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Abstract. In this work we construct public key encryption schemes that
admit a protocol for blindly decrypting ciphertexts. In a blind decryp-
tion protocol, a user with a ciphertext interacts with a secret keyholder
such that the user obtains the decryption of the ciphertext and the key-
holder learns nothing about what it decrypted. While we are not the
first to consider this problem, previous works provided only weak secu-
rity guarantees against malicious users. We provide, to our knowledge,
the first practical blind decryption schemes that are secure under a strong
CCA security definition. We prove our construction secure in the stan-
dard model under simple, well-studied assumptions in bilinear groups.
To motivate the usefulness of this primitive we discuss several applica-
tions including privacy-preserving distributed file systems and Oblivious
Transfer schemes that admit public contribution.

1 Introduction

The past several years have seen a trend towards outsourcing data storage to
remote data stores and cloud-based services. While much attention has been
paid to securing this data, relatively little has been given to the problem of
securing the data’s access pattern. This is a real problem for some systems
where users’ access histories are more sensitive than the data itself, for example
patent databases. Even in business there are many practical applications where
users’ access history is sensitive. For example, the data access patterns of a major
corporation’s executives could be worth millions of dollars to the right person,
particularly in advance of a merger or acquisition.

To address these concerns, many recent works have proposed tools that allow
users to transact online without sacrificing their privacy. These tools include (but
are not limited to) efficient adaptive oblivious transfer protocols [15, 28, 29, 44],
anonymous credential schemes [13, 4], and group signature schemes [16, 7]. One
recent application for these tools is to the construction of oblivious databases
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that provide strong access control while preventing the operator from learning
which records its users access [20, 12]. Despite this progress, there are still many
primitives that we do not know how to implement efficiently using the techniques
available to us.

Blind Decryption. In this work we consider one such primitive, which we
refer to as blind decryption. A blind decryption scheme is a public-key encryp-
tion (PKE) scheme that admits an efficient protocol for obliviously decrypting
ciphertexts. In this protocol a User who possesses a ciphertext interacts with a
Decryptor who holds the necessary secret key. At the conclusion of the protocol,
the User obtains the plaintext while the Decryptor learns nothing about what it
decrypted. Given that the fundamental purpose of a blind decryption protocol
is to decrypt ciphertexts, it seems reasonable to analyze any such protocol with
malicious adversaries in mind. Specifically, since such an adversary can implicitly
use the blind decryption protocol to decrypt chosen ciphertexts, we will restrict
out investigation to secure blind decryption schemes that retain their security
even under (adaptive) chosen ciphertext attack.

Blind decryption has many applications to privacy-preserving protocols and
systems. For example, blind decryption implies k-out-of-N oblivious transfer [11],
which is important theoretically as well as practically for its applications to the
construction of oblivious databases [15, 20, 12]. Moreover, blind decryption has
practical applications to distributed cryptographic filesystems and for supporting
rapid deletion [43].

We are not the first to consider the problem of constructing blind decryption
schemes. The primitive was originally formalized by Sakura and Yamane [45] in
the mid-1990s, but folklore solutions are thought to have predated that work by
more than a decade. Despite an abundance of research in this area, most pro-
posed constructions are insecure under adaptive chosen ciphertext attack [24, 49,
41, 23, 47, 42]. Several protocols have recently been proposed containing “blind
decryption-like” techniques (see e.g., the simulatable oblivious transfer proto-
cols of [15, 29, 44, 30, 33]). However, these protocols use symmetric (or at least,
non-public) encryption procedures, and it does not seem easy to adapt them to
the public-key model.

Of course, blind decryption is an instance of secure multi-party computation
(MPC) and can be achieved by applying general techniques (e.g., [50, 26, 34])
to the decryption algorithm of a CCA-secure PKE scheme. However, the pro-
tocols yielded by this approach are likely to be quite inefficient, making them
impractical for real-world applications.

Our Contributions. In this paper we present what is, to our knowledge, the
first practical blind decryption scheme that is IND-CCA2-secure in the standard
model. We prove our scheme secure under reasonable assumptions in bilinear
groups. At the cost of introducing an optional Common Reference String, the
protocol can be conducted in a single communication round.

To motivate the usefulness of this new primitive we consider several appli-
cations. Chief among these is the construction of privacy-preserving encrypted
filesystems (and databases), where a central authority manages the decryption



of many ciphertexts without learning users’ access patterns. This is important
in situations where the access pattern might leak critical information about the
information being accessed. Unlike previous attempts to solve this problem [15,
20, 12], our encryption algorithm is public, i.e., users can encrypt new messages
offline without assistance from a trusted party. By combining blind decryption
with the new oblivious access control techiques of [20, 12] (which use anonymous
credentials to enforce complex access control policies) we can achieve strong
proactive access control without sacrificing privacy.

Of potential theoretical interest, blind decryption can be used as a building
block in constructing adaptive k-out-of-N Oblivious Transfer protocols [15, 29,
44, 30, 33, 37]. In fact, it is possible to achieve a multi-party primitive that is
more flexible than traditional OT, in that any party can commit messages to
the message database (rather than just the Sender). We refer to this enhanced
primitive as Oblivious Transfer with Public Contribution (OTPC). We discuss
these applications in Section 5.

1.1 Related Work

The first blind decryption protocol is generally attributed Chaum [19], who pro-
posed a technique for blinding an RSA ciphertext in order to obtain its decryp-
tion cd mod N . Since traditional RSA ciphertexts are malleable and hence vul-
nerable to chosen ciphertext attack, this approach does not lead to a secure blind
decryption scheme. Furthermore, standard encryption padding techniques [5] do
not seem helpful.

