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Abstract. We propose a linearly homomorphic signature scheme that authenti-
cates vector subspaces of a given ambient space. Our system has several novel
properties not found in previous proposals:

• It is the first such scheme that authenticates vectors defined over binary fields;
previous proposals could only authenticate vectors with large or growing
coefficients.

• It is the first such scheme based on the problem of finding short vectors in
integer lattices, and thus enjoys the worst-case security guarantees common
to lattice-based cryptosystems.

Our scheme can be used to authenticate linear transformations of signed data,
such as those arising when computing mean and Fourier transform or in networks
that use network coding. Our construction gives an example of a cryptographic
primitive — homomorphic signatures over F2 — that can be built using lattice
methods, but cannot currently be built using bilinear maps or other traditional
algebraic methods based on factoring or discrete log type problems.

Security of our scheme (in the random oracle model) is based on a new hard
problem on lattices, called k-SIS, that reduces to standard average-case and worst-
case lattice problems. Our formulation of the k-SIS problem adds to the “toolbox”
of lattice-based cryptography and may be useful in constructing other lattice-based
cryptosystems.

As a second application of the new k-SIS tool, we construct an ordinary signature
scheme and prove it k-time unforgeable in the standard model assuming the
hardness of the k-SIS problem. Our construction can be viewed as “removing the
random oracle” from the signatures of Gentry, Peikert, and Vaikuntanathan at the
expense of only allowing a small number of signatures.

Keywords. Lattice-based cryptography, homomorphic signatures.

1 Introduction
A linearly homomorphic signature scheme signs n-dimensional vectors v1, . . . ,vk
defined over some finite field Fp and outputs one signature per vector. The linear
homomorphic property is that given these k signatures, anyone can produce a
signature on any vector v in the Fp-linear span of v1, . . . ,vk. The signature is
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secure if it is difficult to produce a signature on any vector v ∈ Fnp outside the
linear span of v1, . . . ,vk. We give precise definitions in Section 2.

The original motivation for linearly homomorphic signatures comes from the
network coding routing mechanism [12, 11, 25, 4, 13]. In a computer network that
uses network coding, a message sender signs a number of “augmented” message
vectors and transmits the resulting vector-signature pairs through the network
to a recipient. Each router along the way receives a number of signed vectors
and creates a random linear combination v of the vectors it receives. The router
uses the homomorphic property to derive a signature on v and forwards v and
its signature to the next router, which then does the same with the signed vectors
it receives. The ultimate recipient obtains several random linear combinations of
the original message vectors, discards all vectors that are not properly signed,
and recovers the original message by solving a full-rank linear system over Fp.
Security of the signature scheme ensures that the recipient obtains the originally
transmitted message vectors. In implementations there is a desire to use network
coding with addition over F2, so that computations on messages are simple XORs
and decoding amounts to solving a linear system over F2.

Beyond network coding, linearly homomorphic signatures enable linear
computations on authenticated data. For example, consider a server that stores
signed data samples s1, . . . , sn in Fp. The signature on sample si is actually
a signature on the vector (si|ei) ∈ Fn+1

p , where ei the ith unit vector in Fnp .
The server stores (i, si) and a signature on (si|ei). (The vector ei need not
be stored with the data and can be reconstructed from i when needed.) Using
the homomorphic property, the server can compute a signature σ on the sum
(
∑n

i=1 si, 1, . . . , 1). If σ reveals no other information about the original samples,
then the server can publish the sum

∑n
i=1 si and the signature σ on the sum

while maintaining privacy of the original data. The “augmentation” (1, . . . , 1)
proves that the published message really is the claimed sum of the original
samples.1 More generally, the server can publish an authenticated inner product
of the samples s := (s1, . . . , sn) with any known vector c ∈ Fnp without leaking
additional information about the samples. This is needed, for example, to publish
an authenticated Fourier coefficient from the Fourier transform of s. It can also
be used to compute an authenticated least squares fit for a set of signed data.

Previous results on linearly homomorphic signatures make use of groups in
which the discrete logarithm problem is hard [18, 11, 25, 4] or the RSA assump-
tion holds [13]. In the former case, signatures are linearly homomorphic over
Fp for some large p, while in the latter case, signatures are homomorphic over
the integers (with some bound on the size of the coefficients allowed in linear

1 Strictly speaking, in order to prevent mix-and-match attacks between different data sets one
needs to link the n samples with a random tag that uniquely identifies the data set.
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combinations). In particular, no previous scheme can support linear operations
over a small field such as F2. This appears to be an inherent limitation of discrete
log-type systems, since the discrete log problem is not hard in F2. A similar
limitation prevents an RSA-based system over F2.

More distantly related to our work is the notion of “redactable” signatures [24,
16, 15, 3, 22, 21, 10, 8, 7]. These schemes have the property that given a signature
on a message, anyone can derive a signature on subsets of the message. Our focus
here is quite different — we look at linear operations on tuples of authenticated
vectors rather than a subset operation on a single message.

Our contributions.

