
On the Impossibility of Instantiating PSS in the
Standard Model

Rishiraj Bhattacharyya1 and Avradip Mandal2

1 Cryptology Research Group, Applied Statistics Unit, Indian Statistical Institute,
Kolkata. rishi r@isical.ac.in

2 Université du Luxembourg, Luxembourg. avradip.mandal@uni.lu

Abstract. In this paper we consider the problem of securely instantiat-
ing Probabilistic Signature Scheme (PSS) in the standard model. PSS,
proposed by Bellare and Rogaway [3] is a widely deployed randomized
signature scheme, provably secure (unforgeable under adaptively chosen
message attacks) in Random Oracle Model.
Our main result is a black-box impossibility result showing that one can
not prove unforgeability of PSS against chosen message attacks using
blackbox techniques even assuming existence of ideal trapdoor permu-
tations (a strong abstraction of trapdoor permutations which inherits
all security properties of a random permutation, introduced by Kiltz
and Pietrzak in Eurocrypt 2009) or the recently proposed lossy trapdoor
permutations [20]. Moreover, we show onewayness, the most common se-
curity property of a trapdoor permutation does not suffice to prove even
the weakest security criteria, namely unforgeability under zero message
attack. Our negative results can easily be extended to any randomized
signature scheme where one can recover the random string from a valid
signature.

Keywords: PSS, Blackbox Reductions, Randomized Signature, Stan-
dard Model.

1 Introduction

Probabilistic Signature Scheme (PSS) is one of the most known and widely de-
ployed provably secure randomized signature schemes. It was designed by Bel-
lare and Rogaway [3] as a generic scheme based on a trapdoor permutation (like
RSA). In [3], Bellare and Rogaway showed the scheme is secure in Random Ora-
cle (RO) Model [2]. Coron improved the previous security bound in [7]. Recently
in [8], PSS is proven secure even against fault attacks exploiting the Chinese
Remainder Theorem (CRT) implementation of RSA . However, all the previous
security proofs are valid only in RO model, where one assumes the existence of
ideal, truly random hash functions. Unfortunately truly random functions do not
exist and in practice, the “ideal” functions are instantiated with some efficient
hash functions. Hence it is important that the proofs are valid while replacing

random oracles by a standard hash functions. Otherwise such proofs merely pro-
vide heuristic evidence that breaking the scheme may be hard (or there is no
generic attack against the scheme).

A number of papers [6, 9, 14, 18], starting from famous results of Canetti et.
al. [6], showed that there are schemes secure in the Random Oracle model, which
are uninstantiable under standard model. Naturally, these results raise concerns
about the soundness of the schemes proven secure in random oracle model. Par-
ticularly for widely deployed scheme like PSS, it is especially important to have
an secure instantiation by a standard, efficiently computable hash function so
that we do not build our technology in vacuum. In this paper, we ask essentially
this particular question about PSS: Whether it is possible, to securely instantiate
PSS based on reasonable assumptions to the underlying trapdoor permutation.

1.1 Our Results

Our main result is a general negative result to the above question. Roughly, we
extend all the negative results by Dodis et. al. [9] for Full Domain Hash (FDH)
to PSS. Specifically, we show the following

– There is no instantiation of PSS such that, unforgeability under chosen mes-
sage attack can be reduced to any security property of a random permutation
using black-box reduction techniques. As a random permutation satisfies al-
most all reasonable security notions, our result covers many of the standard
security notions, like inverting trapdoor permutation on a random point
(one-way), finding some bits of pre-image of a random point (partial domain
one-wayness), finding correlated inputs etc. Our result is perfectly valid even
if the hash functions used in PSS can query the trapdoor permutation and
digests are arbitrarily related to the responses.

– We also rule out any black box reduction from recently proposed Lossy
Trapdoor Permutations [20]. In Crypto 2010, Kiltz et. al. [17] has proven
IND-CPA security of OAEP based on Lossy Trapdoor Permutation. Hence
it is important to analyze whether positive result could be possible for PSS.

– We also show that even the weakest security criteria , namely unforgeability
under no message attack cannot be black-box reduced to the one-wayness
of the trapdoor permutation if the randomness space in PSS is “super-
polynomial” in security parameter.

– All our results can easily be extended to the scenario when the adversary can
invert some points of his choice (with some restrictions) for a fixed bounded
number of times.

We would like to mention that our results does not completely rule out the
possibility of instantiating PSS in standard model. A “whitebox” reduction, us-
ing the code of the adversary, may still exist. On the other hand, it may be
possible to show a reduction from other cryptographic functions like homomor-
phic encryption. Still, we believe our result is important from theoretical point

of view as it shows PSS requires special property of underlying trapdoor permu-
tation as opposed to “Only randomness of hash is sufficient” notion of random
oracle model.

1.2 Overview of our Technique

We use the technique of two oracles due to Hsio and Reyzin [15] for our separation
results. We construct two oracles T and G such that T implements a ideal
trapdoor permutation and G can be used to forge the PSS scheme. However, G
does not help the attacker to break any security property of the ideal trapdoor
permutation. Informally, this ensures that a black-box security proof cannot exist
as any such proof should be valid against our T and G.