Subsequent works [45, 24, 49] adapted Chaum’s approach to other CPA-
secure cryptosystems such as Elgamal. These constructions were employed
within various protocols, including a 1-out-of-N Oblivious Transfer scheme due
to Dodis et al. [24]. Unfortunately, since the cryptosystems underlying these
protocols are not CCA-secure, security analyses of those protocols frequently
required strong assumptions such as honest-but-curious adversaries.1 Mambo,
Sakurai and Okamoto [41] proposed to address chosen ciphertext attacks by
signing the ciphertexts to prevent an adversary from mauling them. Their
transformable signature could be blinded in tandem with the ciphertext. The
trouble with this approach and other related approaches [15, 29, 30, 33, 44] is
that the encryption scheme is no longer a PKE, since encryption now requires a
knowledge of a secret signing key (furthermore, these transformable signatures
were successfully cryptanalyzed [23]). Schnorr and Jakobsson [47] proposed
a scheme secure under the weaker one-more decryption attack and used this
to construct a PIR protocol. Unfortunately, their protocol is secure only for
random messages, and furthermore cannot be extended to construct stronger
primitives such as simulatable OT [15].

Recently, Green and Hohenberger [28] proposed a technique for blindly ex-
tracting decryption keys in an Identity-Based Encryption scheme. Subsequently,

1 For example, Dodis et al. [24] analyzed their 1-out-of-N oblivious transfer construc-
tion in the honest-but-curious model.



Ogata and Le Trieu [42] used this tool to obtain a weak blind decryption scheme
(by encrypting ciphertexts under a random identity, then blindly extracting the
appropriate secret key). The resulting protocol is efficient, but the ciphertexts
are malleable and thus vulnerable to adaptive chosen ciphertext attack.

1.2 Intuition

Ideally the development of a blind decryption scheme would begin with an ex-
isting CCA-secure PKE, and would only require us to develop an efficient two-
party protocol for computing the decryption algorithm. Indeed, the literature
provides us with many candidate PKE constructions that can be so adapted if
we are willing to accept the costs associated with general multi-party computa-
tion techniques [50, 26, 34].

However, in this work we are interested in protocols that are both secure and
practical. This rules out inefficient gate-by-gate decryption protocols, limiting us
to a relatively small collection of techniques that can be used to build efficient
protocols. This toolbox includes primitives such as homomorphic commitment
schemes, which we might combine with zero knowledge proofs for statements
involving algebraic relations among cyclic group elements, e.g., [46, 31]. While
these techniques have been deployed successfully to construct other privacy-
preserving protocols, there are strict limitations on what they can accomplish.

To illustrate this point, let us review several of the most popular encryp-
tion techniques in the literature. Random oracle paradigms such as OAEP [5]
and Fujisaki-Okamoto [25] seem fundamentally difficult to adapt, since these ap-
proaches require the decryptor to evaluate an ideal hash function on a partially-
decrypted value prior to outputting a result. Even the more efficient standard-
model CCA-secure paradigms such as Cramer-Shoup [22] and recent bilinear
constructions (e.g., [8, 10, 35]) require components that we cannot efficiently
adapt. For example, when implemented in a group G of order p, the Cramer-
Shoup scheme assumes a collision-resistant mapping H : G × G × G → Zp. We
know of no efficient two-party technique for evaluating such a function.2

Our approach. Rather than adapt an existing scheme, we set out to design a new
one. Our approach is based on the TBE-to-PKE paradigm proposed indepen-
dently by Canetti et al. [18] and MacKenzie et al. [40]. This technique converts
a Tag-Based Encryption (TBE) scheme into a CCA-secure public PKE with the
assistance of a strongly unforgeable one-time signature (OTS). In this generic
transform, encryption is conducted by first generating a keypair (vk , sk) for the
OTS, encrypting the message using the TBE with vk as the tag, then signing the
resulting ciphertext with sk . Intuitively the presence of the signature (which is
verified at decryption time) prevents an adversary from mauling the ciphertext.

To blindly decrypt such a ciphertext, we propose the following approach:
the User first commits to the ciphertext and vk using a homomorphic commit-
ment or encryption scheme. She then efficiently proves knowledge of the associ-
2 Conceivably it might be possible to develop one, however it might be tied to the

specific construction of G and thus be be quite inflexible.



ated signature for these committed values. If this proof verifies, the Decryptor
may then apply the TBE decryption algorithm to the (homomorphically) com-
mitted ciphertext, secure in the knowledge that the commitment contains an
appropriately-distributed value. Finally, the result can be opened by the User.

For this protocol to be efficient, we must choose our underlying primitives
with care. Specifically, we must ensure that (1) the OTS verification key maps
to the tag-space of the TBE, (2) and the TBE ciphertext maps to the message
space of the OTS. Of course, the easiest way to achieve these goals is to use an
OTS that directly signs the TBE ciphertext space, with a TBE whose tag-space
includes the OTS verification keyspace. These primitives must admit efficient
protocols for the operations we will conduct with them. Finally, we would like
to avoid relying on complex or novel complexity assumptions in order to achieve
these goals.