• Homomorphic signatures over F2: We construct the first unforgeable lin-
early homomorphic signature scheme that authenticates vectors with coordi-
nates in F2. Our construction gives an example of a cryptographic primitive
that can be built using lattice methods, but cannot currently be built using
bilinear maps or other traditional algebraic methods based on factoring or
discrete log type problems. Our scheme can be easily modified to authenti-
cate vectors with coefficients in other small fields, including prime fields and
extension fields such as F2d . In addition, our scheme is private, in the sense
that a derived signature on a vector v leaks no information about the original
signed vectors beyond what is revealed by v.

• A simple k-time signature without random oracles: We describe a state-
less signature scheme and prove it secure in the standard model when used to
sign at most k messages, for small values of k. The public key of our scheme
is significantly smaller than that of any other stateless lattice-based signature
scheme that can sign multiple large messages and is secure in the standard
model. Our construction can be viewed as “removing the random oracle”
from the signature scheme of Gentry, Peikert, and Vaikuntanathan [14], but
only for signing k messages.

• New tools for lattice-based signatures: Unforgeability of both of our schemes
is based on a new hard problem on lattices, which we call the k-Small Integer
Solutions (k-SIS) problem. We show that k-SIS reduces to the standard Small
Integer Solution (SIS) problem, which is known to be as hard as standard
worst-case lattice problems [20].

Unforgeability of our k-time signature scheme depends on bounds for the
length of vectors sampled from discrete Gaussian distributions. We prove
both upper and lower bounds that are essentially as tight as possible. Our
upper bound improves on a result of Micciancio and Regev [20, Lemma
4.4], and our lower bound is (to our knowledge) the first such bound in the
literature.
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Privacy of our linearly homomorphic scheme depends on a new result on
discrete Gaussian distributions, namely, that the distribution of a sum of
samples from a discrete Gaussian is statistically close to a discrete Gaussian
distribution that depends only on the sum and not on the individual samples.
While the analogous result for continuous Gaussians is well known, this is
(to our knowledge) the first such result for discrete Gaussians.

Overview of the homomorphic signature scheme. Our construction builds
on the signature scheme of Gentry, Peikert, and Vaikuntanathan [14], in which
signatures are short vectors σ in lattices defined modulo some large integer q.
The key idea in our construction is to use short vectors σ in (cosets of) lattices
defined modulo 2q, which allows us to encode different information modulo
2 and modulo q: σ mod 2 encodes information about the vector being signed,
while σ mod q encodes a solution to a hard problem, ensuring that an adversary
cannot forge the signature.

The fact that σ is a short integer vector ensures that the two parts cannot be
attacked independently. Specifically, applying the Chinese remainder theorem
to two vectors σ2 and σq that are correct mod 2 and mod q, respectively, does
not produce a short integer vector. This property appears to be unique to lattice-
based cryptography: if we attempted a similar construction in discrete log groups
of order 2q, we would easily be able to attack the order 2 and order q parts
independently.

Concretely, our construction works as follows. Let q be an odd prime. To sign
a vector subspace V = span(v1, . . . ,vk) of Fn2 , we define a matrix AV ∈ Zm×n2q

and then sign each basis vector vi. A signature on vi ∈ Fn2 is a low-norm vector
σi ∈ Zm such that AV · σi = q · vi mod 2q. A signature σ ∈ Zm on a vector
y ∈ Fn2 is valid if σ has small norm and AV · σ = q · y mod 2q.

Producing such a signature requires knowing a short basis for the integer
lattice defined by the kernel of AV ; to obtain such a basis we combine the
trapdoor generation algorithm of Alwen and Peikert [2] with the basis delegation
mechanism of Cash, Hofheinz, Kiltz, and Peikert [9].

The homomorphic property of our scheme is now immediate: if we are
given arbitrary vector-signature pairs (vj , σj) ∈ Fn2 × Zm for j = 1, . . . , `,
we can create a signature on v = v1 + · · · + v` ∈ Fn2 by computing σ =
σ1 + · · ·+ σ` ∈ Zm. Since the σj are all valid signatures on the vj , we see that
AV · σ = q · v mod 2q and σ has low norm (if ` is sufficiently small), so σ is a
valid signature on v.

Security and the k-SIS problem. To prove unforgeability, we need to show
that given signatures on basis vectors of V , it is impossible to generate a signature
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on a vector outside of V . To do so we define the k-SIS problem, which, roughly
speaking, is as follows:

Given a matrix A ∈ Zn×mq and k short vectors e1, . . . , ek ∈ Zm satisfying
A · ei = 0 mod q, find a short vector e ∈ Zm satisfying A · e = 0 mod q,
such that e is not in Q-span({e1, . . . , ek}).

When k = 0 this is the standard SIS problem [20].
In Section 5 we show that an adversary that breaks the homomorphic signa-

ture scheme (defined mod 2q) in the random oracle model can be used to solve
the k-SIS problem (defined mod q). In Section 4 we show that the k-SIS problem
is as hard as the SIS problem. Our reduction degrades exponentially in k, which
forces us to use a constant-size k if we want our linearly homomorphic scheme
to be provably secure based on worst-case lattice problems. It is an important
open problem to give either a tighter reduction to SIS or a direct reduction from
k-SIS to worst-case lattice problems.

