
Oblivious Transfer with Hidden Access Control Policies

Jan Camenisch1, Maria Dubovitskaya1, Gregory Neven1, and Gregory M. Zaverucha2

1 IBM Research - Zurich Saumerstrasse 4, CH-8803 Ruschlikon Switzerland
2 Certicom Research, 5520 Explorer Drive Mississauga, ON, L4W 5L1 Canada

Abstract. Consider a database where each record has different access control
policies. These policies could be attributes, roles, or rights that the user needs to
have in order to access the record. Here we provide a protocol that allows the users
to access the database record while: (1) the database does not learn who queries a
record; (2) the database does not learn which record is being queried, nor the ac-
cess control policy of that record; (3) the database does not learn whether a user’s
attempt to access a record was successful or not; (4) the user can only obtain
a single record per query; (5) the user can only access those records for which
she has the correct permissions; (6) the user does not learn any other information
about the database structure and the access control policies other than whether he
was granted access to the queried record, and if so, the content of the record; and
(7) the users’ credentials can be revoked.
Our scheme builds on the one by Camenisch, Dubovitskaya and Neven (CCS’09),
who consider oblivious transfer with access control when the access control poli-
cies are public.

Keywords: Privacy, Oblivious Transfer, Anonymous Credentials, Access Con-
trol.

1 Introduction

When controlling access to a sensitive resource, it is clear that the applicable access
control policies can already reveal too much information about the resource. For exam-
ple, consider a medical database containing patient records, where the access control
policy (ACP) of each record lists the names of the treating doctors. The fact that a pa-
tient’s record has certain specialists in its ACP leaks information about the patient’s
disease. Many patients may want to hide, for example, that they are being treated by
a plastic surgeon or by a psychiatrist. Also, doctors treating a celebrity may want to
remain anonymous to avoid being approached by the press.

As another example, in a multi-user file system, it may be desirable to hide the
owner of a file or the groups that have access to it to prevent social engineering attacks,
coercion, and bribery. In a military setting, knowing which files are classified “top se-
cret”, or even just the percentage of “top secret” files in the system, may help an attacker
to focus his attack.

Confidentiality of the stored data and associated ACPs is not the only security
concern. Privacy-aware users accessing the database may be worried about malicious
database servers prying information from the query traffic. For example, the frequency
that a patient’s record is accessed gives a good estimate of the seriousness of his condi-
tion, while the identity of the doctors that access it most frequently may be an indication

2 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

of the nature of the disorder. Users may therefore prefer to query the database anony-
mously, i.e., hiding their identity, roles, permissions, etc. from the database server, as
well as hiding the index of the queried record. At the same time, the database server
wants to rest assured that only permitted users have access to the data, and that they
cannot find out who else has access to the data.

1.1 Our Contribution

In this paper we consider access to a database where each record is protected by a
(possibly) different access control policy, expressed in terms of the attributes, roles, or
rights that a user needs to have to obtain access. To provide the maximal amount of
privacy to both users and the database server, we propose a protocol guaranteeing that
(1) the database does not learn who queries a record; (2) the database does not learn
the index nor the ACP of the queried record; (3) the database does not learn whether
a user’s attempt to access a record was successful or not; (4) users can only obtain a
single record per query, (5) users can only access those records for which they satisfy
the ACP; (6) at each query, users learn no more information about the applicable access
control policy other than whether they satisfy it or not; and (7) the users’ credentials
can be revoked. Our ACP structure can be used to implement many practical access
control models, including access control matrices, capability lists, role-based access
control, and hierarchical access control. This work extends the work of Camenisch,
Dubovitskaya, and Neven [8] who consider oblivious transfer with access control when
the access control policies are public, i.e., they do not satisfy properties (6) and (7).

1.2 Related Work

Oblivious transfer protocols in their basic form [24, 21, 11] offer users access to a
database without the server learning the contents of the query, but place no restric-
tions on who can access which records. After Aiello et al. suggested priced oblivious
transfer [28], Herranz [18] was the first to add access control restrictions to records,
but has users authenticate openly (i.e., non-anonymously) to the server. Later, Coull et
al. [9] and Camenisch et al. [8] proposed OT protocols with anonymous access control.
In all of these works, however, the access control policies are assumed to be publicly
available to all users, and the server notices when a user’s attempt to access a record
fails.

There is also a line of work devoted to access control with hidden policies and
hidden credentials, but none of them consider oblivious access to data, meaning that
the server learns which resource is being accessed. In trust negotiation systems [19,
26, 27], two parties establish trust through iterative disclosure of and requests for cre-
dentials. Hidden credentials systems are designed to protect sensitive credentials and
policies [4, 17]. Neither provide full protection of policies, however, in the sense that
the user learns (partial) information about the policy if her credentials satisfy it. The
protocol of Frikken et al. [15] does provide full protection, but for arbitrary policies it
requires communication exponential in the size of the policies.

Oblivious Transfer with Hidden Access Control Policies 3

Finally, one could always implement a protocol with all desired properties by eval-
uating an especially designed logical circuit using generic two-party computation tech-
niques [25], but the cost of this approach would be prohibitive. In particular, the compu-
tation and communication cost of each record transfer would be linear in the number of
records in the databaseN , whereas the efficiency of our transfer protocol is independent
of N .

2 Definition of OT with Hidden Access Control Policies

An oblivious transfer protocol with hidden access control policies (HAC-OT) is run
between an issuer, a database, and one or more users. The issuer provides access cre-
dentials to users for the data categories that they are entitled to access. The database
hosts a list of records and associates to each record an access control policy (ACP).
Users can request individual records from the database, and the request will succeed
provided they have the necessary credentials. The ACPs are never revealed.

In a nutshell, a HAC-OT protocol works as follows. The issuer generates its key
pair for issuing credentials and publishes the public key as a system-wide parameter.
The database server initializes a database containing records protected by access control
policies. It generates the encrypted database, which also contains the encrypted access
control policies, and makes it available to all users, e.g., by posting it on a website or
by distributing it on DVDs. Each user contacts the issuer to obtain a credential that lists
all data categories that the user is entitled to access. When she wants to access a record
in the database, the user proves to the database in zero-knowledge that her credential
contains all the data categories required by the access control policy associated to the
record. She performs computations on the encrypted access control rule associated to
the desired record so that, with the help of the database, she will obtain the record key
if and only if she satisfies the (encrypted) ACP. The database learns nothing about the
index of the record that is being accessed, nor about the categories in the access control
policy. The database does not even learn whether the user’s attempt to obtain a record
was successful.