Our proposed construction is based on a variant of Cramer-Shoup that
was adapted by Shacham [48] for security in bilinear groups. We first modify
Shacham’s construction into a TBE with the following ciphertext structure. Let
α ∈ Z∗p be an arbitrary ciphertext tag and m ∈ G a message to be encrypted.
Given a public key g, g1, g2, g3, h1, h2, c1, c2, d1, d2 ∈ G an encryptor selects
random elements r1, r2 ∈ Z∗p and outputs the ciphertext:

(u1, u2, u3, e, v, vk) = (gr11 , g
r2
2 , g

r1+r2
3 ,m · hr11 h

r2
2 , (c1d

α
1 )r1 · (c2dα2 )r2 , gα)

An important feature of this construction is that the decryptor does not
need to know the tag value α.3 Therefore, in constructing our PKE we can
“dual-purpose” α as both the ciphertext tag and as the secret key of a one-
time signature (OTS) scheme. Specifically, our encryption process will select a
random α, encrypt the message using the TBE with α as the tag, and finally
sign the resulting elements (u1, u2, u3, e, v) under α. The resulting ciphertext
contains (u1, u2, u3, e, v, vk) along with the signature on those values.

The remaining challenge is therefore to construct an efficient OTS that can
sign multiple bilinear group elements, yet admits an efficient proof-of-knowledge
for a signature on committed elements. To address this we propose a new multi-
block one-time “F -signature” that we believe may be of independent interest.4

Interestingly, our signing algorithm does not actually operate on elements of
G, but rather signs message vectors of the form (m1, . . . ,mn) ∈ Z∗np (for some
arbitrary vector length n). Once a message is signed, however, the signature can

3 This differs from many other candidate TBE and IBE schemes, e.g., Boneh and
Boyen’s IBE [6] and Kiltz’s TBE [35] where the tag/identity is an element of Z∗p
and must be provided at decryption time (or in the case of IBE, when a secret key
is extracted). This requirement stems from the nature of those schemes’ security
proofs.

4 F -signature is a contraction of F -unforgeable signature, which is a concept proposed
by Belinkiy et al. [4], and later developed by Green and Hohenberger [30]. In this
paradigm, the signing algorithm operates on a message m, but there exists a sig-
nature verification algorithm that can operate given only F (m) for some one-way
function F .



be verified given the tuple (gm1 , . . . , gmn) ∈ Gn, rather than the original message
vector. Strictly speaking, this construction does not meet our requirements—an
encryptor won’t always know the discrete logarithm base g of (u1, u2, u3, e, v).
Our key insight is to show that encryptors can produce an identically distributed
“workalike” signature even when the discrete logarithms are not known. We
prove that, in the context of our encryption scheme, no adversary can forge these
workalike signatures. Our signature construction is presented independently in
Appendix 2.4.

2 Technical Preliminaries

2.1 Bilinear Groups and Cryptographic Assumptions

Let λ be a security parameter. We define BMsetup as an algorithm that, on input
1λ, outputs the parameters for a bilinear mapping as γ = (p,G,GT , e, g ∈ G),
where g generates G, the groups G,GT each have prime order p, and e : G×G→
GT . For 〈g〉 = 〈h〉 = G the efficiently-computable mapping e must be both non-
degenerate (〈e(g, h)〉 = GT ) and bilinear (for a, b ∈ Z∗p, e(ga, hb) = e(g, h)ab).

The Decision Linear Assumption (DLIN) [7]. Let G be a group of prime
order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is 1/2
plus an amount negligible in λ: Pr[f, g, h, z0

R← G; a, b R← Z∗p; z1 ← ha+b; d R←
{0, 1}; d′ ← A(f, g, h, fa, gb, zd) : d = d′].

The Flexible Diffie-Hellman Assumption (FDH) [36, 30]. Let G be a group
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is
negligible in λ: Pr[g, ga, gb; a, b R← Z∗p; (w,w′)← A(g, ga, gb) : w 6= 1 ∧ w′ = wab].

This assumption was previously described as the 2-out-of-3 CDH assumption by
Kunz-Jacques and Pointcheval [36]. We adopt the name Flexible Diffie-Hellman
for consistency with recent work [39, 30]. To instill confidence in this assumption,
Green and Hohenberger [30] showed that a solver for the Flexible Diffie-Hellman
problem implies a solver for a related decisional problem, the Decisional 3-Party
Diffie-Hellman assumption (3DDH) which has been used several times in the
literature [38, 9, 32, 30].

2.2 Proofs of Knowledge

We use several standard results for proving statements about the satisfiability of
one or more pairing-product equations. For variables {X}1...n ∈ G and constants
{A}1...n ∈ G, ai,j ∈ Z∗p, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Xi)
n∏
i=1

n∏
j=1

e(Xi,Xj)ai,j = tT



The proof-of-knowledge protocols in this work can be instantiated using one
of two approaches. The first approach is to use the interactive zero-knowledge
proof technique of Schnorr [46], with extensions due to e.g., [21, 14, 17, 2, 15].
Note that this may require that the proofs be executed sequentially (indeed,
this requirement is explicit in our security definitions). For details, see the work
of Adida et al. [2], which provides a taxonomy of interactive proof techniques
for pairing-based statements.

Alternatively, the proofs can be instantiated using the Groth-Sahai proof
system [31] which permits efficient non-interactive proofs of the satisfiability of
multiple pairing product equations. In the general case these proofs are witness
indistinguishable. However a subset of special cases (including where tT = 1) may
be conducted in zero-knowledge.5 The Groth-Sahai system can be instantiated
under the Decision Linear assumption in the Common Reference String model.