For some applications of linearly homomorphic signatures it is desirable
that the derived signatures be private; that is, a derived signature on a vector
v in span(v1, . . . ,vk) should not leak information about the original vectors
v1, . . . ,vk beyond what is revealed by v. For our construction, to prove privacy
it suffices to show that the distribution obtained by summing independent discrete
Gaussians depends only on the coset of the sum and the linear combination being
computed. We prove this statement in Section 4.

Overview of the k-time signature scheme. Our goal is to use the same mecha-
nism as in the homomorphic signature scheme to construct an ordinary signature
scheme. Since homomorphic signatures are not existentially unforgeable, we
must find a way to remove the homomorphic property. To do this, we impose
the requirement that the length of a valid signature σ ∈ Zm be very close to the
expected length of the vector produced by the signing algorithm. We then show
that any linear combination of valid signatures will be too long to satisfy this
tight bound, so the homomorphic property is of no use to an adversary.

As with the homomorphic scheme, the security of our k-time signature
scheme follows from hardness of the k-SIS problem. We prove security (in the
standard model) against a static attacker, who submits all of his message queries
before receiving the public key. By a standard transformation using chameleon
hashes [17], this implies the existence of a scheme secure against an adaptive
attacker, also in the standard model. Our security proof requires tight bounds on
the length of a vector sampled from a discrete Gaussian distribution. We use new
upper and lower bounds that are essentially as tight as possible.

Lyubashevsky and Micciancio [19] give a lattice-based one-time signature
scheme secure in the standard model and show how it can be converted to sign k
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messages. For small values of k, our construction gives a more efficient stateless
k-time signature than is produced by this conversion.

Outline of the paper. Section 2 gives a formal definition and security model
for linearly homomorphic signatures. In Section 3 we review facts about lattices.
Section 4 describes the new tools we use in our constructions, including the
k-SIS problem and our reduction of k-SIS to SIS. In Section 5 we present our
homomorphic scheme, and in Section 6 we present our k-time signature scheme.
Finally, in Section 7 we describe extensions of our scheme and open questions.
Because of space considerations, proofs have been omitted and can be found in
the full version of this paper [6].

2 Linearly Homomorphic Signatures

We define linearly homomorphic signatures over any principal ideal domain R.
These signatures authenticate tuples (a.k.a. vectors) of elements of R. This
definition encompasses the homomorphic signatures over finite fields defined
by Boneh et al. [4] as well as the signatures over Z and ZN defined by Gennaro
et al. [13]. While we describe the system in terms of a fixed ring R, it may be
that R is determined by the Setup algorithm, as in the case where the size of R
depends on the system’s security parameter.

To prevent “mix-and-match” attacks, each set of vectors signed is given a
unique identifier id, which serves to tie together all vectors that belong to the same
file or data set. Our security model requires that this identifier be unpredictable;
in our scheme it is chosen at random by the signer.

Definition 1 (adapted from [4]). Let R be a principal ideal domain. A linearly
homomorphic signature scheme over R is a tuple of probabilistic, polynomial-
time algorithms (Setup, Sign,Combine,Verify) with the following functionality:

– Setup(n, params). On input a security parameter n (in unary) and additional
public parameters params that include the dimension N of the ambient space
and the dimension k of subspaces to be signed, this algorithm outputs a
public key pk and a secret key sk.

– Sign(sk, id,v). On input a secret key sk, an identifier id ∈ {0, 1}n, and a
vector v ∈ RN , this algorithm outputs a signature σ.

– Combine(pk, id, {(αi, σi)}`i=1). On input a public key pk, an identifier id,
and a set of tuples {(αi, σi)}`i=1 with αi ∈ R, this algorithm outputs a
signature σ. (This σ is intended to be a signature on

∑`
i=1 αivi.)

– Verify(pk, id,y, σ). On input a public key pk, an identifier id ∈ {0, 1}n, a
vector y ∈ RN , and a signature σ, this algorithm outputs either 0 (reject)
or 1 (accept).
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We require that for each (pk, sk) output by Setup(n, params), we have:

1. For all id and y ∈ RN , if σ ← Sign(sk, id,y) then Verify(pk, id,y, σ) = 1.

2. For all id ∈ {0, 1}n and all sets of triples {(αi, σi,vi)}`i=1, if it holds that
Verify(pk, id,vi, σi) = 1 for all i, then

Verify
(
pk, id,

∑
i αivi, Combine

(
pk, id, {(αi, σi)}`i=1

))
= 1.

In our lattice-based linearly homomorphic signature scheme, we cannot com-
bine arbitrarily many valid signatures and still guarantee successful verification.
We capture this property by saying that the scheme is L-limited if correctness
property (2) holds for all ` ≤ L whenever the σi are output by the Sign algorithm.

Unforgeability. The security model for linearly homomorphic signatures allows
an adversary to make adaptive signature queries on files of his choosing, with
the signer randomly choosing the identifier id for each file queried. The winning
condition captures the fact that there are two distinct types of forgeries: a vector-
signature pair (y∗, σ∗) that verifies for some file not queried to the signer (a type
1 forgery), or a pair (y∗, σ∗) that verifies for some file that was queried to the
signer, but for which y∗ is not a linear combination of the vectors queried (a type
2 forgery).