On a very high level our technique can be seen as an extension of the tech-
nique of Dodis et. al. [9] to rule out black box reduction of FDH. Separation from
a random permutation is achieved in two steps. As the first step, we instantiate T
by permutation chosen uniformly at random from the set of exponentially many
permutations. Intuitively, G, the main forger oracle, should output a forgery
after checking whether the adversary truly has access to a signer by sending
polynomially many challenge messages. However the reduction could design the
underlying hash function in such a way, so that the digests of the messages either
collide with each other (hence reducing the number of points on which inver-
sion is needed) or the digest is the result one of the evaluation queries made to
the trapdoor permutation (hence the reduction can get the signature from the
corresponding query by evaluating the hash function). For this reason we define
G to output the forgery only if the adversary can produce distinct signatures,
which were not a query to the trapdoor permutation during the computation of
digests, for all the challenge messages.

In the second step we show that a reduction algorithm (which does not have
access to inversion oracle) can not produce valid, signature meeting both the
conditions with non-negligible probability. Hence to win any hard game, G is
of no use to the adversary. However, we construct an efficient adversary with
an access to a valid sign oracle (available in an unforgeability game) that can
either find a forgery on its own or can construct signatures satisfying all the
conditions of G. We stress that the efficient algorithm in [9], which precomputes
all the hash values to check for the conditions, does not work efficiently when
the signature scheme is randomized. Specifically, when the random strings are of
super-logarithmic length, it is no longer possible for a polynomial time algorithm
to compute all possible hash values for even a single message. It might very
well happen that the computed digests meet the conditions but the digests on
which signer generated the signature do not meet the condition. To solve this
problem we use an elegant adaptive “evaluate on the fly” technique where we
sample polynomially many random strings and check for the conditions. If the
conditions are satisfied for the sampled digests, we repeatedly query the signer
with fresh random coins for multiple signatures of same message. We show that,
with probability exponentially close to 1, one gets either a set of valid signatures

maintaining the conditions from the signer or could find a forgery during the
sampling stage.

1.3 Previous Results

A rich body of work [11–14, 16, 21] on blackbox separation exists in the litera-
ture starting from the seminal work of Impagliazzo and Rudich [16]. Regarding
the separation of random oracle from the standard model, the first result was
due to Canetti, Goldreich and Halevi [5, 6] who showed an artificial albeit valid
signature scheme that can not be securely instantiated by standard hash func-
tions. Many such results [9, 10, 14, 18] were subsequently published. To obtain
our separation results we use the two oracle technique of Hsiao and Reyzin[15].
The most relevant results to our paper is the work of Dodis et. al. [9] and of Kiltz
and Pietrzak [18]. In [9], Dodis, Oliviera and Pietrzak showed that the popu-
lar Full Domain Hash (FDH) signature scheme can not be instantiated (using
blackbox technique) in standard model by a ideal trapdoor permutation. Kiltz
and Pietrzak [18] established that there is no blackbox reduction of any padding
based CCA secure encryption scheme from ideal trapdoor permutations. In [19],
Paillier showed impossibility of reduction of many RSA based signatures includ-
ing PSS from different security assumptions of RSA. However, their result is
based on an additional assumption (namely, instance non-malleability) of RSA.
In comparison, our result is more generic as we rule out blackbox reduction from
any property of random permutation.

1.4 Differences from Dodis et al’s Crypto’05 paper [9]

Although our definition of oracles are quite similar to that in [9], difference comes
in when finally implementing a forgery. The technique of [9] is not readily ap-
plicable for randomized signatures. Specifically in case of PSS the forger cannot
force the signer to choose any particular random string. On the other hand, if
the randomness space is super-polynomial the forger cannot pre-compute all the
possible value of the hashes of any message. As a result the forger, as defined in
[9], cannot output a forgery when G aborts. Our contribution is in constructing
adaptive forger that can forge PSS with overwhelming probability even when
the randomness space is super-polynomial. Moreover, our technique to rule out
black-box reduction to one way trapdoor permutation is completely different.
Looking ahead, we show that when the randomness space is of super-polynomial
size, no Probabilistic Polynomial-Time Turing Machine (PPTM) can use a ran-
dom signature (over the choice of random string during signing) of any fixed
message to invert the one way trapdoor permutation.

2 Preliminaries

2.1 Notations

Throughout the paper, if x is a string, |x| denotes the length of the string. 1n

denotes the string of n many 1s. If S is a set |S| denotes the cardinality of the

set. We use negl(n) to denote any function γ : N→ [0, 1] where for any constant
c > 0 there exist n0 such that for all n > n0; γ(n) < 1/nc. We call a function
f(n) to be super-polynomial if for any constant c > 0, there exists n0 such that
for all n > n0, f(n) > nc.