We refer the reader to the cited works for formal security definitions of ZK
and WI proof systems. In our security analysis we will assume some generic in-
stantiationΠZK that is secure under the Decision Linear assumption in G. Either
of the techniques mentioned above can satisfy this requirement. When referring
to WI and ZK proofs we will use the notation of Camenisch and Stadler [16]. For
instance, WIPoK{(g, h) : e(g, h) = T ∧ e(g, v) = 1} denotes a witness indistin-
guishable proof of knowledge of elements g and h that satisfy both e(g, h) = T
and e(g, v) = 1. All values not in enclosed in ()’s are assumed to be known to
the verifier.

2.3 Linear Encryption

Our blind decryption protocol employs a multiplicatively homomorphic scheme
that encrypts elements of G. We instantiate this scheme with the Linear En-
cryption scheme of Boneh, Boyen and Shacham [7] which is semantically secure
under the Decision Linear assumption. Ciphertexts in this scheme have the form
(c1, c2, c3) ∈ G3, and the homomorphic operation is simple pairwise multiplica-
tion. Exponentiation by a scalar z can be performed as cz1, c

z
2, c

z
3. To re-randomize

a ciphertext one multiplies it by LE.Enc(pk , 1). Our protocols also require an effi-
cient ZK proof-of-knowledge of the plaintext m underlying a ciphertext C, which
we denote by ZKPoK{(m) : C ∈ LE.Enc(pk ,m)}. We refer the reader to the full
version [27] for formal algorithm descriptions.

2.4 A One-Time F -Signature on Multiblock Messages

Our constructions require a strongly unforgeable one-time F -signature scheme
that signs messages of the form (m1, . . . ,mN ) ∈ Z∗np (for arbitrary values of
n), but can verify signatures given only a function of the messages, specifically,

5 In many cases it is easy to re-write pairing products equation as a composition of
multiple distinct equations having tT = 1 (see [31]). Although we do not explicitly
perform this translation in our protocols, we note that it can be applied to all of the
ZKPoKs used in our constructions.



(gm1
1 , . . . , gmn

n ) ∈ Gn for fixed g1, . . . , gn ∈ G. Note that g1, . . . , gn need not be
distinct.

To construct FS, we adapt a weakly-unforgeable signature due to Green and
Hohenberger [30] to admit multi-block messages, while simplifying the scheme
into a one-time signature. The latter modification has the incidental effect of
strengthening the signature to be strongly unforgeable. Let us now describe FS:

FS.KG. On input group parameters γ, a vector length n, select g, g1, . . . , gn,
v, d, u1, . . . , un

R← G and a
R← Z∗p. Output vk = (γ, g, ga, v, d, g1, . . . , gn,

u1, . . . , un, n) and sk = (vk , a).
FS.Sign. Given sk and a message vector (m1, . . . ,mn) ∈ Z∗np , first select r R← Z∗p

and output the signature σ = ((
∏n
i=1 u

mi
i · vr d)a, gam1

1 , . . . , gamn
n , um1

1 ,
. . . , umn

n , r).
FS.Verify. Given pk, (gm1

1 , . . . , gmn
n ), parse σ = (σ1, e1, . . . , en, f1, . . . , fn, r),

output 1 if the following check holds: e(σ1, g) = e(
∏n
i=1 fi · vrd, ga) ∧

{e(gmi
i , ga) = e(ei, g) ∧ e(gmi

i , ui) = e(gi, fi)}i∈[1,n].

Note that verification is a pairing product equation. Thus we can efficiently
prove knowledge of a signature using the techniques described in Section 2.2.
We denote such a proof by e.g., WIPoK{(σ) : Verify(vk , (gm1 , . . . , gmn), σ) = 1}.
Note that vk or the messages may reside within a commitment. In the full
version of this paper [27] we provide details on these proofs of knowledge, as
well as definitions of security and a proof that FS is strongly unforgeable under
the Flexible Diffie-Hellman assumption.

Workalike signatures. Our blind decryption constructions make use of the
“workalike” algorithms (WAKG,WASign). While the public outputs of these
algorithms are identically distributed those of KG and Sign, the WASign al-
gorithm operates on messages of the form (g1, . . . , gn) ∈ Gn. We stress that
(WAKG,WASign,Verify) is not a secure signature scheme on arbitrary group el-
ements, but can be used securely under the special conditions of our construc-
tions..

FS.WAKG. Select x1, . . . , xn
R← Z∗p and set (u1, . . . , un) = (gx1 , . . . , gxn). Com-

pute the remaining elements as in KG and set sk = (vk , a, x1, . . . , xn).
FS.WASign. Given a message vector (h1, . . . , hn) ∈ Gn, first select r R← Z∗p and

output the signature σ = ((
∏n
i=1 h

xi
i · vrd)a, ha1 , . . . , h

a
n, h

x1
1 , . . . , hxn

n , r).

3 Definitions

Notation: LetM be the message space and C be the ciphertext space. We write
P (A(a),B(b)) → (c, d) to indicate the protocol P is between parties A and B,
where a is A’s input, c is A’s output, b is B’s input and d is B’s output. We will
define ν(·) as a negligible function.

Definition 1 (Blind Decryption Scheme). A public-key blind decryption
scheme consists of a tuple of algorithms (KG,Enc,Dec) and a protocol BlindDec.



KG(1λ). On input a security parameter λ, the key generation algorithm KG
outputs a public key pk and a secret key sk .