Definition 2 (adapted from [4]). A homomorphic signature scheme S = (Setup,
Sign,Combine,Verify) over R is unforgeable if the advantage of any probabilis-
tic, polynomial-time adversary A in the following security game is negligible in
the security parameter n:

Setup: The challenger runs Setup(n, params) to obtain (pk, sk), and gives pk
to A.

Queries: Proceeding adaptively, A specifies a sequence of k-dimensional sub-
spaces Vi ⊂ RN , represented as a k-tuples of basis vectors vi1, . . . ,vik. For
each i, the challenger chooses idi uniformly from {0, 1}n and gives to A the
identifier idi and the j signatures σij ← Sign(sk, idi,vij) for j = 1, . . . , k.

Output: A outputs id∗ ∈ {0, 1}n, a non-zero vector y∗ ∈ RN , and a signa-
ture σ∗.

The adversary wins if Verify(pk, id∗,y∗, σ∗) = 1, and either (1) id∗ 6= idi for
all i (a type 1 forgery), or (2) id∗ = idi for some i but y∗ 6∈ Vi (a type 2 forgery).
The advantage HomSig-Adv[A,S] of A is defined to be the probability that A
wins the game.
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Privacy. Given signatures on vectors v1, . . . ,vk in RN , it is desirable that
derived signatures on a vector v in span(v1, . . . ,vk) not leak any information
about v1, . . . ,vk beyond what is revealed by v. We are not trying to hide the
fact the derivation took place or the function that was used to compute v, merely
the inputs to the function.

More precisely, we define privacy for linearly homomorphic signatures using
a variation of a definition from [8]. The definition captures the idea that given
signatures on a number of derived vectors in one of two different vector spaces,
the attacker cannot tell which space the derived signatures came from. This
indistinguishability holds even if the secret key is leaked. We call signatures with
this property weakly context hiding. The reason for “weak” is that we are not
hiding the fact that derivation took place or the computed function and we assume
the original signatures are not public. Ahn et al. [1] define a stronger notion
of privacy, called strong context hiding, that requires that derived signatures be
distributed as independent fresh signatures on the same message; this requirement
ensures privacy even if the original signatures are exposed.

Definition 3. A homomorphic signature scheme S = (Setup, Sign,Combine,Verify)
over R is weakly context hiding if the advantage of any probabilistic, polynomial-
time adversary A in the following security game is negligible in the security
parameter n:

Setup: The challenger runs Setup(n, params) to obtain (pk, sk) and gives pk
and sk to A.

Challenge: A outputs (V0, V1, f1, . . . , fs) where V0 and V1 are linear spaces
over RN represented as k-tuples of vectors (v

(b)
1 , . . . ,v

(b)
k ) for b = 0, 1. The

functions f1, . . . , fs are R-linear functions2 on (RN )k satisfying

fi
(
v
(0)
1 , . . . ,v

(0)
k

)
= fi

(
v
(1)
1 , . . . ,v

(1)
k

)
for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag
τ ∈ {0, 1}n and signs the vector space VB using the tag τ . Next, for i = 1, . . . , s

the challenger uses Combine to derive signatures σi on fi(v
(b)
1 , . . . ,v

(b)
k ) and

sends σ1, . . . , σs to A. The functions f1, . . . , fs can be output adaptively after
V0, V1 are output.

Output: A outputs a bit b′.

The adversary A wins the game if b = b′. The advantage of A is the probability
that A wins the game.

2 If the scheme is L-limited, we require the fi to have at most L nonzero coefficients.
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Winning the context hiding game game means that the attacker was able
to determine whether the challenge signatures were derived from signatures
on V0 or from signatures on V1. We note that for discrete log-based linearly
homomorphic signatures such as those of [4], weak context hiding follows from
the uniqueness of the signature.

3 Background on Lattices

In this section we describe the lattices we will be using and their properties. Pre-
cise statements of these results can be found in the full version of this paper [6].

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q.
When q is prime, Zq is a field and is sometimes denoted Fq. We let Zn×mq denote
the set of n × m matrices with entries in Zq. We denote matrices by capital
boldface letters and vectors by lowercase boldface letters. We say a function
f : Z → R+ is negligible if it is O(n−c) for all c > 0, and we use negl(n) to
denote a negligible function of n. The function lg x is the base 2 logarithm of x.

Lattices. Anm-dimensional lattice Λ is a full-rank discrete subgroup of Rm. We
will be interested in integer lattices Λ, i.e., those whose points have coordinates
in Zm. For any integer q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A·e = 0 mod q

}
, Λu

q (A) :=
{
e ∈ Zm : A·e = u mod q

}
.

Alwen and Peikert [2, Theorem 3.2] describe an algorithm TrapGen that
outputs an (almost) uniformly random matrix A ∈ Zn×mq along with a “short”
basis for Λ⊥q (A). Cash et al. [9, Lemma 3.2] give an algorithm ExtBasis that
“delegates” a basis: given two matrices A,A′ in Zn×mq and a short basis for
Λ⊥q (A), the algorithm computes a short basis for Λ⊥q (A‖A′). The length of a
basis T is measured by the Gram-Schmidt norm and denoted by ‖T̃‖.

For any real ε > 0, the smoothing parameter ηε(Λ) is defined to be the
smallest positive s such that ρ1/s(Λ∗ \ {0}) ≤ ε [20].