2.2 Trapdoor Permutations (TDPs)

Definition 1. A trapdoor permutation family is a triplet of PPTM (Tdg, F
, F−1). Tdg is probabilistic and on input 1n outputs a key-pair (pk, td) ←R

Tdg(1n). F (pk, .) implements a permutation fpk over {0, 1}n and F−1(td, .) im-
plements the corresponding inverse f−1

pk .

The most standard security property of TDP is one-wayness which says that it
is hard to invert a random element without knowing the trapdoor. Formally, for
any PPTM A

Pr[(pk, td)←R Tdg(1n), x←R {0, 1}n : A(fpk(x)) = x] ≤ negl(n).

Many other security notion for Trapdoor Permutations are known. Like [9,
18], we consider a wide class of security properties using the notion of δ-hard
games.

2.3 Hard Games

A cryptographic game consists of two PPTMs C (Challenger) and A (Prover)
who can interact over a shared tape. After the interaction, C finally outputs a bit
d. We say, A wins the game if d = 1 and denote it, following [9], by 〈C,A〉 = 1.

Definition 2. A game defined as above is called δ-hard game if for all PPT A
(in the security parameter n) the probability of win , when both C and A has
oracle access to t uniform random permutations π1, π2, · · · , πt over {0, 1}n, is at
most negligible more than δ. Formally C is a δ-hard game if for all PPTM A

AdvC(A,n) = Pr[〈Cπ1,π2,··· ,πt , Aπ1,π2,··· ,πt〉 = 1] ≤ δ + negl(n)

The hardness of the game C (denoted by δ(C)) is the minimum δ such that C is
δ-hard.

For cryptographic games like one-wayness, partial one-wayness, claw-freeness;
δ = 0. For the game of pseudo-randomness δ = 1/2. The notion of δ-hard game
was considered in [18] as a generalization of hard games considered in [9]. It was
pointed out in [18] that the result of [9] can easily be extended to this notion.

2.4 Ideal Trapdoor Permutations

The notion of Ideal Trapdoor permutation was coined in [18]. To remain consis-
tent with literature, we follow the same notion.

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. We say that TDP is
secure for δ-hard game C if for all PPTM A, AdvC(A,n) − δ(C) is negligible
even when the random permutations in the definition of hard game is replaced
by TDP . Formally, TDP is secure iff,

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt)〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Definition 3. TDP is said to be an ideal trapdoor permutation if it is secure
for any δ-hard game C.

We stress that, ideal trapdoor permutation does not exist (see [9] for proof).
However as we are proving negative result, showing that PSS cannot be re-
duced to ideal trapdoor permutation (hence to any hard game) makes our result
stronger. This implies that PSS cannot be black-box reduced to security notions
like collision resistant hashing, pseudo-random functions, IND-CCA secure public
key encryption schemes etc.

2.5 Lossy Trapdoor Permutations(LTDPs)

Lossy Trapdoor Functions were introduced by Peikert et. al. in [20]. In this
paper we consider a straightforward generalization to permutations. A family of
(n, l) Lossy Trapdoor Permutations (LTDPs) is given by a tuple (S,F ,F ′) of
PPTMs. S is a sampling algorithm which on input 1 invokes F and on input 0
invokes F ′. F (called “Injective Mode”) describes a usual trapdoor permutation;
i.e. it outputs (f, f−1) where f is a permutation over {0, 1}n and f−1 is the
corresponding inverse. F ′ (called “Lossy Mode”) outputs a function f ′ on {0, 1}n
with range size at most 2l. For any distinguisher D, LTDP-Advantage is defined
as

Advltdp(F,F ′),D =
∣∣∣Pr[Df (.) = 1 : (f, f−1)←R F]− Pr[Df ′

(.) = 1 : f ′ ←R F ′]
∣∣∣.

We call F “lossy” if it is the first component of some lossy LTDP.

3 Signature Schemes

A signature scheme (Gen, Sign, Verify) is defined as follows:
- The key generation algorithm Gen is a probabilistic algorithm which given

1k, outputs a pair of matching public and private keys, (pk, td).
- The signing algorithm Sign takes the message M to be signed, the public

key pk and the private key td, and returns a signature σ = Signtd(M). The
signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate sig-
nature σ′ and pk. It returns a bit Verifypk(M,σ′), equal to one if the signa-
ture is accepted, and zero otherwise. We require that if σ ← Signtd(M), then
Verifypk(M,σ) = 1.

3.1 Security of a Signature Scheme

In the existential unforgeability under an adaptive chosen message attack sce-
nario, the forger can dynamically obtain signatures of messages of his choice and
attempts to output a valid forgery. A valid forgery is a message/signature pair
(M,x) such that Verifypk(M,x) = 1 whereas the signature of M was never
requested by the forger.

3.2 Probabilistic Signature Scheme(PSS)

m r

ω

h

0 r∗ g2(ω)

g1(ω)

g1

g2

Fig. 1. PSSTDP
H : The components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The

signature of m is F−1(td, y)

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. PSS uses a triplet
H = (h, g1, g2) of hash functions such that, h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 →
{0, 1}k0 and g2 : {0, 1}k1 → {0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.