2.1 Setting and Procedures

If κ ∈ N, then 1κ is the string consisting of κ ones. The empty string is denoted ε. If A
is a randomized algorithm, then y $← A(x) denotes the assignment to y of the output of
A on input x when run with fresh random coins.

Unless noted, all algorithms are probabilistic polynomial-time (PPT) and we im-
plicitly assume they take an extra parameter 1κ in their input, where κ is a security
parameter. A function ν : N→ [0, 1] is negligible if for all c ∈ N there exists a κc ∈ N
such that ν(κ) < κ−c for all κ > κc.

We consider a limited universe of data categories C = {C1, . . . , C`} ⊆ {0, 1}∗. An
access control policy ACP ⊆ C contains those data categories that a user needs to have
access to in order to obtain the record. We will usually encode access control policies
as vectors c = (c1, . . . , c`) ∈ {0, 1}`, where ci = 1 iff Ci ∈ ACP . A database consists

4 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

of a list ofN pairs ((R1,ACP1), . . . , (RN ,ACPN)) of recordsRi ∈ {0, 1}∗ and their
associated access control policies ACP i ⊆ C .

Users hold credentials that certify the list of categories that the user is entitled to
access. The list is encoded as a vector d = (d1, . . . , d`) ∈ {0, 1}`, where di = 1 iff the
user is granted access to category Ci. Letting c · d =

∑`
i=1 cidi and |c| =

∑`
i=1 ci,

we say that a user’s credential d covers an access control policy c iff c · d = |c|. This
essentially means that users need to have access to all categories in the ACP in order to
have access to the record. This fits nicely to a number of real-world access control
models. For example, to implement role-based access control, where each database
record can be accessed by users with one particular role, one sets ` to be the number of
roles in the system, one sets ci = 1 for the required role i and cj = 0 for all j 6= i, and
one sets di = 1 in the users’ credentials for all roles i that a user owns. In a hierarchical
access control system, users are granted access if their access level is at least that of the
resource. For example, in a military context, the levels may be “top secret”, “secret”,
“restricted”, and “declassified”, so that someone with “top secret” clearance has access
to all records. To implement this in our system, one would set ` to be the number of
levels, set ci = 1 for the level i of the resource, and set dj = 1 for all levels j lower
than or equal to i.

Alternatively, one could use a coverage definition where d covers c iff c · d = |d|,
effectively meaning that all of a user’s categories have to appear in the ACP in order
to be granted access. Our protocol is easily adapted to implement these semantics. This
definition of coverage could be useful to implement simple access control matrices: if
` is the number of users, then user i would have a credential with di = 1, and the ACP
sets cj = 1 for all users j that are allowed access.

An oblivious transfer protocol with hidden access control policies (HAC-OT) is six
polynomial-time algorithms and protocols, i.e., HAC -OT = (ISetup, Issue,Revoke,
DBSetup,DBVerify,Transfer).

• ISetup(C)
$→ (pk I, sk I,RL). The issuer runs the randomized ISetup algorithm to

generate a public key pk I, the corresponding secret key sk I, and an initial revocation
list RL for security parameter κ and category universe C . The public key and revocation
list are published as system-wide parameters.
• Issue: Common input: pk I, uid ,d; Issuer input: sk I; User output: creduid or ⊥. A

user obtains an access credential for a vector of categories d = (d1, . . . , d`) ∈ {0, 1}`
by engaging in the Issue protocol with the issuer. The issuer’s public key pk I, the user’s
identity uid , and the vector d are common inputs. The issuer also uses his secret key
sk I as an input. At the end of the protocol, the user obtains the credential creduid .
• Revoke(sk I,RL, uid)

$→ RL′. To revoke the credential of user uid , the issuer runs
the Revoke algorithm to create an updated revocation list RL′ and publishes it as a
system-wide parameter.
• DBSetup

(
pk I,DB = (Ri,ACP i)i=1,...,N

) $→
(
(pkDB,ER1, . . . ,ERN), skDB

)
.

The database server runs the DBSetup algorithm to create a database containing records
R1, . . . , RN protected by access control policies ACP1, . . . ,ACPN . This algorithm
generates the encrypted database consisting of a public key pkDB and the encrypted
records along with their encrypted access control policies ER1, . . . ,ERN . The en-

Oblivious Transfer with Hidden Access Control Policies 5

crypted database is made available to all users, e.g., by posting it on a website.3 The
database server keeps the secret key skDB for itself.
• DBVerify

(
pkDB,EDB

)
→ b. Upon receiving an encrypted database EDB , all

users perform a one-time check to test whether EDB is correctly formed (b = 1) or not
(b = 0).
• Transfer: Common input: pk I,RL, pkDB; User input: uid , i,ERi, creduid ; Data-

base input: skDB; User output: Ri or ⊥. When the user wants to access a record
in the database, she engages in a Transfer protocol with the database server. Com-
mon inputs are the issuer’s public key pk I, the revocation list RL, and the database’s
public key pkDB. The user has as a secret input her identity uid , her selection index
i ∈ {1, . . . , N}, the encrypted record with encrypted ACP, and her credential creduid .
The database server uses its secret key skDB as a private input. At the end of the pro-
tocol, the user obtains the database record Ri if her credential satisfies the ACP, or
receives ⊥ if not.

We assume that all communication links are private. We also assume that the com-
munication links between a user and the issuer are authenticated, so that the issuer
always knows to which user it is issuing a credential. The communication links be-
tween a user and the database are assumed to be anonymous, so that the database does
not know which user is making a record query. (Authenticated communication channels
between users and the database would obviously ruin the strong anonymity properties
of our protocol.)

2.2 Security Definitions

We define security of an HAC-OT protocol through indistinguishability of a real-world
and an ideal-world experiment as introduced by the UC framework [5, 6] and the reac-
tive systems security models [22, 23]. The definitions we give, however, do not entail
all formalities necessary to fit one of these frameworks; our goal here is solely to prove
our scheme secure.

We summarize the ideas underlying these models. In the real world there are a
number of players, who run some cryptographic protocols with each other, an adversary
A, who controls some of the players, and an environment E . The environment provides
the inputs to the honest players and receives their outputs and interacts arbitrarily with
the adversary. The dishonest players are subsumed into the adversary.

In the ideal world, we have the same players. However, they do not run any crypto-
graphic protocols but send all their inputs to and receive all their outputs from an ideal
all-trusted party T. This party computes the output of the players from their inputs,
i.e., applies the functionality that the cryptographic protocol(s) are supposed to realize.
The environment again provides the inputs to and receives the output from the honest
players, and interacts arbitrarily with the adversary controlling the dishonest players. A
set of cryptographic protocols is said to securely implement a functionality if for every
real-world adversary A and every environment E there exists an ideal-world simulator

3 We assume that each user obtains a copy of the entire encrypted database. It is impossible
to obtain our strong privacy requirements with a single database server without running into
either computation or communication complexity that is linear in the database size.