Gaussian distributions. Let L be a subset of Zm. For any vector c ∈ Rm
and any positive parameter σ ∈ R>0, let ρσ,c(x) := exp

(
−π‖x− c‖2/σ2

)
be a Gaussian function on Rm with center c and parameter σ. Let Dσ,c be
the continuous Gaussian distribution over Rm with center c and parameter σ,
with Dσ,c(x) = ρσ,c(x)/σn. Let ρσ,c(L) :=

∑
x∈L ρσ,c(x) be the discrete

integral of ρσ,c over L. Finally, let DL,σ,c be the discrete Gaussian distribution
over L with center c and parameter σ. In particular, for all y ∈ L, we have
DL,σ,c(y) =

ρσ,c(y)
ρσ,c(L)

. For notational convenience, ρσ,0 andDL,σ,0 are abbreviated
as ρσ and DL,σ, respectively.
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Gentry, Peikert, and Vaikuntanathan [14, Theorems 4.1 and 5.9] describe
algorithms SampleGaussian and SamplePre that output vectors sampled from
distributions statistically close to DΛ⊥

q (A),σ,c and DΛu
q (A),σ, respectively.

Hardness assumption. The security of our signature schemes is based on the
problem of finding short vectors in Λ⊥q (A) for random A. This is known as the
Small Integer Solution (SIS) problem, and is defined as follows.

Definition 4. An instance of the SISq,m,β problem is a matrix A ∈ Zn×mq . A
solution to the problem is a nonzero vector v ∈ Zm such that ‖v‖ ≤ β and
A · v = 0 mod q (i.e., v ∈ Λ⊥q (A)). If B is an algorithm that takes as input a
matrix A ∈ Zn×mq , we define SIS-Adv[B, (q,m, β)] to be the probability that B
outputs a solution to a uniformly random SISq,m,β problem instance A.

Micciancio and Regev [20] and Gentry et al. [14] show that the (average
case) SIS problem for β = poly(n) is hard assuming worst-case hardness of
certain standard approximation problems on lattices.

4 New Tools
4.1 A “One-More” SIS Problem

The security of most lattice-based signature schemes depends on the adver-
sary’s inability to find a short vector in Λ⊥q (A) for some public matrix A.
However, for our linearly homomorphic signatures this criterion is insufficient.
Roughly speaking, an adversary in our scheme will be given several short vectors
e1, . . . , ek ∈ Λ⊥q (A) and must produce a short vector in Λ⊥q (A) that is not in the
span of the ei. This is a “one-more” variant of the standard SIS problem, analo-
gous to the “one-more discrete logarithm” problem in group-based cryptography
(see e.g., [23]). We will see in Section 4.3 that for certain choices of parameters
the problem is equivalent to finding any short vector in Λ⊥q (A) distinct from
{±ei}, making the “one-more” analogy even more appropriate. We now formally
define the problem.

Definition 5. For any integer k ≥ 0, an instance of the k-SISq,m,β,σ problem is
a matrix A ∈ Zn×mq and a set of k vectors e1, . . . , ek ∈ Λ⊥q (A). A solution to
the problem is a nonzero vector v ∈ Zm such that

1. ‖v‖ ≤ β,
2. A · v = 0 mod q (i.e., v ∈ Λ⊥q (A)), and
3. v 6∈ Q-span({e1, . . . , ek}).

If B is an algorithm that takes as input a matrix A ∈ Zn×mq and vectors ei ∈
Zm for i = 1, . . . , k, we define k-SIS-Adv[B, (q,m, β, σ)] to be the probability
that B outputs a solution to a k-SISq,m,β,σ problem instance (A, e1, . . . , ek) over
uniformly random A in Zn×mq and ei drawn from the distribution DΛ⊥

q (A),σ.
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The main result of this section is to show that an adversary A that solves
the k-SIS problem in dimension m can be used to solve the SIS problem in
dimension m− k. More precisely, we have the following:

Theorem 6. Let q be a prime, and let m, β, σ, and k, be polynomial functions of
a security parameter n. Suppose that m ≥ 2n lg q, m/k > n, σ > ω(

√
logm),

t > ω(
√

log n), and q > σ · ω(
√

logm).
Let β′ = β · (k3/2 + 1)k!(tσ)k. Let A be a polynomial-time adversary for

the k-SISq,m,β,σ problem. Then there exists a polynomial-time algorithm B that
solves SISq,m−k,β′ , such that

SIS-Adv[B, (q,m− k, β′)] ≥ k-SIS-Adv[A, (q,m, β, σ)]− negl(n).

Since the SIS problem is only assumed to be hard for parameters β =
poly(n), the fact that the above reduction degrades exponentially in k means
that k must be chosen to be small enough so that β′ is still polynomial in n. In
our application the parameter σ is ω(

√
n), which means that k must be chosen to

be O(1). In this case, if we take t = O(log σ) and β′ = β ·O(σk logk σ), then
Theorem 6 shows that if the SISq,m−k,β′ problem is hard, then the k-SISq,m,β,σ
problem is also hard.