Gen(1k)

1. Return (pk, td) = Tdg(1k)

Signtd(m)

1. r ← {0, 1}k0
2. ω ← h(m‖r)
3. r∗ ← g1(ω)⊕ r
4. y ← 0‖ω‖r∗‖g2(ω)
5. Return σ = F−1(td, y).

Verifypk(m,σ)

1. Let y = F (pk, σ)
2. Parse y as 0‖ω‖r∗‖γ. If the parsing

fails return 0.
3. r ← r∗ ⊕ g1(ω)
4. If h(m‖r) = ω and g2(ω) = γ return

1.
5. else return 0.

Any PSS signature scheme can be instantiated by specifying the triplet of
hash functions H = (h, g1, g2) and the trapdoor permutation TDP . PSSTDPH be
the PSS signature scheme instantiated by H and TDP . For any H = (h, g1, g2),
the PSS transformation described above is defined as

PSS
fpk

H (m‖r) = 0‖h(m‖r)‖(r ⊕ g1(h(m‖r))‖g2(h(m‖r)).

PSS
fpk

H (m‖r) is in fact the darkened area in Figure 1, y = 0‖ω‖r∗‖g2(ω). Note,
h, g1, g2 can be oracle circuits with oracle access to fpk. For the rest of the paper,
PSSTDPH denotes the signature scheme, where as PSSfpk

H (·) is the PSS transfor-
mation during Sign procedure before applying the trapdoor permutation. From
the context these two notations are easily distinguishable.

The following observation is very important to our technique.

Observation 1 A collision after the PSS transformation implies collision in
the random space. In other words,

PSS
fpk

H (M1‖r1) = PSS
fpk

H (M2‖r2)

implies r1 = r2.

As both the digests are same, ω1‖r∗1‖γ1 = ω2‖r∗2‖γ2; we have ω1 = ω2 and
r∗1 = r∗2 . This leads to r1 = r2. So for two distinct random strings r1 and r2,
the digests of PSSfpk

H and hence the signatures are always different (irrespective
of whether the messages are same or not)! As a side note, all our results are
valid not only for PSS, but for any randomized signature scheme where the
randomness is recoverable and hence the Observation 1 holds true.

4 No Blackbox Reduction from One way Trapdoor
Permutations

One-wayness is the most common security property of a trapdoor permutation.
All the previous security proofs of PSS in Random Oracle model are based on one
wayness of underlying trapdoor permutation (specifically RSA). In this section

we consider the possibility of reducing security of PSS from one-wayness of a
trapdoor permutation, but in standard model. We show that when k0 = ω(log n),
one cannot prove PSS secure via a blackbox reduction from one way trapdoor
permutation even if the forger is never allowed to query the signer.

Recall that, r1 6= r2 implies PSS
fpk

H (0‖r1) 6= PSS
fpk

H (0‖r2). So the set
{PSSfpk

H (0‖r)|r ∈ {0, 1}k0} is of super-polynomial size. Even if G returns one
random signature (from a choice of superpolynomially many) of message 0, it
is unlikely to be of any use of the adversary intended to invert TDPT on a
uniformly chosen element z.

Following [15], Proposition 1, to rule out blackbox reductions, it is enough
to construct two oracles T and G such the following holds:

– There exists an oracle PPTM TDP such that TDPT implements a trapdoor
permutation.

– There exist an oracle PPTM A such that AT,G finds a forgery under chosen
message attack for PSSTDP

T

H .
– TDPT is an one-way trapdoor permutation relative to the oracles T and
G. That is, TDPT is an one-way permutation even if the adversary is given
oracle access to T and G.

Definition of T For any n ∈ N, Choose 2n + 1 permutations f0, f1, f2, · · · ,
f2n−1 and g uniformly at random from the set of all permutations over {0, 1}n.
Now the oracle T is defined as follows:

– T1(td)→ g(td) (generate public key from the trapdoor)
– T2(pk, y)→ fpk(y) (evaluate)
– T3(td, z)→ f−1

g(td)(z) (inversion)

Implementing TDP T We use T = (T1, T2, T3) in the following way to con-
struct (in the functional sense) the trapdoor permutation TDPT = (Tdg, FT , F−1

T).

– Tdg(1n) chooses a uniform random td ← {0, 1}n and computes the corre-
sponding public key as pk = T1(td) and outputs (td, pk).

– FT (pk, y) returns T2(pk, y).
– F−1

T (td, z) returns T3(td, z).

It is easy to check that as TDPT implements a trapdoor permutation, as g(td) =
pk.

Description of G The oracle G takes as input k ∈ N and H ∈ {0, 1}∗. G
selects an r ∈R {0, 1}k0 and returns f−1

pk (PSSfpk

H (0‖r)). Here pk is the public
key generated by Tdg(1k).

As G always outputs a forgery for message 0, we get the following result.

Lemma 1. There is a PPTM A such that AG outputs a forgery for PSS signa-
ture scheme.