6 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

A′ controlling the same parties in the ideal world as A does in the real world, such that
the environment cannot distinguish whether it is run in the real world interacting with
A, or whether it is run in the ideal world interacting with the simulator A′.

Definition 1. Let RealE,A(κ) denote the probability that E outputs 1 when run in the
real world with A and let IdealE,A′(κ) denote the probability that E outputs 1 when
run in the ideal world with A′, then the set of cryptographic protocols is said to securely
implement functionality T if RealE,A(κ)− IdealE,A′(κ) is a negligible function in κ.

THE REAL WORLD. We first describe how the real-world algorithms presented in §2.1
are orchestrated when all participants are honest, i.e., honest real-world users U1, . . . ,
UM , an honest issuer I, and an honest database DB. If parties are controlled by the
real-world adversary A, they can arbitrarily deviate from the behavior described below.

All begins with I generating a key pair and an initial revocation list (pk I, sk I,RL)
$←

ISetup(C) and sending (pk I,RL) to all users U1, . . . ,UM and the database DB.
When the environment E sends a message (initdb,DB = (Ri,ACP i)i=1,...,N) to

the database DB, the latter encrypts DB by running (EDB , skDB)
$← DBSetup(pk I,

DB), and sends the encrypted database EDB = (pkDB,ER1, . . .ERN) to all users
U1, . . . ,UM . All users execute a DBVerify protocol with the database and, if it returns 1,
return a message (initdb, N) to the environment.

When E sends a message (issue,d) to user Uuid , she engages in an Issue protocol
with I on common input pk I, uid , and a vector d indicating which categories the user
is allowed to access, with I using sk I as its secret input. Eventually, Uuid obtains the
access credential creduid . User Uuid returns a message (issue, b) to the environment
indicating whether the issue protocol succeeded (b = 1) or failed (b = 0). Each user
will engage in an Issue protocol only once; if she receives a second message (issue,d)
from the environment, she simply returns (issue, 0).

When E sends a message (revoke, uid) to the issuer I, it creates a new revocation
list RL′ $← revoke(sk I,RL, uid) based on the old revocation list RL and the user
identity uid to be revoked. The issuer returns (revoke, uid) to the environment.

When E sends a message (transfer, i) to user Uuid , then Uuid engages in a
Transfer protocol with DB on common input pk I and pkDB, on Uuid ’s private input
i and her credential creduid , and on DB’s private input skDB. As a result of the proto-
col Uuid obtains the recordRi, or⊥ indicating failure. If the transfer succeeded the user
returns (transfer, i, Ri) to the environment; if it failed she returns (transfer, i,⊥).
We note that DB does not return any outputs to the environment.

THE IDEAL WORLD. In the ideal world, all participants communicate through a trusted
party T which implements the functionality of our protocol. We describe the behavior
of T on the inputs of the ideal-world users U′1, . . . ,U

′
M , the ideal-world issuer I′, and

the ideal-world database DB′.
The trusted party T maintains an initially empty vector ε for each user U′uid , an

initially empty list of revoked users RL, and sets DB ← ⊥. It responds to queries from
the different parties as follows.

Oblivious Transfer with Hidden Access Control Policies 7

• Upon receiving (initdb, N) from DB′, T sets DB ← (εi, εi)i=1,...,N and sends
the message (initdb, N) to all users. All users send the message (initdb, N) to the
environment.
• Upon receiving (issue,d) from U′uid for the first time, T sends (issue,U′uid ,d)

to I′ who sends back a bit b. If b = 1 then T initializes the category vector duid ← d
for the user U′uid and sends (issue, 1) to U′uid ; otherwise it simply sends (issue, 0) to
U′uid . T responds to all subsequent messages (issue,d) from the same user U′uid with
(issue, 0).
• Upon receiving (revoke, uid) from I′, T adds U′uid to the list of revoked users by

setting RL← RL ∪ {uid}.
• Upon receiving (transfer, i) from U′uid , T proceeds as follows. If DB = ⊥, it

sends (transfer,⊥) back to U′uid . If DB = (εi, εi)i=1,...,N it sends (transfer, ε)
to DB′ who sends back a bit b. If b = 1 it also sends the whole database DB =
(Ri,ACP i)i=1,...,N , and the T sets DB = (Ri,ACP i)i=1,...,N . If the database DB
already contained records, T sends transfer to DB′, who sends back just a bit b. If
b = 1, duid covers ACP i, and uid 6∈ RL, then it sends (transfer, Ri) to U′uid ;
otherwise, it sends (transfer,⊥) to U′uid .

The ideal-world parties U′1, . . . ,U
′
M , I

′,DB′ simply relay inputs and outputs be-
tween the environment E and the trusted party T.

SECURITY PROPERTIES. It is easy to see that the ideal world definition implies that the
users’ privacy is protected:

An adversary, controlling all parties except some honest users, cannot tell which of
the users access which record nor whether the attempt was successful.

Also, the database is guaranteed that (potentially malicious) users can only access
the records for which they were issued credentials and that users do not learn any infor-
mation about the access control lists apart from the fact whether or not their credentials
allow them to access a record. We note that colluding users cannot pool their credentials
nor can they obtain access with revoked credentials.

3 Randomizing and Extending Groth-Sahai Proofs

Let Pg(1κ) be a pairing group generator that on input 1κ outputs descriptions of mul-
tiplicative groups G1,G2,GT of prime order p where |p| > κ. Let Pg(p) be a pairing
group generator that on input a prime p outputs descriptions of multiplicative groups
G1, G2, and GT of order p. Let G∗1 = G1 \ {1},G∗2 = G2 \ {1} and let g1 ∈ G∗1, g2 ∈
G∗2. The generated groups are such that there exists an admissible bilinear map e :
G1×G2 → GT, meaning that (1) for all a, b ∈ Zp it holds that e(ga1 , g

b
2) = e(g1, g2)

ab;
(2) e(g1, g2) 6= 1; and (3) the bilinear map is efficiently computable. The group setting
GroupSet is a tuple (G1,G2,GT , p, e).

Groth and Sahai [16] present non-interactive witness-indistinguishable proofs of
knowledge for three types of equations involving bilinear groups. These are: (i) pair-
ing product equations, (ii) multi-exponentiation equations, and (iii) quadratic equations
modulo the group order. Our protocol primarily uses proofs of the second type of equa-
tion, which can be made zero knowledge (ZK).