The idea of the proof of Theorem 6 is as follows: given an SIS challenge
A′ ∈ Zn×(m−k)q , we can choose k random vectors ei from a Gaussian distribution
over Zm and append k columns to A′ to create a matrix A ∈ Zn×mq such that the
ei are in Λ⊥q (A). If the k-SIS adversary A outputs a short vector e∗ ∈ Λ⊥q (A)
that is Q-linearly independent of the {ei}, then we can use Gaussian elimination
over Z (via Cramer’s rule) to compute a short vector v ∈ Λ⊥q (A) with zeroes in
the last k entries. Reading off the first m− k entries of v gives us a short vector
in Λ⊥q (A′). Details can be found in the full version of this paper [6].

4.2 Tight Bounds on the Length of Gaussian Samples

Signatures in our schemes will be “short” vectors sampled from Gaussian dis-
tributions over cosets of a particular lattice. To quantify what “short” means,
we must demonstrate an upper bound on the length of a vector sampled from a
Gaussian.

Micciancio and Regev [20, Lemma 4.4] show that if σ is larger than the
smoothing parameter of the n-dimensional lattice Λ, then with overwhelming
probability the length of a vector sampled fromDΛ,σ,c is at most σ

√
n. They also

show that the expected length of such a sample is at most σ
√
n/2π + negl(n).

Our result below “bridges the gap” between the upper bound and the expected
length. Furthermore, we show an equally strong lower bound on the length of
the Gaussian sample.
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Proposition 7. Let Λ ⊂ Rn be a lattice. Suppose σ ≥ ηε(Λ) for some negligible
ε. Let c ∈ Rm be any vector. Then for any constant α > 0 we have

Pr
[
(1− α)σ

√
n
2π ≤ ‖x− c‖ ≤ (1 + α)σ

√
n
2π : x

R← DΛ,σ,c
]
≥ 1−negl(n).

4.3 Removing Linear Independence from the k-SIS Problem

We now show that for small values of k and tight length bounds, we can relax the
linear independence condition in the statement of the k-SIS problem. Specifically,
if we can find any nonzero vector e∗ of the required length not equal to ±ei
for any of the k vectors ei in the problem statement, then with overwhelming
probability e∗ is not in the linear span of the ei.

Proposition 8. Suppose m ≥ 2n lg q and k · ω(
√

log n) < min(σ,m1/4). Let
(A, e1, . . . , ek) be a k-SIS challenge with A chosen uniformly at random from
Zn×mq and ei sampled from DΛ⊥

q (A),σ. Then with overwhelming probability, the
only nonzero vectors of length at most 1.1 · σ

√
m/2π in Q-span(e1, . . . , ek)

are the vectors ±ei for i = 1, . . . , k.

4.4 Linear Combinations of Discrete Gaussians

The privacy property of our linearly homomorphic scheme will follow from the
fact that the distribution obtained by summing independent discrete Gaussian
samples is itself a discrete Gaussian distribution that depends only on the coset
of the sum and the linear combination being computed.

Theorem 9. Let Λ ⊆ Zm be a lattice and σ ∈ R. For i = 1, . . . , k let ti ∈ Zm
and let Xi be mutually independent random variables sampled from DΛ+ti,σ.
Let c = (c1, . . . , ck) ∈ Zk, and define

g := gcd(c1, . . . , ck), t :=
∑k

i=1 citi.

Suppose that σ > ‖c‖ · ηε(Λ) for some negligible ε. Then Z =
∑k

i=1 ciXi is
statistically close to DgΛ+t,‖c‖σ.

In the full version of this paper [6] we generalize this theorem to Z̄ = A · X̄ ,
where X̄ = (X1, . . . , Xk) and A is an s× k matrix.

5 A Linearly Homomorphic Signature Scheme over F2

We now describe our linearly homomorphic signature scheme over F2. Our
construction is inspired by the signature scheme of Gentry, Peikert, and Vaikun-
tanathan [14]. In the GPV scheme, signatures are short vectors in Λu

q (A), where
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u is the hash of the message to be signed. The key idea in our construction of
homomorphic signatures is to work simultaneously modulo 2 and modulo an odd
prime q. Specifically, a signature on a vector v ∈ Fn2 is a short vector e ∈ Zm
such that e is in both Λ⊥q (A) and Λv

2 (A). The mod 2 part ties the signature to
the message, while the mod q part ensures that the signature cannot be forged.
By the Chinese remainder theorem, such a vector e is in the lattice Λq·v2q (A).

In order to be able to sign multiple files, the matrix A must be different for
every file, yet still have a trapdoor that allows us to generate signatures using the
SamplePre algorithm. To achieve this, we divide A into two parts. The left half
is a public matrix generated by the TrapGen algorithm; the right half depends on
the identifier of the file being signed. Given the secret basis output by TrapGen,
we can use the ExtBasis algorithm to compute a short basis for Λ⊥2q(A).

Our scheme is as follows:

Setup(n, params). Given a security parameter n and parameters params =
(N, k, L,m, q, σ), where N = n is the dimension of vectors to be signed, k < n
is the dimension of subspaces to be signed, L ≥ 1 is the maximum number of
linear combinations that can be authenticated, m(n,L) > n is an integer, q(n,L)
is an odd prime, and σ(n,L) is a real number, do the following:

1. Run TrapGen(n,m, 2q) to generate a matrix A ∈ Zn×m2q and a basis T of
Λ⊥2q(A) such that ‖T̃‖ ≤ 30

√
n lg 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function, viewed as a random oracle.
3. Output the public key pk← (A, H), and the private key sk← (A, H,T).