G does not break security of TDP T

Next we shall prove that TDPT is one way, even relative to G. This is not at
all obvious as G always provides forgery of the form f−1

pk (PSSfpk

H (.)) for a H of
our choice! But we note that G(.) samples one z′ from a set of superpolynomial
size and outputs f−1

pk (z). Even if the adversary sets PSSfpk

H (0, r) for one r to
be the challenge z she received, probability that fpk(G(.)) = z is negligible.
On the other hand if fpk(G(.)) 6= z, then knowledge of inverse of some other
point does not help the adversary to find f−1

pk (z) with significant probability for
a pseudorandom fpk. Following the above discussion we have Lemma 2, whose
detailed proof is given in the full version [4].

Lemma 2. A random permutation π : {0, 1}n → {0, 1}n is one way even if
adversary is allowed to make one inverse query on any input except the challenge.

Now, we can claim that TDPT is one way even relative to G.

Lemma 3.

Pr[AT,G(pk, z) = x : FT (pk, x) = z] ≤ negl(n),

where x←R {0, 1}n and (pk, td)← Tdg(1n).

For a proof of the above lemma, see [4].
We get the main result of this section as follows

Theorem 1. There is no blackbox reduction of Security under no message attack
of Probabilistic Signature Scheme with superpolynomial randomness space from
Oneway Trapdoor Permutations.

5 No Blackbox Reduction from an Ideal Trapdoor
Permutation

The following theorem states that there is no adversary that can break the secu-
rity of the TDPT using any adversary (in black-box way) breaking PSSTDP

T

H

by chosen message attack when TDPT is an ideal permutation.

Theorem 2. There is no black-box reduction from a family of ideal trapdoor
permutations to the existential unforgeability against chosen message attack of
the PSS signature scheme.

Like the previous section, we shall construct a oracle G such that there exist a
PPTM B such that BG can forge PSS although TDPT is secure even relative
to G. We define, T and TDPT as in section 4.

Definition of G The oracle G works as follows. On input the description of
the hash function triplet H = (h, g1, g2), and the security parameter n, it selects
t = max(|H|, n) messages m1,m2, · · ·mt uniformly at random from {0, 1}∗ \ {0}
and outputs them as a set of challenge messages. G expects valid and distinct
signatures of all the messages. G also keeps a list (initially empty) of description
of input hash functions, the challenge messages and the forgery it returns. If the
description of the hash matches then G outputs the same challenge messages.
If it gets valid signatures (as described below) then it outputs the previously
returned forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G checks for the following conditions.

1. σ1, · · · , σt are valid signatures for m1, · · · ,mt. Recover r1, · · · , rt such that,

PSS
fpk

H (m1‖r1) = fpk(σ1), · · · , PSSfpk

H (mt‖rt) = fpk(σt).

2. σi 6= σj (or equivalently PSSfpk

H (mi‖ri) 6= PSS
fpk

H (mj‖rj)) for all 1 ≤ i <
j ≤ t.

3. {PSSfpk

H (m1‖r1), · · · , PSSfpk

H (mt‖rt)} ∩ Y PSSH

fpk
(r1, · · · , rt) = ∅ where

Y PSSH

fpk
(r1, · · · , rt) ={fpk(x)|∃i, 1 ≤ i ≤ t,

PSS
fpk

H (mi‖ri) makes the oracle query x}.

If all the above conditions are satisfied then G chooses one r uniformly at random
from {0, 1}k0 and returns f−1

pk (PSSfpk

H (0‖r)). Here pk is the public key generated
by Tdg(1k).

G breaks the security of PSST DP T

H

Lemma 4. There is a PPTM BG that can mount existential forgery by chosen
message attack on PSS with overwhelming probability.

Proof. The goal of BG is to either generate a forgery on it’s own or use the sign
oracle to get signatures of m1, · · · ,mt such that Condition 1, Condition 2 and 3
get satisfied. Then BG can use output of G to produce forgery for the message
0. We describe two constructions of BG depending on size of the randomness
space or k0.

Case I: k0 = O(log n) : In this case BG precomputes PSSfpk

H (mi‖r) for all
r ∈ {0, 1}k0 and i = 1 · · · t and checks whether the Condition 3 from Section 5
would get satisfied or not for any possible choice of r by the Sign oracle. If not
B can find some mi,mj , ri, rj , x such that

PSS
fpk

H (mi‖ri) = fpk(x),

Algorithm 1 BG : Phase-I
1: rk

i ←R {0, 1}k0 : 1 ≤ i ≤ t, 1 ≤ k ≤ t
2: V = {PSSfpk

H (mi‖rk
i) : 1 ≤ i ≤ t, 1 ≤ k ≤ t}

3: Y = {fpk(x)| ∃i, k, 1 ≤ i ≤ t, 1 ≤ k ≤ t
s. t. PSS

fpk

H (mi, r
k
i) makes oracle query fpk(x)}

4: if V ∩ Y 6= ∅ then
5: Output Direct Forgery
6: end if

where PSSfpk

H (mj‖rj) makes the oracle query fpk(x). In this case B can easily
produce the forged signature x for the message mi.
Otherwise to take care of Condition 2, BG calls the Sign oracle to get valid
signatures for message mi’s one by one for i = 1 to t. After receiving the ith

signature σi it always recovers the randomness ri and checks whether

PSS
fpk

H (mi‖ri) = PSS
fpk

H (mj‖ri)

for some i < j ≤ t. Because of Observation 1 it is sufficient to check with the
fixed ri for collision detection purposes. If the above condition gets true again BG

can readily output a forged signature for message mj as σi. Otherwise, BG ends
up with σ1, · · · , σt such that all the three conditions in Section 5 are satisfied. So
BG can easily use G to produce a forgery for the message 0. Hence BG succeeds
to forge PSS with probability 1.