Enc(pk ,m). On input a public key pk and a messagem, Enc outputs a ciphertext
C.

Dec(pk , sk , C). On input pk , sk and a ciphertext C, Dec outputs a message m
or the error symbol ⊥.

The two-party protocol BlindDec is conducted between a user U and a decryptor
D:

BlindDec({U(pk , C)}, {D(pk , sk)}) → (m, nothing). On input pk and a cipher-
text C, an honest user U outputs the decryption m or the error symbol ⊥.
The decryptor D outputs nothing or an error message.

We now present the standard definition of adaptive chosen ciphertext security
for public key encryption.

Definition 2 (IND-CCA2). A public key encryption scheme Π = (KG,Enc,Dec)
is IND-CCA2 secure if every p.p.t. adversary A = (A1,A2) has advantage ≤ ν(λ)
in the following experiment.

IND-CCA2(Π,A, λ)
(pk , sk)← KG(1λ)
(m0,m1, z)← AOdec(pk ,sk ,·)

1 (pk) s.t. m0,m1 ∈M
b← {0, 1}; c∗ ← Enc(pk ,mb)
b′ ← AO

′
dec(pk ,sk ,·)

2 (c∗, z)
Output b′

Where Odec is an oracle that, on input a ciphertext c, returns Dec(pk , sk , c)
and O′dec operates identically but returns ⊥ whenever c = c∗. We define A’s
advantage in the above game by:

|Pr [ b = b′ ]− 1/2|

Additional security properties. A secure blind decryption scheme must pos-
sess the additional properties of leak-freeness and blindness. Intuitively, leak-
freeness [28] ensures that an adversarial User gains no more information from the
blind decryption protocol than she would from access to a standard decryption
oracle. Blindness prevents a malicious Decryptor from learning which ciphertext
a User is attempting to decrypt. Let us now formally state these properties.

Definition 3 (Leak-Freeness [28]). A protocol BlindDec associated with a
PKE scheme Π = (KG,Enc,Dec) is leak free if for all p.p.t. adversaries A, there
exists an efficient simulator S such that for every value λ, no p.p.t. distinguisher
D can distinguish the output of Game Real from Game Ideal with non-negligible
advantage:



Game Real: Run (pk , sk) ← KG(1λ) and publish pk . As many times as D
wants, A chooses a ciphertext C and atomically executes the BlindDec pro-
tocol with D:
BlindDec({U(pk , C)}, {D(pk , sk)}). A’s output (which is the output of the
game) includes the list of ciphertexts and decrypted plaintexts.

Game Ideal: A trusted party runs (pk , sk) ← KG(1λ) and publishes pk . As
many times as D wants, S chooses a ciphertext C and queries the trusted
party to obtain the output of Dec(pk , sk , C), if C ∈ C and ⊥ otherwise. S’s
output (which is the output of the game) includes the list of ciphertexts and
decrypted plaintexts.

In the games above, BlindDec and Dec are treated as atomic operations. Hence
D and A (or S) may communicate at any time except during the execution of
those protocols. Additionally, while we do not explicitly specify that auxiliary
information is given to the parties, this information must be provided in order
to achieve a sequential composition property.

Definition 4 (Ciphertext Blindness). Let OU (pk , C) be an oracle that, on
input a public key and ciphertext, initiates the User’s portion of the BlindDec
protocol, interacting with an adversary. A protocol BlindDec(U(·, ·) A(·, ·)) is
Blind secure if every p.p.t. adversary A = (A1,A2) has advantage ≤ ν(λ) in the
following game.

Blind(BlindDec,A, λ)
(pk , C0, C1, z)← A1(1λ)
b← {0, 1}; b′ ← AOU (pk ,Cb),OU (pk ,Cb−1)

2 (z)

We define A’s advantage in the above game as: |Pr [b′ = b]− 1/2|. Note that a
stronger notion of blindness is selective-failure blindness, which was proposed by
Camenisch et al. [15]. While our constructions do not natively achieve this defi-
nition, in section 4.1 we discuss techniques for achieving this stronger definition.

Definition 5 (CCA2-secure Blind Decryption). A blind decryption
scheme Π = (KG, Enc, Dec, BlindDec) is IND-CCA2-secure if and only if: (1)
(KG, Enc, Dec) is IND-CCA2-secure, (2) BlindDec is leak free, and (3) BlindDec
possesses the property of ciphertext blindness.

4 Constructions

We now present a blind decryption scheme BCS that is secure under the Decision
Linear and Flexible Diffie-Hellman assumptions. BCS is based on a variant of
Cramer-Shoup that was proposed by Shacham [48], with significant extensions
to permit blind decryption.

The core algorithms. We now describe the algorithms (KG,Enc,Dec), which
are responsible for key generation, encryption and decryption respectively. BCS



encrypts elements of G, which may necessitate an encoding scheme from other
message spaces (see e.g., [3]).

BCS.KG(1λ). First sample γ = (p,G,GT , ê, g ∈ G) ← BMsetup(1λ). Choose
g, g1, g2, g3, v

′, d′, u′1, . . . , u
′
5
R← G, and x1, x2, x3, y1, y2, y3, z1, z2, z3

R← Z∗p and
compute:

c1 ← gx1
1 gx3

3 d1 ← gy1
1 gy3

3 h1 ← gz11 g
z3
3

c2 ← gx2
2 gx3

3 d2 ← gy2
2 gy3

3 h2 ← gz22 g
z3
3

Output pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v
′, d′, u′1, . . . , u′5), sk = (x1,

x2, x3, y1, y2, y3, z1, z2, z3).