Sign(sk, id,v). Given secret key sk = (A, H,T), identifier id ∈ {0, 1}n, and a
vector v ∈ Fn2 , do the following:

1. Set B← A‖H(id) ∈ Zn×2m2q .

2. Let S← ExtBasis(T,B) be a basis for Λ⊥2q(B) with ‖S̃‖ = ‖T̃‖.
3. Output e← SamplePre(B,S, σ, q · v).

Combine(pk, id, {(αi, ei)}`i=1). Given a public key pk, an identifier id, and pairs
{(αi, ei)}`i=1 with αi ∈ F2 = {0, 1}, output e←

∑`
i=1 αiei ∈ Z2m.

Verify(pk, id,y, e). Given a public key pk = (A, H), an identifier id, a signature
e ∈ Z2m, and a vector y ∈ Fn2 , do the following:

1. Set B← A‖H(id) ∈ Zn×2m2q .

2. If (a) ‖e‖ ≤ L · σ
√

2m and (b) B · e = q · y mod 2q, output 1. Otherwise
output 0.

Proposition 10. Suppose σ ≥ 30
√
n lg 2q · ω(

√
log n). Then the scheme de-

scribed above is an L-limited linearly homomorphic signature scheme over F2.
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Unforgeability. We prove unforgeability of our linearly homomorphic signature
scheme over F2 in the random oracle model. Given an adversary that breaks
the signature scheme over Z2q, we construct an adversary that simulates the
signature scheme and the hash function H and solves the k-SIS problem over
Zq. By Theorem 6, this adversary can in turn be used to solve the SIS problem
over Zq.

Our simulation begins by guessing which of the adversary’s signature and
hash queries will correspond to the file identifier id∗ associated with the adver-
sary’s forgery and outputting a public key A derived from the k-SIS challenge
matrix. For queries not associated with id∗, the simulator “swaps the roles” of
the public key and hash function as follows: we use TrapGen to program the
random oracle with a matrix H(id) for which we know a short basis, and we
use ExtBasis to compute a short basis for A‖H(id). We can then compute the
signatures as in the real system.

For the query id∗, we constructH(id∗) so that the k-SIS challenge vectors are
valid signatures for the vectors queried by the adversary. We construct the mod q
part ofH(id∗) using the fact that valid signatures are elements ofΛ⊥q (A‖H(id∗)),
and we construct the mod 2 part of H(id∗) using the fact that the k-SIS challenge
vectors are statistically close to random mod 2.

With this setup, a forged signature is exactly a solution to the k-SIS problem
mod q. We now give the theorem; the proof appears in the full paper [6].

Theorem 11. Let N be the linearly homomorphic signature scheme over F2

described above. Suppose that m = d6n lg 2qe and σ = 30
√
n lg 2q log n. Let

β = L · σ
√

2m. Then N is unforgeable in the random oracle model assuming
that k-SISq,2m,β,σ is infeasible.

Since the SIS problem is only assumed to be hard for β′ = poly(n), by
Theorem 6 our choice of σ forces k to be O(1) to ensure security based on SIS.

Privacy. In our linearly homomorphic signature scheme, one derives a signature
on a linear combination v of messages by taking a linear combination of the
signatures on the original messages v1, . . . ,vk. Hence, the derived signature
on v is a linear combination of short vectors in cosets of some lattice Λ. To
show that this derived signature does not leak information about the original
signatures, we use Theorem 9 to show that a linear combination of k signatures
generated by our signing algorithm is itself a short vector sampled from a
distribution that depends only on the function computed and the message v
output by the function. In particular, the derived signature does not depend on the
original vectors v1, . . . ,vk (up to negligible statistical distance). It follows that
the derived signature does not leak any information about v1, . . . ,vk beyond
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what is revealed by v. We note that the length of σ reveals information about the
computed linear function, but not about the original messages.

The above argument implies that a single derived signature is private; for
multiple signatures we use a similar argument with an appropriate generalization
of Theorem 9. The proof of our privacy theorem can be found in the full paper [6].

Theorem 12. Let N be the linearly homomorphic signature scheme over F2

described in Section 5. Suppose that k is constant, m = d6n lg 2qe and σ =
30
√
n lg 2q log n. Then N is weakly context hiding.

6 k-Time GPV Signatures Without Random Oracles

In this section we give a second application of the k-SIS mechanism described
in Section 4, namely, a stateless variant of the the signature scheme of Gentry,
Peikert, and Vaikuntanathan [14] that is k-time unforgeable in the standard model.
The notion of k-time security means that a signing key can only be used to sign
k messages. In particular, a forger is allowed at most k signing queries.

The main idea is to construct signatures as in our homomorphic scheme of
Section 5, but remove the homomorphic property by setting the bound on the
length of a valid signature to be very close to the expected length of the signature.
Since we expect a small number of such vectors to form a set that is nearly
orthogonal, any linear combination of signatures will produce a vector that is too
long to be accepted as a valid signature.