8 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

Belenkiy et al. [3] show that the Groth-Sahai proofs can be randomized such that
they still prove the same statement but different proofs for the same statement are in-
distinguishable. In this paper, we extend these ideas: we take a proof for one statement
and transform and randomize it into a proof of a related statement.

Independently of our work, Dodis et al. [12] also suggest to use GS-proofs of an old
statement to construct a GS-proof for a modified statement. However, their approach
only exploits the additive homomorphism of the GS-proof scheme, i.e., it allows one
to modify an old witness by adding a new value to it and construct a proof for the new
witness, without knowledge of the old one. We suggest a modification scheme for the
GS proof that enables modifying the witness in a more general way using multiplication
and addition.

We describe how this is done in the following. We start with the descriptions of
the basic algorithms of an instantiation of the Groth-Sahai proof system for multi-
exponentiation equations for the prime-order groups in the group setting GroupSet =
(G1,G2,GT , p, e), i.e., the proof system

NIZKPGS

{
((xij)i=1,...,M, j=1,...,`) :

M∧
i=1

yi =
∏̀
j=1

g
xij
j

}
,

where the yi’s and gj’s are public group elements of G1 (cf. [7]). In the following
let stmt = ((xij)j=1,...,`;i=1,...,M) :

∧M
i=1 yi =

∏`
j=1 g

xij
j . The proof system for

GroupSet consists of three algorithms GSSetup, GSProve, and GSVerify. A trusted
third party generates the common (public) reference string by running
CRS ← GSSetup(GroupSet). A prover generates a proof as π ← GSProve(CRS ,
stmt , (yi), (gj), (xij)) and a verifier checks it via b ← GSVerify(CRS , π, stmt , (yi),
(gj)), where b = 1 if π is true w.r.t. stmt and b = 0 otherwise. We now present
these algorithms in detail, based on the XDDH assumption [16, 7]. (For ease of no-
tation, we will denote by (yi), (gj), and (xij) the lists (y1, . . . yM), (g1, . . . , g`), and
(x11, . . . , xM`) whenever the indices are clear from the context.)

GSSetup(G1,G2,GT , p, e)
$→ CRS : Return CRS = (χ1, χ2, γ1, γ2)

$← G4
2.

GSProve(CRS , stmt , (yi), (gj), (xij))
$→ π:

1. Pick rij
$← Zp for i = 1 . . .M and j = 1, . . . , `.

2. For each xij in (xij) compute the set of commitments
C

(1)
ij ← γ

xij
1 χ

rij
1 ; C

(2)
ij ← γ

xij
2 χ

rij
2 .

3. For each yi in (yi) compute pi =
∏`
j=1 g

rij
j .

4. Return π ← (pi, (C
(1)
ij , C

(2)
ij)j=1,...`)i=1...M .

GSVerify(CRS , π, stmt , (yj), (gi))
$→ b:

1. If for all i = 1 . . .M we have
(
∏`
j=1 e(gj , C

(1)
ij) = e(yi, γ1)e(pi, χ1))∧(

∏`
j=1 e(gj , C

(2)
ij) = e(yi, γ2)e(pi, χ2))

then return b← 1, else return b← 0.

For the security properties of these algorithms we refer to Groth and Sahai [16] and
Camenisch et al. [7].

Oblivious Transfer with Hidden Access Control Policies 9

Now, like Belenkiy et al. [3], we extend this basic system with a fourth algorithm
GSRand which allows anyone to take a proof π and randomize it to obtain a proof π′

for the same statement without knowledge of the witnesses (xij). Still, the proofs π and
π′ have the same distribution. This algorithm is as follows.

GSRand(CRS , π, stmt , (yi), (gj))
$→ π′:

1. If 0 = GSVerify(CRS , π, stmt , (yi), (gj)) abort.
2. Pick r′ij

$← Zp for i = 1 . . .M and j = 1, . . . , `.
3. Re-randomize all commitments:

For every xij compute C
′(1)
ij = C

(1)
ij χ

r′ij
1 ;C

′(2)
ij = C

(2)
ij χ

r′ij
2 .

4. Re-randomize pi (consistent with the new randomness), by computing

pi = pi
∏`
j=1 g

r′ij
j .

5. Return π′ ← (p′i, (C
′(1)
ij , C

′(2)
ij)j=1,...`)i=1...M .

It is not hard to see that the proof π′ has the same distribution as π and will be
accepted by GSVerify. Also note that all the security properties of the proof system are
retained (the algorithm essentially only randomizes, cf. [7]).

We now extend the above ideas to a fifth, and new algorithm GSRMod, which allows
us not only to re-randomize the proof π for the statement stmt but also to extend it to a
proof π̂ for the related statement

stmt ′ = ((x̂ij)j=1,...,`;i=1,...,M) :

M∧
i=1

ŷi =
∏̀
j=1

g
x̂ij
j

where ŷi =
∏M
j=1 y

x′j
j

∏`
j=1 g

x′ij
j . Similarly to just randomizing a proof, it is sufficient

to know x′j and x′ij to do this proof modification, i.e., knowledge of x̂ij is not required.
Note that x̂ij = x′ij +

∑M
k=1 xkj · x′k will hold w.r.t. the original witnesses xij .

GSRMod(CRS , π, stmt ′, stmt , (ŷi), (yi), (gj), (x
′
k)(x

′
ij))

$→ π′:
1. If 0 = GSVerify(CRS , π, stmt , (yi), (gj)) abort.
2. Pick r′ij

$← Zp for i = 1, . . . ,M and j = 1, . . . , `.
3. Create commitments for each x̂ij using old commitments:

Ĉ
(1)
ij =

∏M
k=1(C

(1)
kj)

x′kγ
x′ij
1 χ

r′ij
1 ; Ĉ

(2)
ij =

∏M
k=1(C

(2)
kj)

x′kγ
x′ij
2 χ

r′ij
2 .

4. Re-randomize and modify pi (consistent with the new witnesses and randomness),
by computing

p̂i =
∏M
j=1(pj)

x′j
∏`
j=1 g

r′ij
j .

5. Return π̂ ← (p̂i, (Ĉ
(1)
ij , Ĉ

(2)
ij)j=1,...`)i=1...M .

Again, it is not hard to see that all security properties are retained (cf. [7]).

4 Our Construction

The main ideas underlying our protocol are as follows: the database server starts by
encrypting each record with a key that is at the same time a signature on the index

10 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

of the record and on the access control policy for the record. Furthermore, the server
ElGamal-encrypts the access control policy for each record and creates a commitment
to the policy. It then provides a non-interactive GS proof that the commitment and
the encryptions are consistent. All of these values are then published as the encrypted
database.