BCS.Enc(pk ,m ∈ G). Select α, r1, r2, c, ψ
R← Z∗p. Construct a FS keypair

(vk1, sk1) and a second “workalike” keypair (vk2, sk2) as follows:

vk1 ← (γ, g, gα, v′, d′, g1, g2, g3, g, g, u′1, . . . , u
′
5, 5) vk2 = (γ, g, gψ, v′, d′, g, gc, 1)

sk1 ← (vk1, α) sk2 = (vk2, ψ, c)

Next, compute the ciphertext C = (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2) as:

u1 ← gr11 u2 ← gr22 u3 ← gr1+r2
3 e← m · hr11 h

r2
2 v ← (c1dα1 )r1 · (c2dα2 )r2

vk ← gα e1 ← uα1 e2 ← uα2 e3 ← uα3 f1 ← gc f2 ← gψ

σ1 ← FS.Sign (sk1, (r1, r2, r1 + r2, c, ψ)) σ2 ← FS.WASign (sk2, e)

BCS.Dec(pk , sk , C). Parse sk and C as above. Assemble vk1 ← (γ, g, vk , v′, d′,
g1, g2, g3, g, g, u

′
1, . . . , u

′
5, 5) and vk2 ← (γ, g, f2, v′, d′, g, f1, 1). Now, verify the

relations:

{ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧
FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}

(1)

If this check fails, output ⊥. Otherwise, parse sk = (x1, x2, x3, y1, y2, y3, z1, z2,

z3) and select z R← Z∗p. Compute the decryption m′ as:

m′ = e · (ux1
1 ey1

1 · u
x2
2 ey2

2 · u
x3
3 ey3

3 )z

uz11 u
z2
2 u

z3
3 · vz

(2)

Ciphertexts consist of approximately 25 elements of G and two element of
Z∗p. While at first glance these ciphertexts may seem large, note that the scheme
can be instantiated in asymmetric bilinear settings such as the MNT group of
elliptic curves, where group elements can be represented in as little as 170 bits
at the 80-bit security level. In this setting we are able to achieve a relatively
ciphertext size of approximately 5100 bits. While this is large compared to RSA,
a 640-byte per file overhead is quite reasonable for many practical applications.
Also note that in our description the KG algorithm samples a unique set of



bilinear group parameters γ for each key; however, it is perfectly acceptable for
many keyholders to share the same group parameters.

The Blind Decryption Protocol. The blind decryption protocol BlindDec
with respect to BCS is shown in Figure 1. The protocol requires a multiplicatively
homomorphic IND-CPA-secure encryption scheme, which we instantiate using the
Linear Encryption scheme (LE) of Boneh et al. [7].6

The protocol employs the homomorphic property of LE to construct a a two-
party implementation of the Dec algorithm, with ZKPoKs used to ensure that
both the User and Decryptor’s contributions are correctly formed. Note that for
security reasons it is critical that the Decryptor re-randomize the ciphertext that
it sends back to the User in its portion of the protocol. In the LE scheme this
can be accomplished by multiplying a ciphertext with a fresh encryption of the
identity element.

Security. Let ΠZK be a zero-knowledge (and, implicitly, witness indistin-
guishable) proof system secure under the Decision Linear assumption (possibly
in the Common Reference String model). In the following theorems we will show
that if the Decision Linear and Flexible Diffie-Hellman assumptions hold in G
then BCS = (KG,Enc,Dec,BlindDec) implemented with ΠZK is a secure blind
decryption scheme in the sense of Definition 5. To accomplish this we must show
that: (1) the algorithms (KG,Enc,Dec) comprise an IND-CCA2-secure encryp-
tion scheme, (2) the BlindDec protocol is leak-free, and (3) BlindDec achieves
ciphertext blindness.

Theorem 1. If the Decision Linear and Flexible Diffie-Hellman assumptions
hold in G, then (BCS.KG, BCS.Enc, BCS.Dec) comprise an IND-CCA2-secure
public-key encryption scheme secure in the standard model.

Due to space concerns, we must leave a full proof of Theorem 1 to the full version
of this work [27]. Here we will sketch the intuition behind the proof, which
employs techniques from the Cramer-Shoup variant proposed by Shacham [48].
As in that scheme, our simulator knows the scheme’s secret key, and can use
it to answer decryption queries. The exceptions to this rule are certain queries
related to the challenge ciphertext. Specifically, we must be careful with queries
that are (a) “malformed”, i.e., the queried value v 6= ux1

1 ey1
1 · u

x2
2 ey2

2 · u
x3
3 ey3

3 , or
that (b) embed the value vk∗ from the challenge ciphertext.

Note that equation (2) of the Dec algorithm ensures that malformed cipher-
texts decrypt to a random element of G, so the first case is easily dealt with in
our simulation. The adversary cannot maul the ciphertext due to the presence
of the checksum v. Thus it remains to consider well-formed ciphertexts with
vk = vk∗. We argue that the challenge ciphertext itself is the only ciphertext
that will pass all of our checks.

6 In asymmetric bilinear groups where the Decisional Diffie-Hellman problem is hard,
this can easily be replaced with Elgamal encryption, resulting in a significant effi-
ciency improvement.



U(pk , C) D(pk , sk)

1. Parse C as (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2),
and parse pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v

′, d′, u′1, . . . , u′5).
Verify that C satisfies equation (1) of the Dec algorithm. If not, abort
and output ⊥.