We prove our signature scheme weakly unforgeable; i.e., unforgeable under
a static chosen-message attack, in which the adversary must submit all signature
queries before seeing the public key. A standard transformation using chameleon
hashes [17] produces a scheme that is unforgeable under the usual notion of
adaptive chosen-message attack.

We now describe our weakly unforgeable signature scheme, which is essen-
tially a GPV signature in which hashing is replaced with the Chinese remainder-
ing of the message (viewed as a vector in Fn2 ) with the zero vector in Znq .

Setup(n, params). Given a security parameter n that is also the bit length of
messages to be signed, do the following:
1. Choose an odd prime q. Set m← d6n lg 2qe. Set σ ← 30

√
n lg 2q log n.

2. Run TrapGen(n,m, 2q) to generate a matrix A ∈ Zn×m2q and a basis T of
Λ⊥2q(A) such that ‖T̃‖ ≤ σ/ log n.

3. Output the public key pk← (A, σ) and the private key sk← (A, σ,T).

Sign(sk,v). Given secret key sk = (A, σ,T), and a message v (interpreted as a
vector in Fn2 ), output e← SamplePre(A,T, σ, q · v).

15



Verify(pk, e,v). Given a public key pk = (A, σ), a signature e ∈ Zm, and a
message v ∈ Fn2 , output 1 if (a) 0 < ‖e‖ ≤ 1.1 · σ

√
m/2π and (b) A · e =

q · v mod 2q. Otherwise output 0.

Correctness of our scheme follows from Proposition 7 (with α = 0.1), using
[14, Lemma 5.3] to bound the smoothing parameter. In our fully unforgeable
scheme, the vector v used in signing is not the message but rather H(M, r),
where M is the message, r is random, and H is a chameleon hash function. The
signature includes the randomness r in addition to the vector e. For a discussion
of lattice-based chameleon hash functions, see [9, §2.2].

An adversary attacking our k-time signature scheme requests k signatures ei
on messages of his choice, receives a public key and the signatures, and then
outputs a message v∗ and a signature e∗. The adversary wins the game if
Verify(pk, e∗,v∗) = 1 and v∗ is not equal to any of the messages queried.

As was the case for our homomorphic scheme of Section 5, a valid forgery is
a short vector e∗ in Λ⊥q (A). The key idea in our security proof is that the length
bound on a valid e∗ is so tight that by Proposition 8, the only nonzero integer
vectors of comparable length in the Q-span of the requested signatures ei are the
vectors ±ei. (Since −ei authenticates the same message as ei, the signature −ei
is not a valid forgery.) Thus e∗ is outside the linear span of the ei, and we can
use it to solve the k-SIS instance in which the ei are the challenge vectors.

Our security theorem is as follows; the proof appears in the full paper [6].

Theorem 13. Let S be the signature scheme described above. Suppose k is
constant and β = 1.1 · σ

√
m/2π. Then S is a weakly unforgeable k-time

signature scheme assuming that k-SISq,m,β,σ is infeasible.

7 Further Directions
Extending the linearly homomorphic system. While our linearly homomor-
phic scheme in Section 5 authenticates vectors with coordinates in F2, the same
construction works for any field Fp where p is a small prime. We simply set
m = d6n lg pqe and σ = 30

√
n lg pq log n, and sign a vector v ∈ Fnp using the

lattice Λq·vpq (A). If p is odd and we identify Fp with {−(p−1)/2, . . . , (p−1)/2},
then the output of Combine on ` vectors can be up to `(p−1) times as long as the
largest input vector. An argument as in Proposition 10 shows that the resulting
system is L/(p− 1)-limited.

More interestingly, our system can also be used to authenticate vector spaces
defined over non-prime fields. Suppose for concreteness that our vectors live
in (F2d)

n. If we fix a basis for F2d over F2, then when computing signatures
we may view the vectors as elements of (F2)

nd and compute signatures in
exactly the same manner as above. The difference comes when computing linear
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combinations over F2d : in our representation multiplying an element x ∈ F2d by
an element α ∈ F2d consists of multiplying the corresponding vector x ∈ Fd2 by
a matrix Mα ∈ Fd×d2 . To compute this action on the signature vector e ∈ Zm,
we lift Mα to an integer matrix with entries in {0, 1} and group the elements
of e into d-tuples corresponding to the underlying elements of F2d . Multiplying
each d-tuple by Mα now has the effect of multiplying the underlying elements
of F2d by α. We see that this action increases the length of e by a factor of at
most d, so combining ` vectors gives an output that is up to `d times as long as
the largest input vector. By the same argument as above, the system over F2d is
L/d-limited.

Open problem. An important open problem inspired by our construction is to
find a tight reduction of k-SIS to worst-case lattice problems, either by improv-
ing on the reduction to SIS given by Theorem 6 or by a direct argument. An
improved reduction would support the use of the k-SIS problem in developing
cryptosystems for other applications and would also allow us to implement our
systems with smaller parameters.

An alternative construction. In recent work [5], we have developed a different
construction of linearly homomorphic signatures over small fields. Unforgeability
of the new scheme (in the random oracle model) reduces directly to the SIS
problem, without going through the intermediate k-SIS reduction. As a result, the
new scheme can authenticate linear combinations of polynomially many vectors,
whereas the one in this paper requires the number of vectors combined to be
constant. Signatures in the two schemes are of comparable length.
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