s
algorithm can solve a DLPwAI. In addition, if USD 1,000,000 is available, the
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Fig. 2. Selectable range of d

parameter d can be reduced to d = 264 with a 160-bit elliptic curve. Therefore,
if the parameter ℓ is chosen to be larger than 280 (or 264), Cheon’s algorithm
can solve the ℓ-BDHEP and thus break the scheme: by finding α as a DLPwAI,
a solution of ℓ-BDHEP is obtained. Thus, when such cryptographic schemes are
implemented with a 160-bit elliptic curve, the parameter ℓ should be smaller
than 280 (or 264).

In this section, we discuss feedbacks of our experiments on a 160-bit ellip-
tic curve to some cryptographic schemes including Boneh, Gentry, and Waters’
broadcast encryption scheme [5], Boneh and Boyen’s ID-based encryption [1],
and Boneh and Boyen’s signature scheme [2].
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5.1 Boneh, Gentry, and Waters’ Broadcast Encryption Scheme

Boneh, Gentry, and Waters’ broadcast encryption scheme is provably secure
under an assumption that ℓ-BDHEP is infeasible [5], where ℓ is the number of
users (receivers) in the broadcast encryption scheme. In the special construction,
the sender publishes his public key as

pk = (G,αG, . . . , αℓG,αℓ+2G, . . . , α2ℓG, γG) ∈ G2ℓ+1

where γ ∈ Z/rZ is a random number. Thus, when the broadcast encryption
scheme is implemented with a 160-bit elliptic curve, ℓ should be chosen smaller
than 280 (or 264) to avoid Cheon’s algorithm for DLPwAI.

However, restricting ℓ < 280 ≈ 1024 has almost no effect on the scheme
in practice since 1024 is far beyond the population on the earth. Even if USD
1,000,000,000 is available, ℓ can be chosen as 264 ≈ 1019.2 so that the restriction
has little effect.

5.2 Boneh and Boyen’s ID-based Encryption Scheme

Boneh and Boyen’s ID-based encryption scheme is proved to be IND-sID-CCA
secure under an assumption that ℓ-BDHIP is infeasible [1], where ℓ is the number
of queries to the key generation algorithm. Here, ℓ-BDHIP is a problem to find
e(G,G)1/α ∈ GT on input G, αG, . . . , αℓG ∈ G. Thus, when the ID-based
encryption scheme is implemented with a 160-bit elliptic curve, ℓ should be
smaller than 280 (or 264) to avoid Cheon’s algorithm for DLPwAI. In the ID-
based encryption scheme, queries to the key generation algorithm will be online
so that such queries are almost impossible for adversaries. Note that the same
discussion can be applied to some ID-based encryption schemes [3, 14].

5.3 Boneh and Boyen’s Signature Scheme

Boneh and Boyen’s signature scheme is provable secure under the assumption
that ℓ-SDHP is infeasible [2] (moreover, it is proven that the infeasibility and the
unforgeability is equivalent [17]), where ℓ is the number of queries to the signing
algorithm. Here, ℓ-SDHP is the problem to find a pair (a, 1

a+αG) ∈ Z/rZ × G
on input G, αG, . . . , αℓG ∈ G and Ĝ ∈ Ĝ. Thus, when the signature scheme is
implemented with a 160-bit elliptic curve, ℓ should be smaller than 280 (or 264)
to avoid Cheon’s algorithm for DLPwAI. The effect of this restriction depends
on how the signing algorithm is implemented. If it is implemented online similar
to Boneh and Boyen’s ID-based encryption scheme, this restriction has almost
no effect. However, if the query to the signing algorithm can be offline (for
example, the case where the signing algorithm is implemented in IC chip), more
queries will be available compared to the online case. Thus, this case is the most
attackable for adversaries with Cheon’s algorithm.
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6 Concluding Remarks

This paper successfully solved a discrete logarithm problem with auxiliary input
(DLPwAI) in 1314 core days over a 160-bit pairing-friendly elliptic curve. If
cryptographic schemes based on mathematical problems such as ℓ-BDEP, ℓ-
SDHP, ℓ-sSDHP, or ℓ-BDHIP are implemented, such weak parameters should be
avoided. However, there are pairing-based cryptographic schemes which are not
affected by Cheon’s algorithm such as Boneh and Franklin’s ID-based encryption
scheme.
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A Large Scale Solving System

This appendix describes the management system “Large Scale Solving System
(LSSS)” for the parallelized ρ-method for Cheon’s algorithm dedicated to the
large-scale experiment.

For such a large-scale parallelized experiment, the distributed.net is used
worldwide [10], which supports to solve large scale problems using idle PCs,
CPUs or GPUs in everywhere in the world. For example, the distributed.net
has broken RC5-64 (64-bit RC5), and is trying to break RC5-72 (72-bit RC5)
currently. Anyone can join to the distributed.net simply by downloading and
executing a client program. A server of the distributed.net system distributes a
“key-block” to each client, and each client exhaustively searches the correct key.
In the distributed.net system, the HTTP protocol over proxy-server is used for
the communication between the server and clients.

the distributed.net has high scalability and is suitable for large-scale ex-
periment. However, since the connection between the server and clients in the
distributed.bet is loose, the system is not efficient. Thus, we have designed more
tightly-connected and more efficient but less scalable system in our experiment.

13



An overall design of LSSS is shown in Figure 3. We have also adopted the HTTP
protocol over proxy-server for the communication between the server and clients
so that any clients of any organizations can join to LSSS at any time (this is
very important when the experiments are conducted in academic organizations
and private companies).

Fig. 3. Grand design of LSSS

For solving a 160-bit DLPwAI by Cheon’s algorithm in our experiment, two
LSSSs are used as in Figure 4. Each LSSS consists of one server, numerous
calculating clients, and one DB organizer. A calculating client evaluates the
random-walk function and outputs a result if it is the distinguished element.
Every client sends distinguished elements to the server and the server catches
the received distinguished elements. A DB organizer obtains the distinguished
elements from the server and establishes a DB of these distinguished elements.
One LSSS is dedicated to evaluate F (l)(G′

d), while another LSSS is to evaluate
F (l)(G′) for Step 1 of Cheon’s algorithm. These two DBs are compared by a DB
matching tool periodically. If a collision F (i)(G′

d) = F (j)(G′) is found in these
DBs, the tool output the collision. In LSSS, all functions work on Windows and
Linux (and perhaps other UNIX OSs) to utilize any platforms.

A calculating client has the common communication unit and the calculating
unit. Since the common communication unit is independent from the target
parameter, and APIs between the communication unit and the calculating unit is
very simple, a user has to change the calculating unit only for a new experiment.
Because of this construction, LSSS can be used not only for Cheon’s algorithm
but also for solving ECDLP with ρ-method and other similar problems.
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Fig. 4. Constitution of the solving system of a 160-bit DLPwAI by Cheon’s algorithm
with two LSSSs
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