2. Generate (pkU , skU )← LE.KG(γ) and select z̄
R← Z∗p. Compute:

c1 ← LE.Enc(pkU , u
z̄
1), c2 ← LE.Enc(pkU , u

z̄
2), c3 ← LE.Enc(pkU , u

z̄
3),

c4 ← LE.Enc(pkU , e
z̄
1), c5 ← LE.Enc(pkU , e

z̄
2), c6 ← LE.Enc(pkU , e

z̄
3),

c7 ← LE.Enc(pkU , v
z̄) and set vk1 ← (γ, g, vk , v′, d′, g1, g2, g3, g, g, u

′
1, . . . , u

′
5, 5),

vk2 ← (γ, g, f2, v
′, d′, g, f1, 1)

3. Send pkU , c1, . . . , c7 to D and conduct the following PoK with D:
WIPoK{(u1, u2, u3, v, vk , e1, e2, e3, f1, f2, σ1, σ2, vk1, vk2, z̄):
c1 = LE.Enc(pkU , u

z̄
1) ∧ c2 = LE.Enc(pkU , u

z̄
2) ∧ c3 = LE.Enc(pkU , u

z̄
3) ∧

c4 = LE.Enc(pkU , e
z̄
1) ∧ c5 = LE.Enc(pkU , e

z̄
2) ∧ c6 = LE.Enc(pkU , e

z̄
3) ∧

c7 = LE.Enc(pkU , v
z̄) ∧ ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧

FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}
4. If the proof does not verify, abort.

5. Compute c′ = LE.Enc(pkU , 1), z̄′
R← Z∗p.

6. Using the homomorphic property of LE,

compute: c′′ ← (c
x1
1 c

y1
4 ·c

x2
2 c

y2
5 ·c

x3
3 c

y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·c

z̄′
7

· c′.
7. Return c′′ and conduct the following proof:
ZKPoK{(x1, x2, x3, y1, y2, y3, z1, z2, z3, z̄

′, c′) :
c′ = LE.Enc(pk , 1) ∧

c′′ =
(c

x1
1 c

y1
4 ·c

x2
2 c

y2
5 ·c

x3
3 c

y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·c

z̄′
7

· c′}
8. If the proof does not verify, abort and return ⊥.

9. Compute m′ = e · (LE.Dec(sk , c′′))1/z̄.

Output m′. Output nothing.

Fig. 1. The Blind Decryption protocol BlindDec(U(pk , C),D(pk , sk))→ (m′, nothing).
For compactness of notation we represent the homomorphic operation on two LE ci-
phertexts c1, c2 using simple multiplicative notation (c1c2), and exponentiation by a
scalar z as cz

1.

Intuitively our simulation accomplishes this by setting vk = gα
∗

as the public
key of a strongly unforgeable OTS which is secure under the Flexible Diffie-
Hellman assumption. In principle we use this key to sign the challenge ciphertext
components (u∗1, u

∗
2, u
∗
3, e
∗), which produces all of the remaining components of

the ciphertext. When the adversary submits a decryption query with vk = vk∗

we can be assured that the query is identical to the challenge ciphertext, as any
other result would require the adversary to forge the OTS.

It remains to separately argue that the signatures σ1, σ2 are unforgeable. This
is non-trivial, since the OTS operates on messages of the form m1, . . . ,mn ∈ Z∗p.
In a separate simulation we could select the elements u∗1, u

∗
2, u
∗
3 such the simulator



knows their discrete logarithm base g. Unfortunately, even this is not sufficient,
since our simulator cannot always know the discrete logarithm of the value e∗

which is based on a message chosen by the adversary. The core intuition of our
proof is to give two separate simulations: in one the signing key α∗ is known
and we can simulate the signature, producing a correctly-distributed (but not
unforgeable) signature over arbitrary group elements. In the second simulation
the signing key is unknown: the simulator chooses (u∗1, u

∗
2, u
∗
3, e
∗) at random

such that it knows the discrete logarithm (base g) of each value. Although the
resulting ciphertext does not encrypt either m0 or m1, an adversary is unable
to detect this condition under the Decision Linear assumption.

Theorem 2. If the Decision Linear assumption holds in G and ΠZK is secure
under the Decision Linear assumption, then the BCS protocol BlindDec is leak-
free.

We present a proof sketch of Theorem 2 in the full version of this work [27].
Intuitively this proof is quite simple: we show that for any real-world adversary
A we can construct an ideal-world adversary S that, whenever A initiates the
BlindDec protocol, operates as follows: (1) S uses the extractor for the PoK
system to obtain A’s requested ciphertext, (2) queries this result to the trusted
decryption oracle, (3) re-blinds and returns the correctly formulated result to
the adversary, simulating the necessary ZK proofs. We show that under the
Decision Linear assumption no p.p.t. distinguisher can differentiate the output
of S playing the Ideal-World game from the output of A in the Real-World game
except with negligible probability.

Theorem 3. If the Decision Linear assumption holds in G and ΠZK is secure
under the Decision Linear assumption, then the BCS protocol BlindDec satisfies
the property of Ciphertext Blindness (Blind).

We sketch a proof of Theorem 3 in the full version of this work [27]. Intuitively, we
show that an adversarial Decryptor who distinguishes the User’s exection of the
blind decryption protocol on two distinct (and adversarially-chosen) ciphertexts
C0 and C1 must imply a distinguisher for the witness indistinguishable proof
system, or a CPA adversary against the LE encryption scheme.