To be able to access the records, users are issued credentials for the list of data
categories they are allowed to access. To revoke a user’s credential, we use ideas from
the revocation scheme by Nakanishi et al. [20] about revocable group signatures, where
the revoked user identities are sorted in lexicographical order and the revocation list
contains signatures on each pair of neighboring revoked user identities. To prove that
her credential is not revoked, the user needs to show that her identity lies within the
open interval defined by one of the signed identity pairs in the current revocation list.
For this purpose the issuer signs all possible “distances” within such intervals, called
“revocation distances”. The user then proves that she possesses a valid signed pair of
revoked user identities and valid signatures on the distances to the edges of the revoca-
tion interval. We note that to improve efficiency, one could make the maximal interval
sizes smaller by revoking a number of dummy user identities by default.

When the user wants to access a record i, she re-encrypts the encrypted ACP for
that record under her own freshly generated public key. She also randomizes the com-
mitment to the ACP and then modifies the original GS proof into a new one proving that
the new encryptions and the new commitment are consistent. The user also blinds the
database server’s signature on the ACP. Using the homomorphism of ElGamal encryp-
tion, the user computes an encryption of δ =

∑
cijdj −

∑
cij . Note that δ is 0 if the

user is allowed access and non-zero otherwise. Finally, the user sends these values to
the database server and proves in zero-knowledge that 1) she computed the encryption
of δ correctly from the modified encryptions and w.r.t. the dj that appear in her creden-
tial, that 2) the blinded signature is a valid signature by the database on the ACP values
in the randomized commitment (without knowing these values of course), and that 3)
her credential was not revoked.

If all of these proofs verify correctly, the database server uses the blinded signature
to compute the blinded key of the record and “folds it into” the encryption of δ so that
it contains the blinded key if δ = 0 and contains a random plaintext otherwise. The
server sends these values to the user and proves that they were computed correctly.
Upon receipt, the user decrypts and unblinds the record key, and decrypts the record.

4.1 Issuer Setup

We now describe each step of our scheme in detail. We begin with the setup procedures
of the issuer and the database provider. Users do not have their own setup procedure.

To set up its keys, the issuer runs the randomized ISetup algorithm displayed in
Figure 1. This will generate groups of prime order p, a public key pk I and corresponding
secret key sk I for security parameter κ and category universe C .

The values gI , yI , h0, . . . , h`+1, u, w from the issuer’s public key and the corre-
sponding xI from the secret key are used to issue credentials. The values ĝ, ĝ1, ĝ3, ĝ4, yr
and xr are used to sign pairs of the revoked user identities in the revocation list. And, fi-
nally, the issuer uses the Boneh-Boyen signature scheme with secret key x∆ and public

Oblivious Transfer with Hidden Access Control Policies 11

(G1,G2,GT, p)
$← Pg(1κ) ; gI , h0, . . . , h`+1, u, w, ĝ, ĝ1, ĝ2, ĝ3, ĝ4

$← G1 ;

hI , hr, h∆
$← G2 ; gt, ht

$← GT ; xI , x∆, xr
$← Zp ; yI ← hxII ; y∆ ← hx∆

∆ ; yr ← hxrr ;

r, s
$← Zp ; S ← (ĝĝ1

1 ĝ
0
2 ĝ
∆max+1
3 ĝr4)

1/(xr+s) .
For i = 1, . . . ,∆max do y(i)

∆ ← g
1/(x∆+i)
I .

Return (sk I = (xI , x∆, xr), pk I = (gI , h0, . . . , h`+1, u, w, ĝ, ĝ1, ĝ3, ĝ4, hI , h∆, hr, gt, ht, yI ,

yr, y∆, y
(1)
∆ , . . . , y

(∆max)
∆),RL = (1, {0,∆max + 1}, {(0,∆max + 1, S, r, s)})) .

Fig. 1. Issuer Setup algorithm ISetup(C).

key y∆ to sign all possible “revocation distances” and makes the set of these signatures
(y

(i)
∆)∆max

i=1 a part of its public key. It will later become apparent what these revocation
distances are (users will need them for proving that her credential is not on the list of
revoked credentials).

He publishes the public key as a system-wide parameter.

4.2 Issuing Credentials

To be able to make database queries, a user needs to obtain a credential for the categories
that she is allowed to access. To this end, the user runs the Issue protocol with the issuer
as depicted in Figure 2. How the issuer determines which user has access to which
categories is of course out of scope of the scheme.

U(pk I, uid ,d) : I(pk I, uid ,d, sk I) :

r, s
$← Zp

A← (gIh
uid
0 hd1

1 · · ·h
d`
` h

r
`+1)

1
xI+s

A, r, s�
If e(A, hsIyI) = e(gIh

uid
0 hd1

1 · · ·h
d`
` h

r
`+1, hI) then

return cred ← (d, A, r, s).

Fig. 2. Issue protocol Issue().

As a result of the issuing protocol, the user will obtain an access credential for the
vector d. This credential is a triple (A, r, s), which is a signature on the user’s identity
uid and the messages d, using the signature scheme proposed and proved secure by Au
et al. [1]. It is based on the schemes of Camenisch and Lysyanskaya [10] and of Boneh
et al. [2].

4.3 Revoking Credentials

To revoke a user uid ’s credential, the issuer runs the revocation algorithm Revoke(pk I,
sk I,RL, uid). Recall that in our model each user has only one credential, in which
the user’s identity uid is embedded. We implement this revocation list with the ideas
of Nakanishi et al. [20] for revocation in the context of group signatures. Thus the

12 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

revocation list RL = (t, R1, R2) consists of its current version number t, a set R1

containing the identities of all revoked users, and a set R2 of signatures on each pair
of neighboring uid ’s in R1 (according to their lexicographic order). When the issuer
revokes a credential, it takes the latest revocation list RL = (t, R1, R2) and constructs
the updated revocation list by setting the version number to t′ = t + 1, by adding the
revoked user identity uid to R1, by sorting this list lexicographically, and by issuing
a new set R′2 of signatures on each pair of neighboring revoked user identities in the
updated set R′1. This algorithm is described in detail in Figure 3.

Parse RL as (t, R1, R2) ; t′ ← t+ 1 ; R′1 ← R1 ∪ {uid} ; R′2 ← ∅.
Sort R′1 lexicographically as (uid1, . . . , uidn).
For i = 1, . . . , n− 1 do
r̂, ŝ

$← Zp ; S ← (ĝĝt
′

1 ĝ
uidi
2 ĝ

uidi+1
3 ĝr̂4)

1/(xr+ŝ) ; R′2 ← R′2 ∪ {(t′, uid i, uid i+1, S, r̂, ŝ)}.
Return RL′ = (t′, R′1, R

′
2).