Case II: k0 = ω(log n) : In this case the randomness space is of superpolyno-
mial size, hence BG cannot precompute all the possible outputs of PSSfpk

H (m‖·)
even for a single message m. However, we observe that the “no collision” re-
quirement or Condition 2 can easily be taken care of by a technique similar to
the previous one. To take care of Condition 3, we adopt a sampling procedure.
BG works in two phases. In Phase-I, B samples some random r’s from {0, 1}k0
uniformly and simulate the signing procedure by the real Sign oracle that would
be queried in Phase-II. Then the probabilities that Condition 3 gets satisfied in
Phase-I or in Phase-II are essentially the same. We set our parameters such a
way, with high probability either Condition 3 does not hold in Phase I (hence
direct forgery) or it holds in Phase-II (forgery via oracle G, provided Condition
2 holds).

Success Probability of BG in Case II : In Line 21 of Algorithm 2, Condition
1 and Condition 2 are always satisfied. So BG can abort only in two ways.

1. In Line 16 of Algorithm 2, Σi becomes empty for some i, 1 ≤ i ≤ t.
2. In Line 21 of Algorithm 2, Condition 3 gets violated. r1, · · · , rt be the random

strings recovered from σ1, · · · , σt. Violation of Condition 3 over here implies
there exists some i, j, 1 ≤ i, j ≤ t, i 6= j such that

PSS
fpk

H (mi‖ri) = fpk(x),

Algorithm 2 BG : Phase-II
1: for i = 1 to t do
2: σ1

i ← Sign(mi), · · · , σt
i ← Sign(mi)

3: Σi = {σ1
i , · · · , σt

i}
4: Recover r1i , · · · , rt

i from σ1
i , · · ·σt

i using Verify.
5: for j = i+ 1 to t do

6: if PSS
fpk

H (mi‖rk
i) == PSS

fpk

H (mj‖rk
i) for some 1 ≤ k ≤ t then

7: Output Direct Forgery (mj , σ
k
i)

8: end if
9: end for

10: for k = 1 to t do
11: Xi,k ← {x|PSS

fpk

H (mi‖rk
i) makes oracle query fpk(x)}

12: if σk
i ∈ Xi,k then

13: Σi ← Σi \ {σk
i }

14: end if
15: end for
16: if Σi = ∅ then
17: Output ⊥
18: end if
19: Pick any σi ∈ Σi

20: end for
21: if σ1, · · · , σt satisfy Condition 1, Condition 2 and Condition 3 from Section 5

then
22: Output forgery via G
23: else
24: Output ⊥
25: end if

where PSSfpk

H (mj‖rj) makes the oracle query x.

Moreover, in both the cases no forgery was found in Algorithm 1.
Let us consider the case where for some i, Σi is empty. It implies for some i,

for all k = 1, · · · , t, σki ∈ Xi,k and hence was removed from Σi . Fix some i . Let
us call the set of r for which PSS

fpk

H (mi, r) = fpk(x) and x was queried while
computing PSSfpk

H (mi, r) as BAD. Suppose

Prr[r ∈ BAD] = θ.

Now the event Σi = ∅ and no forgery was found in Phase-I implies that the
random strings r(i), sampled in Phase 1 were not from the BAD set and all of
r1i , r

2
i , · · · , rti was from BAD. As Sign and B samples independently, probability

of Σi = ∅ is θt(1−θ)t ≤ 2−t. Taking union bound over all i, the probability that
for some i, Σi is empty is at most t/2t.

For the second case, the chosen σis were not queried while computing them;
rather one σi was queried while computing some other σj . Recall that maximum
number of fpk queries (made by PSSfpk

H) while computing one signature is |H|.
As, for any j Σj ≤ t, for each j = 1, 2, · · · , t; j 6= i, maximum number of fpk

queries made while computing Σj is at most t|H|. So overall, for all j 6= i, total
number of fpk queries made by the PSSfpk

H was t2|H|. As, there are 2|r| choices
of random string, implying 2|r| choices for each σki , and Sign runs each time
with independent random coins, probability that at least one σki was from those
t2|H| many fpk queries is at most t4

2k0
.