4.1 Extensions

Tag-Based Encryption. Tag-Based Encryption (TBE) allows encryptors to
apply a tag (label) to each ciphertext. This tag is used during the decryption
process. The BCS construction is in fact natively based on a TBE scheme, but
this functionality is lost as part of the TBE-to-PKE transform we use. In the full
version of this work [27] we show that with some minor extensions it is possible
to retain the scheme’s full TBE functionality.

Selective-failure blindness. Camenisch et al. [15] propose a stronger defini-
tion of blindness (for signature schemes) that they refer to as “selective-failure”



blindness. Intuitively, this definition captures the notion that an adversarial De-
cryptor might attempt to induce failures in the protocol (e.g., by generating
malformed ciphertexts) in order to deprive the User of privacy. Unfortunately
our protocols do not natively achieve this definition because the Decryptor can
create ciphertexts with an improperly formed check value v. Unfortunately, due
to the nature of our scheme this check cannot be verified independently by the
user. One potential solution to this problem is to add to each ciphertext a non-
interactive proof that v is correctly formed. Such a proof could be constructed
using the Fiat-Shamir heuristic in the random oracle model, or using the Groth-
Sahai system in the Common Reference String model. Note that this approach
would not require any changes to the blind decryption protocol. We elaborate
on this approach in the full version of this work [27].

5 Applications

Blind decryption has applications to a number of privacy-preserving protocols.
Several applications have already been proposed in the literature, e.g., [43, 24].
Below we propose two specific applications motivated by our construction.

Privacy-preserving Distributed Filesystems. Many organizations are re-
sponding to the difficulty of securing data in a distributed network, where stor-
age locations can include semi-trusted file servers, desktop computers and mobile
devices. An increasingly popular approach is to employ cryptographic access con-
trol to restrict and monitor file access in these environments. In this approach
(e.g., [1]), access control is performed by encrypting files at rest; authorized users
contact a centralized server in order to decrypt them when necessary.

A concern with this approach is that the server gains a great deal of informa-
tion regarding users’ access patterns. In some cases, knowing which content a user
is accessing may by itself leak confidential information. For example, the pattern
of file accesses by executives during a corporate merger might have enormous
financial value to an investor. While it is desirable to centralize access control,
it may also be important to restrict this centralized party from learning which
information is being managed. While these goals seems contradictory, Coull et
al. [20] and Camenisch et al. [12] recently showed how to construct sophisticated
access control mechanisms using anonymous credentials. In these protocols a
server provides strong, and even history-dependent access control without ever
learning user’s access pattern. Our blind decryption protocols are amenable to
integration with these access control techniques. In particular, by extending BCS
to include encryption tags as in Section 4.1, data can be explicitly categorized
and policies can be defined around these categories.

Oblivious Transfer with Public Contribution. In an adaptively-secure k-
out-of-N Oblivious Transfer protocol (OTNk×1) a Receiver obtains up to k items
from a Sender’s N -item database, without revealing to the Sender which mes-
sages were transferred. There has been much recent interest in OTNk×1 [15, 28, 29,
33, 44, 20, 12], as it is particularly well suited for constructing privacy-preserving



databases in which the user’s query pattern is cryptographically protected (this
is critical in e.g., patent and medical databases).

For practical reasons, there are situations in which it is desirable to distribute
the authorship of records, particularly when database updates are performed of-
fline. Unfortunately, existing OTNk×1 protocols seem fundamentally incapable of
supporting message contributions by third parties without the explicit cooper-
ation of the Sender. Our blind decryption constructions admit new OTNk×1 pro-
tocols that support public contribution. Intuitively, contributors simply encrypt
their messages using the Enc algorithm under the Sender’s public key and send
the resulting ciphertexts directly to the Receiver. The Receiver can then obtain
up to k decryptions by running BlindDec with the Sender. Proving this intuitive
protocol secure under a strong simulation-based definition [15, 28] requires some
additional components that are easily achieved using the techniques available to
us.
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helpful comments.

References

1. Eruces Tricryption. http://www.eruces.com/index.php.
2. Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Ad-hoc group signatures

from hijacked keypairs. In DIMACS Workshop on Theft in E-Commerce (prelim-
inary version), April 2005.

3. Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID
tags via insubvertible encryption. In CCS ’05, pages 92–101. ACM Press, 2005.

4. Mira Belenkiy, Melissa Chase, Markulf Kolweiss, and Anna Lysyanskaya. Non-
interactive anonymous credentials. In TCC ’08, volume 4948 of LNCS, pages
356–374, 2008.

5. Mihir Bellare and Philip Rogaway. Optimal asymmetric encryption padding —
how to encrypt with rsa. In EUROCRYPT ’94, pages 92–111, 1994.

6. Dan Boneh and Xavier Boyen. Efficient selective-ID secure Identity-Based Encryp-
tion without random oracles. In EUROCRYPT ’04, volume 3027 of LNCS, pages
223–238, 2004.

7. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO ’04, volume 3152 of LNCS, pages 45–55, 2004.

8. Dan Boneh and Jonathan Katz. Improved efficiency for cca-secure cryptosystems
built using identity based encryption. In CT-RSA ’05, volume 3376 of LNCS.
Springer, 2005.

9. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In EUROCRYPT ’06, volume 4004 of
LNCS, pages 573–592, 2006.

10. Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In CCS ’05, pages 320–329. ACM Press, 2005.
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