Fig. 3. Revocation algorithm Revoke(pk I, sk I,RL, uid).

4.4 Database Setup

To set up the database, the database server runs the algorithm shown in Figure 4. That is,
it uses the issuer’s public key and a pairing group generator to create groups of the same
order p and generate keys for encrypting records. First the database provider generates
its public and private keys to encrypt records.

Then the database creates a signature σi to bind the ACP and index to the encrypted
record and “randomizes” it with value vi. It also computes a commitment Vi to the
index, ACP and vi. The commitment Vi will be used for signature verification.

Next it encrypts each record Ri as (σi, Fi), each with its own key σi. In fact, these
keys are verifiably pseudo random values [13], but are at the same time signatures under
the the database provider’s secret key (xDB) on the index of the record (i) and the
categories defined in the access control policy for the record (ci). The pairs (σi, Fi) can
be seen as an ElGamal encryption [14] in GT of Ri under the public key H . During the
transfer phase, this verifiability allows the database to check that the user is requesting
the decryption key for a record with an access control policy satisfied by the user’s
credential.

To hide the records’ ACPs, the database generates ElGamal encryptions of each
bit cij and provides a NIZK GS-proof πi to prove knowledge of the plaintexts. The
statement for this proof for record i is

stmt i = (vi, cij , rij) : Vi = giyci11 . . . ycill yvil+1

∧̀
j=1

(
E

(1)
ij = gcijyrije ∧ E

(2)
ij = grije

)
.

Oblivious Transfer with Hidden Access Control Policies 13

1. Generate system parameters and keys
(G1,G2,GT)

$← Pg(p) ; g, h, hDB
$← G∗1 ; g′

$← G∗2 ; H ← e(hDB , g
′) ;

xe, xDB
$← Zp ; ye ← gxe ; yDB ← gxDB ; CRS ← GSSetup(G1,G2,GT , p, e) ;

For i = 1, . . . , `+ 1 do {xi
$← Zp ; yi ← gxi };

skDB ← (hDB , xe, xDB, x1, . . . , x`+1) ; pkDB ← (g, g′, H, h, ye, yDB, y1, . . . , y`+1).
2. Create an encrypted database

For i = 1, . . . , N do
2.1 Parse ACP vector ci as (ci1, . . . ci`);
2.2 Sign and encrypt records:

vi
$← Zp ; Vi ← giyci11 . . . y

ci`
` yvi`+1 ; σi ← g′

1

xDB+i+
∑`
j=1

xj ·cij+x`+1vi ;
Fi ← e(hDB , σi) ·Ri.

2.3 Encrypt categories from the record’s ACP:
For each bit cij generate rij

$← Zp, j = 1 . . . ` ;

E
(1)
ij = gcijy

rij
e ; E

(2)
ij = grij ; Eij = (E

(1)
ij , E

(2)
ij)

2.4 Generate GS proof that all keys, signatures and encryptions were computed correctly
πi = GSProve

(
CRS , stmt i, ((Eij), Vi), (g, ye, (yj)), (vi, (cij), (rij))

)
2.5 ERi ← (σi, Vi, Fi, (Ei1, . . . , Ei`), πi)

3. Publish an encrypted database and public key
Return EDB ←

(
(pkDB,ER1, . . . ,ERN), skDB

)
Fig. 4. Database Setup algorithm DBSetup

(
pk I,DB = (Ri, ci)i=1,...,N

)
.

4.5 Accessing a Record

After having obtained the encrypted database, the user verifies it for correctness by
running for each record Ri the step, denoted as DBVerify(pkDB,EDB) and defined as:
GSVerify(CRS , πi, stmt i, ((Eij), Vi), (g, ye, (yj))) ∧ (e(yDBVi, σi)

?
= e(g, g′)).

When the user wants to access a record in the database, she engages in a Transfer
protocol (Figure 5) with the database server.

The input of the database server is its secret and public key as well as the public
key of the issuer. The input of the user is the public keys of the issuer and the database,
the index i of the record she wants to access, her credential, and the encrypted record
ERi = ((σi, Vi, Fi, (Ei1, . . . , Ei`), πi)).

At a high level, the protocol has three main steps. First, the user takes the encrypted
ACP for the record she wants to access and adds a second layer of encryption to it, using
a freshly generated key pair (xu, yu). Using the homomorphic properties of the encryp-
tion scheme, the user’s categories in her credential and ACP for the record are compared
by constructing a ciphertext (D(1)

i , D
(2)
i) that encrypts zero if the user’s credential sat-

isfies the ACP, and a non-zero value if it does not. Then, the resulting ciphertext is sent
to the database together with a proof PK1 by the user that she constructed it correctly
w.r.t. to the credential she possesses and the encrypted database. If that proof is valid,
the database removes one layer of encryption and returns the result to the user. Finally,
the user removes the remaining layer of encryption to recover the key for the record (or
a random value if access is not granted).

14 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

U (i, cred, pk I, pkDB,ERi,RL) : DB(skDB, pkDB, pk I,RL) :

1. Parse the encrypted record:ERi ← (σi, Vi, Fi, (Ei1, . . . , Ei`), πi) ;
2. Re-encrypt categories with fresh user’s key

xu
$← Zp ; yu ← gxu ;

For j = 1, . . . , ` : r′ij
$← Zp;E

′(1)
ij ← E

(1)
ij (E

(2)
ij)xu (yeyu)

r′ij ;

E
′(2)
ij ← E

(2)
ij g

r′ijxV
$← Zp ; V ′i = Vih

xV

π′i ← GSRMod
(
CRS , π, stmt′, stmt, ((E

′(1)
ij , E

′(2)
ij), V ′i),

((E
(1)
ij , E

(2)
ij), Vi), (g, ye, yu, (yi), h), (xu, (rij), xV)

)
3. Create an encryption of δ =

∑
cijdj −

∑
cij

rd
$← Zp ; D

(1)
i ←

∏`
j=1(E

′(1)
ij

)
dj∏`

j=1
E
′(1)
ij

y
rd
e y

rd
u ;

D
(2)
i ←

∏`
j=1(E

′(2)
ij

)
dj∏`

j=1
E
′(2)
ij

grd

4. Blind σi kσ
$← Zp ; σ′i ← σi

kσ

yu, (E
′(1)
ij , E

′(2)
ij)j=1,...`, π

′
i, (D

(1)
i , D

(2)
i), σ

′
i-

PK1{Correct(σ
′
i, V
′
i , Di, cred)} -�

1. Verify all proofs: b←
(
PK1∧

GSVerify(π′i, stmt′, ((E
′(1)
ij , E

′(2)
ij), V ′i)),

(g, ye, yu, (yi), h))
)