Hence we get that

Pr[BG →⊥]
≤ Pr[∃i;Σi = ∅] + Pr[∃i, j;σi ∈ { fpk queries made while computing σj }]

≤ t

2t
+
t4|H|
2|r|

Putting t = max(|H|, n), |r| = ω(log n) and |H| ≤ nc for some constant c,
Pr[BG →⊥] is negl(n). ut

G does not break the security of TDP T

Lemma 5. For any oracle PPTM B and any δ-hard game C (with t = t(n)
implicitly defined by C),

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt),G〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Proof. The proof of the above lemma is essentially same as in proof of Lemma
2 in [9], where one argues in the absence of oracle G the claim holds because of
computational indistinguishability of fpk from a random permutation. Moreover,
Lemma 6 below states the accepting condition of oracle G can only be satisfied
with a negligible probability. ut

Lemma 6. Let f be a random permutation on {0, 1}n and c ≥ 1 be a constant,
m1, · · · ,mt be n-bit values with t = max(|H|, n). For any oracle TM A which
makes at most nc oracle queries, we have (the probability is over randomness of
f)

Pr[Af → (H,x1, · · · , xt)] = negl(n)

where, |H| ≤ nc and the output satisfies the following conditions for some k0-bit
r1, · · · , rt
1. f−1(PSSfH(m1‖r1)) = x1, · · · , f−1(PSSfH(mt‖rt)) = xt .
2. f−1(PSSfH(mi‖ri)) 6= f−1(PSSfH(mj‖rj)) for all 1 ≤ i < j ≤ t.
3. {PSSfH(m1‖r1), · · · , PSSfH(mt‖rt)} ∩ Y PSSH

f (r1, · · · , rt) = ∅, where

Y PSSH

f (r1, · · · , rt) ={f(x)|∃i, 1 ≤ i ≤ t,

PSSfH(mi‖ri) makes the oracle query x}.

Lemma 6 can proved following the same technique of Lemma 3 of [9]. For a
proof, we refer the reader to the full version of this paper [4].

6 No Reduction from Lossy Trapdoor Permutations

Lossy Trapdoor Functions, introduced by Peikert et. al. has gained considerable
attention in recent years. In a recent work [17], has proven IND-CPA security
of OAEP under Lossy Trapdoor Permutation. Moreover different constructions
like IND-CCA secure encryption, which cannot be reduced to standard trapdoor
permutation using blackbox techniques, were proven reducible to Lossy Trap-
door Permutations. In this section we show that there is no blackbox reduction
of existential unforgeability of PSS against chosen message attack from Lossy
Trapdoor Permutations as well. Specifically, Let LTDP = (S, F, F ′) be a family
of Lossy Trapdoor Permutation. We define the output of PSS based on LTDP as
σ = f−1(PSSH(m||r)) where (f, f−1) ∈ F . Note that, while instantiating PSS
by a lossy TDP, we consider the trapdoor permutation to be the injective mode
of the TDP.

Theorem 3. There is no blackbox reduction of existential unforgeability against
chosen message attack of Probabilistic Signature Scheme from Lossy Trapdoor
Permutations.

Proof To prove Theorem 3, we need new definitions of the oracles.

Definition of T T is defined as a pair (T, T ′). Choose 2n + 1 permutations
f0, · · · , f2n−1 and g uniformly at random from the set of all permutations over
{0, 1}n. Moreover choose 2n functions e0, · · · , e2n−1 uniformly at random from
the set of all functions from {0, 1}n to {0, 1}l.

Oracle T works as follows:

– T1(td)→ g(td) (generate public key from the trapdoor)
– T2(pk, y)→ fpk(y) (evaluate)
– T3(td, z)→ f−1

g(td)(z) (inversion)

On the other hand T ′ is defined as follows

– T ′(pk, x) = fpk(1n−l||epk(x))

Now we define the LTDPT,T
′

= (S, (F, F−1), F ′) as follows

– S(b) If b = 1, choose a uniform random td← {0, 1}n computed pk = T1(td)
and return (pk,td), otherwise choose a uniform random pk ← {0, 1}n and
return (pk,⊥).

– F (pk, y) returns T2(pk, y).
– F−1(td, z) returns T3(td, z).
– F ′(pk, y) returns T ′(pk, x).

Lemma 7. LTDPT,T
′

implements a secure (n, l) Lossy Trapdoor Permutation
when l = O(n

1
c) for a positive constant c.

Proof. Recall that, to show the security of LTDPT,T
′
, we need to argue that

for any efficient distinguisher D, |Pr[DF = 1] − Pr[DF ′
= 1]| is negligible.

Consider a random function e′ : {0, 1}n → {0, 1}l and a random permutation π :
{0, 1}n → {0, 1}n. It is easy to check that π(1n−l||e′()) has the same distribution
of a random permutation until a collision in e′. e′ being a random function, the
collision probability is q2/2l, which is negligible for q = O(nc1)) for some constant
c1 > 0.

Now using the fact that a function (permutation) chosen uniformly at random
from the set of exponentially many functions (permutations) is indistinguishable
form a random function (permutation), the lemma follows. ut

Definition of G : Informally, G will work exactly the same way as in the
previous case when the underlying permutation is in injective mode. When the
permutation is lossy G can abort instead of returning a forgery. So effectively,
when instantiated by the lossy mode G always aborts and in injective mode G
aborts if the conditions are not satisfied.

In more detail, G works in the following way. On input the description of the
hash functions h, g1 and g2, it selects t (to be fixed later) messages m1,m2, · · ·mt

uniformly at random from {0, 1}∗ \ 0 and outputs them as a set of challenge
messages. G expects valid and distinct signatures of all the messages. G also
keeps a list (initially empty) of description of input hash functions, the challenge
messages and the forgery it returns. If the description of the hash matches then
G outputs the same challenge messages. If it gets valid signatures (as described
below) then it outputs the same forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G first checks whether the signatures are valid and distinct.

– F (pk, σi) = PSS
fpk

H (mi‖r) for some r. This signature verification is to make
sure that that calling algorithm has access to signing oracle.

– σi 6= σj for all i 6= j

If the above two conditions are satisfied then G finds the random strings used
in the signatures. Let r1, r2, · · · , rt be the random strings

– {F (pk, σ1), F (pk, σ2), · · · , F (pk, σt)} ∩ YT = ∅ where

YT = {F (pk, x)|∃i, 1 ≤ i ≤ t, PSSfpk

H (mi‖ri) queries F (pk, x)}.

Finally G checks whether F is the lossy mode3, if yes it aborts; otherwise G
chooses one r uniformly at random from {0, 1}k0 and computes the PSS hash of
0‖r as y = 0‖h(0‖r)‖g1(h(0‖r))⊕ r‖g2(h(0‖r)). Finally it returns the forgery as
(0, F−1(td, y)).

In order to use G to distinguish the lossy and the injective mode, any dis-
tinguisher has to construct a satisfying assignment of G in injective mode. By
Lemma 6, it happens with negligible probability and we get the following result.
3 As description of F can be hardwired in G, G can easily check the mode of F by

finding the possible inverses.

Lemma 8. Suppose k = O(n
1
c) for a positive constant c. LTDPT,T

′
implements

a secure (n, k) Lossy Trapdoor Permutation even relative to G.

Existence of a forger BG for PSS using the injective mode of the LTDP is satisfied
by Lemma 4. This completes the proof of Theorem 3. ut

7 No Reduction from Hard Games with Inversion

Like [9], our result can also be extended to the hard games with inversions.
Informally, in a hard game with bounded inversion C, the adversary is allowed
to make polynomial q(n) many inversion queries except on some points defined
in the game (for one way game adversary is not allowed to make inversion queries
on the challenge she received). Following [9], if we modify G to ask for signatures
of |H| + q(n) messages and modify Lemma 6 accordingly, we get the following
two theorems.

Theorem 4. There is no blackbox reduction of security against existential forgery
under chosen message attack for PSS from any hard game with polynomial num-
ber of inversion queries.

Theorem 5. There is no blackbox reduction of security against existential forgery
against zero message attack for PSS from an oneway trapdoor permutation, even
with polynomial number of inversion queries.

8 Conclusion

Following the negative results, on generic insecurity of FDH by Dodis et. al [9]
and of OAEP by Kiltz and Pietrzak [18] in standard model, we show security
of PSS also can not be black box reduced to any property of an ideal trapdoor
permutation. Moreover, we also show one can not even hope to achieve security
of PSS based on Lossy Trapdoor Permutations. On the contrary recently a secure
instantiation of OAEP has been realized based on Lossy Trapdoor Permutations
[17].

9 Acknowledgements

We sincerely thank Palash Sarkar for helpful discussions.

References

1. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In EUROCRYPT, pages 83–107, 2002.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

3. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how
to sign with rsa and rabin. In EUROCRYPT, pages 399–416, 1996.

4. Rishiraj Bhattacharyya and Avradip Mandal. On the impossibility of instantiating
pss in the standard model: Full version of this paper. Cryptology ePrint Archive,
Report 2010/651, 2010.

5. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. In STOC, pages 209–218, 1998.

6. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

7. Jean-Sébastien Coron. Optimal security proofs for pss and other signature schemes.
In EUROCRYPT, pages 272–287, 2002.

8. Jean-Sébastien Coron and Avradip Mandal. Pss is secure against random fault
attacks. In ASIACRYPT, pages 653–666, 2009.

9. Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecu-
rity of the full domain hash. In CRYPTO, pages 449–466, 2005.

10. Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind
signature schemes. In EUROCRYPT, pages 197–215, 2010.

11. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS, pages 305–313, 2000.

12. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In FOCS, pages 325–335, 2000.

13. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing
trapdoor functions on trapdoor predicates. In FOCS, pages 126–135, 2001.

14. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, pages 102–, 2003.

15. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In CRYPTO, pages 92–105, 2004.

16. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pages 44–61, 1989.

17. Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of rsa-oaep under
chosen-plaintext attack. In CRYPTO, pages 295–313, 2010.

18. Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based encryption
schemes - or - why we cannot prove oaep secure in the standard model. In EURO-
CRYPT, pages 389–406, 2009.

19. Pascal Paillier. Impossibility proofs for rsa signatures in the standard model. In
CT-RSA, pages 31–48, 2007.

20. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In STOC, pages 187–196, 2008.

21. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