2. Remove DB encryption fromDi

L
(1)
i ←

D
(1)
i

(D
(2)
i

)xe
; L

(2)
i ← D

(2)
i

3. Re-randomize remaining user’s encryption Li
kδ, kL

$← Zp ; L
′(1)
i ← (L

(1)
i)kδy

kL
u ;

L
′(2)
i ← (L

(2)
i)kδgkL

4. ComputeM ← e(hDB , σ
′
i) · e(L

′(1)
i , g′)

M,L
′(2)
i�

PK2{Correct(M,L
′(2)
i)} -�

Ri ← Fi/(M · e(L′(2)
i , g′)−xu)1/kσ

ReturnRi Return ε

Fig. 5. The Transfer() protocol. The details of the proof protocols PK1 and PK2 are described
in the text, as are the definitions of the statements stmt and stmt ′ of the GS proofs. The latter
essentially say that the encryptions (Eij) and (E′ij) are consistent with Vi and V ′i , respectively.

Now we describe each step in greater detail. The user takes the ElGamal encryp-
tions of each category bit for the record she wants to access and re-encrypts them
with her own key. Then, using these values, she calculates an ElGamal encryption of
δ = (

∑`
j=1 cijdj −

∑`
j=1 cij), which will be 0 if and only if cij = dj . She then

re-randomizes and modifies the GS proof π into the new one π′ for the statement

stmt ′i = (vi, i, (cij), (rij), (r
′
ij), xV) : V

′
i = giyci11 . . . yci`` yvi`+1h

xV

∧̀
j=1

(
E
′(1)
ij = gcij (yeyu)

rij+r
′
ij ∧ E′(2)

ij = g
rij+r

′
ij

e

)
to prove that the new encryptions are consistent with the new commitment V ′i .

Then, the user blinds σi and sends this blinded version σ′i to the database server.
Note that σi is derived from the database provider’s secret key, the index of the records,

Oblivious Transfer with Hidden Access Control Policies 15

and, most importantly, all the categories associated to the record. Next, the user proves
to the database interactively that σ′i is correctly formed as a randomization of some
σi for which she possesses all necessary credentials, that V ′i is consistent with σ′i, and
that Di is is correctly formed from the re-encrypted ACP and her credentials. That is,
she executes with the database server the step we refer to as PK1{Correct(σ′i, V ′i , Di,
cred)} in Figure 5. For this proof, the user first searches in the current revocation list
RL = (t, R1, R2) for a tuple (uid left, uid right, S, r̂, ŝ) ∈ R2 such that uid left < uid <
uid right. Let ∆left and ∆right such that uid left + ∆left = uid = uid right − ∆right

and let y(∆left)
∆ and y(∆right)

∆ be the issuer’s signatures on these distances. The user next
blinds y(∆left)

∆ and y(∆right)
∆ and her credentials, i.e., she computes t1, t′1

$← Zp ; Ã ←
Aut1 ; B ← wt1ut

′
1 , t2, t′2

$← Zp ; S̃ ← Sut2 , and S̃1 ← wt2ut
′
2 to blind her credentials

and computes t3, t′3
$← Zp; Ỹ ← (y

(∆left)
∆)t3 ; Ỹ1 ← (y

(∆right)
∆)t

′
3 to blind the revocation

distance signatures.
The user sends Ã, B, S̃, S̃1, Ỹ , and Ỹ1 to the database server and then executes the
following proof of knowledge :

PK1{(uid , uid left, uid right, kσ, xV , rd, r, α, β, αr, βr, t1, t
′
1, t2, t

′
2, t3, t

′
3, d1, . . . , d`,

s, ŝ, r̂, c1, . . . , c`, vi) : V
′
i = gi

∏̀
i=1

ycii y
vi
`+1h

xV ∧ 1 = B−swαuβ ∧B = wt1ut
′
1

∧ e(yDBV ′i , σ′i) = e(g, g′)kσe(h, σ′i)
xV ∧ S̃1 = wt2ut

′
2 ∧ 1 =

wαruβr

S̃ ŝ1
∧

e(Ã, yI)

e(gI , hI)
= e(Ã, hI)

−se(u, yt1I h
α
I)e(h0, hI)

uide(h`+1, hI)
r
∏̀
k=1

e(hk, hI)
dk∧

e(S̃, yr)

e(ĝ, hr)
= e(S̃, hr)

−ŝe(u, yt2r h
αr
r)e(ĝ1, hr)

te(ĝ2, hr)
uid lefte(ĝ3, hr)

uidrighte(ĝ4, hr)
r̂

∧ e(Ỹ , y∆) = e(Ỹ , h∆)
−(uid−uid left)e(gI , h∆)

t3∧

e(Ỹ1, y∆) = e(Ỹ1, h∆)
−(uidright−uid)e(gI , h∆)

t′3∧

D
(1)
i ·

∏̀
j=1

E
′(1)
ij =

∏̀
j=1

(E
′(1)
ij)djyrde y

rd
u ∧D

(2)
i ·

∏̀
j=1

E
′(2)
ij =

∏̀
j=1

(E
′(2)
ij)djgrd}

If the proof is successful, the database removes its layer of encryption from Di

and then randomizes the remaining encryption of δ (using the user’s temporary public
key yu). This ensures that if δ 6= 0 holds, then the encryption will contain a random
value and is not related to the decryption key for the record. The database then proves
to the user that it had computed everything correctly by executing with with her the
protocol we referred to as PK2{Correct(M,L

′(2)
i)} in Figure 5. More precisely, it is

the following proof that the values M and L′(2)
i were computed correctly (whereby

16 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

γ = −xekδ):

PK{(hDB , xe, kL, kδ, γ) : H = e(hDB , g
′) ∧ ye = gxe ∧ L′(2)

i = (D
(2)
i)kδgkL∧

1 = ykδe g
γ ∧M = e(hDB , σ

′
i) · e(D

(1)
i , g′)kδ · e(D(2)

i , g′)γe(g, g′)kL} .

When the user gets L from the database, removes all randomness and decrypts, the
decrypted value Ri is correct if and only if δ = 0.

We finally remark that the database has to calculate encryptions of all ACPs and
encrypt all records (1, . . . , N) only once at the setup phase, and the user has to down-
load and verify the entire encrypted database only once as well. So the communication
and computation complexity of the protocol depend on the number of the records in the
database only in the setup and verify phases. The other parts of the protocol (issue and
transfer) require only O(`) group elements to be sent and exponentiations and pairings
to be computed, where ` is the size of ACP vector.

5 Security Analysis

The security of our protocol is analyzed by proving indistinguishability between adver-
sary actions in the real protocol and in an ideal scenario that is secure by definition.

Given a real-world adversary A, we construct an ideal-world adversary A′ such that
no environment E can distinguish whether it is interacting with A or A′. We organize
the proof in sub-lemmas according to which subset of parties are corrupted. We do not
consider the cases where all parties are honest, where all parties are dishonest, where
the issuer is the only honest party, or where the issuer is the only dishonest party, as
these cases have no real practical interest.

For each case we prove the indistinguishability between the real and ideal worlds
by defining a sequence of hybrid games Game-0, . . . ,Game-n. In each game we
define a simulator Simi that runs A as a subroutine and that provides E’s entire view.
We define HybridE,Simi(κ) to be the probability that E outputs 1 when run in the world
provided by Simi. The games are always constructed such that the first simulator Sim0

runs A and all honest parties exactly like in the real world, so that HybridE,Sim0
(κ) =

RealE,A(κ) , and such that the final simulator Simn is easily transformed into an ideal-
world adversary A′ so that HybridE,Simn(κ) = IdealE,A′(κ) . By upper-bounding
and summing the mutual game distances HybridE,Simi(κ) −HybridE,Simi+1

(κ) for
i = 0, . . . , n − 1, we obtain an upper bound for the overall distance RealE,A(κ) −
IdealE,A′(κ) .

Theorem 2. If the (N+2)-BDHE and XDDH assumptions hold in G1,GT, the (N+1)-
SDH assumption holds in G1, and M -SDH assumption holds in G1 then the HAC -OT
protocol in Section 4 securely implements the HAC-OT functionality, where N is the
number of database records, and M is the number of the users.

We prove the theorem by separately proving it for all relevant combinations of cor-
rupted parties in four lemmas.

Due to lack of space, the detailed proof is found in the full version of this paper.

Oblivious Transfer with Hidden Access Control Policies 17

6 Conclusion

We have provided a set of efficient protocols and thereby shown that it is possible to
build an access control system for a database with the maximal possible privacy for
all involved parties: users can access records they are authorized to access without the
server obtaining any information whatsoever about which records they access, which
authorizations they users have, or whether the access was successful. Indeed, the data-
base only learns that some user attempted to access the database. At the same time the
database server is guaranteed that users can only access a single record and do not get
any other information including information about other records or any access control
list. Indeed, the user only learn whether or not their current credentials are sufficient to
access the record they try to access.

The protocols we provide are fairly practical and we believe applications where
records are relatively valuable, e.g., keys to decrypt some media such as movies or a
particular DNA-sequence of many people, then our protocol could be used in practice.
Still, it remains an open question whether more efficient protocols exist. One way to
achieve this, could be using attribute based encryption instead of using anonymous
credentials. Our initial investigation of such protocols makes us believe that such an
approach would lead to less efficient protocols. Nevertheless, further research along
this lines could be fruitful.

Acknowledgements

The authors thank the anonymous referees of CCS 2009 for suggesting the problem
of oblivious transfer with hidden access control lists. We are grateful to Robert En-
derlein for saving us from a few embarrassing typos. This work was supported by the
European Community through the Seventh Framework Programme (FP7/2007-2013)
project PrimeLife (grant agreement no. 216483).

References

1. M. H. Au, W. Susilo, and Yi Mu. Constant-size dynamic k-TAA. SCN 06, volume 4116 of
LNCS, pages 111–125. Springer, 2006.

2. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. CRYPTO 2004, vol.3152 of
LNCS, pages 41–55. Springer, 2004.

3. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham.
Randomizable proofs and delegatable anonymous credentials. In CRYPTO 2009, LNCS,
pages 108–125. Springer, 2009.

4. R. W. Bradshaw, J. E. Holt, and K. E. Seamons. Concealing complex policies with hidden
credentials. 11th (CCS 2004), pages 146–157. ACM Press, 2004.

5. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weiz-
mann Institute of Science, Rehovot 76100, Israel, June 1995.

6. R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

7. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. EUROCRYPT 2009,
volume 5479 of LNCS, pages 351–368. Springer, 2009.

18 Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Zaverucha

8. J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access control. In
ACM CCS 09, pages 131–140. ACM Press, 2009.

9. S. E. Coull, M. Green, and S. Hohenberger. Controlling access to an oblivious database using
stateful anonymous credentials. In PKC 2009, LNCS, pages 501–520. Springer, 2009.

10. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. Advances in Cryptology — CRYPTO 2004, volume 3152 of LNCS , pages
56–72. Springer, 2004.

11. J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer. EURO-
CRYPT 2007, volume 4515 of LNCS, pages 573–590. Springer, 2007.

12. Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography against continuous
memory attacks. Cryptology ePrint Archive, Report 2010/196, 2010.

13. Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys.
PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, 2005.

14. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

15. K. B. Frikken, M. J. Atallah, and J. Li. Attribute-based access control with hidden policies
and hidden credentials. IEEE Trans. Computers, 55(10):1259–1270, 2006.

16. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. EURO-
CRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, 2008.

17. J. E. Holt, R. W. Bradshaw, K. E. Seamons, and H. K. Orman. Hidden credentials. ACM
WPES’03, USA, 2003, pages 1–8. ACM, 2003.

18. J. Herranz. Restricted adaptive oblivious transfer. Cryptology ePrint Archive, Report
2008/182, 2008.

19. N. Li and W. Winsborough. Towards practical automated trust negotiation. In POLICY ’02,
page 92, Washington, DC, USA, 2002. IEEE Computer Society.

20. T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature schemes with
constant costs for signing and verifying. In PKC 2009, LNCS, pages 463–480. Springer,
2009.

21. M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. CRYPTO ’99, vol. 1666 of
LNCS, pages 573–590. Springer, 1999.

22. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In 7th ACM CCS, pages 245–254. ACM press, November 2000.

23. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its applica-
tion to secure message transmission. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 184–200. IEEE Computer Society, IEEE Computer Society
Press, 2001.

24. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

25. A. C. Yao. Protocols for secure computations. In 23rd FOCS, pages 160–164. IEEE Com-
puter Society Press, 1982.

26. T. Yu and M. Winslett. A unified scheme for resource protection in automated trust negotia-
tion. In IEEE Symposium on Security and Privacy (S&P 2003), USA, pages 110–122. IEEE
Computer Society, 2003.

27. T. Yu, M. Winslett, and K. E. Seamons. Interoperable strategies in automated trust negotia-
tion. In ACM CCS 01, pages 146–155. ACM Press, 2001.

28. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods.
EUROCRYPT 2001, vol. 2045 of LNCS, Springer, 2001.

