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Abstract. Liskov proposed several weakened versions of the random oracle model,
calledweakened random oracle mod€WROMS), to capture the vulnerability

of ideal compression functions, which are expected to have the standard security
of hash functions, i.e., collision resistance, second-preimage resistance, and one-
wayness properties. TWEROMs ofer additional oracles to break such properties

of the random oracle. In this paper, we investigate whether public-key encryption
schemes in the random oracle model essentially require the standard security of
hash functions by th&ROMs. In particular, we deal with foWWROMs asso-

ciated with the standard security of hash functions; the standard, collision trac-
table, second-preimage tractable, first-preimage tractable Bagd,(CT-ROM,
SPT-ROM, and FPT-ROM, respectively), done by Numayama et al. for digi-

tal signature schemes in th#ROMs. We obtain the following results: (1) The
OAERP is secure in all the four models. (2) The encryption schemes obtained by
the Fujisaki-Okamoto conversion (FO) are secure inSR&-ROM. However,

some encryption schemes with FO are insecure ifETle ROM. (3) We consider

two artificial variants wFO and dFO of FO for separation of WiROMs in the
context of encryption schemes. The encryption schemes with wFO (dFO, respec-
tively) are secure in th€T-ROM (ROM, respectively). However, some encryp-

tion schemes obtained by wFO (dFO, respectively) are insecure 8PherROM
(CT-ROM, respectively). These results imply that standard encryption schemes
such as the OAEP and FO-based one do not always require the standard secu-
rity of hash functions. Moreover, in order to make our security proofs complete,
we construct anféicient sampling algorithm for the binomial distribution with
exponentially large parameters, which was left open in Numayama et al.’s paper.
Keywords: public-key encryption schemes, weakened random oracle models,
OAEP, Fujisaki-Okamoto conversion.

1 Introduction

Background: In order to design new cryptographic schemes, we often follow the ran-
dom oracle methodology [1]. First, we analyze the security of cryptographic schemes,
by idealizing hash functions as truly random functions calleddneom oracle When

it comes to implementations of these schemes, we replace the random oracles by cryp-
tographic hash functions such as MD5 [2] and SHA-1 [3]. This replacement is called
an instantiation of the random oracle.



The random oracle methodology causes a tratibetween ficiency and provable
security. The schemes proven secure in the random oracle nik@kl)(are in general
more dficient than those proven secure in the standard model. However, the security
proofs in theROM do not directly guarantee the security in the standard model, i.e.,
an instantiation of the random oracle might make the cryptographic schemes insecure.
Even worse, several recent works [4—6] showed that some schemes secure@@ihe
have no secure instantiation.

There are several properties of ROM to prove the security of cryptographic prop-
erties. In particular, thROM is expected to satisfy the one-wayness, second-preimage
resistance, and collision resistance properties. We call these propertiesstantierd
security of hash functiong'hese properties are indeed critical in many schemes for
their security proofs. For example, the security of the Full-Domain-Hash (FDH) signa-
ture schemes (e.g., [7]), which are secure inR@M, relies on the collision-resistance
property of theROM. That is, if we can obtain two distinct messagesn’ such that
H(m) = H(n') and the signature- = Sig(H(m)), then we can obtain a valid forgery
(m', o), whereH is a hash function anflig is a signing algorithm. Leurent and Nguyen
also presented the attacks extracting the secret keys on seashathen-sigtype sig-
nature schemes and identity-based encryption schemes if the underlying hash functions
are not collision resistant [8].

Recent progress on the attacks against cryptographic hash functions such as MD5
and SHA-1 raises the question on the assumption that hash functions are collision re-
sistant and one-way (e.g.,[9-11]). Therefore, it is significant to investigate whether the
collision resistance property (as well as the one-wayness and second-preimage resist-
ance properties, which are weaker notions than the collision resistance onelrafithe
is essential to prove the security of the schemes or not. More generally, it is worth clas-
sifying the schemes by the first-preimage, second-preimage, and collision resistance
properties of th&ROM that their security essentially requires.

Weak versions of random oracle mode&everal works recently highlighted some spe-
cific properties of th&kOM for secure cryptographic constructions in R@M.

Nielsen proposed theon-programmableéandom oracle model where the random
oracle is notprogrammable[12]. In this model, one cannot set the values that the
random oracle answers to some convenient values. It was showed in [12] that a non-
interactive non-committing encryption scheme exists inR@M (assuming that trap-
door permutations exists), but not in then-programmableandom oracle model.

Unruh proposed ROM with oracle-dependerduxiliary inputs [13]. In this setting,
adversaries obtain an auxiliary input that contains information with respect to the ran-
dom oracle (e.g. collisions). He showed that R®@A-OAEP encryption scheme [14] is
secure in th&ROM even under the presenceabcle-dependerduxiliary inputs.

Liskov proposed several weakened versions of the random oracle model, called
weakened random oracle mod€l&ROMSs), which dfer additional oracles to break
some properties of the random oracle [15]. These model captures the situation that
adversaries are given an attack algorithm for breaking some specific property of the
functions. For example, the first-preimage tractable random oracle méee$ the
random oracle and the first-preimage oracle associated with the random oracle, which
returns a first-preimage of the random oracle to adversaries. This first-preimage oracle



then corresponds to the attack to the first preimage property of a hash function. We
can replace the additional oracle to others such as the second-preimage and collision
ones that correspond to the attack to the properties. ThusiVRR@Ms can capture
vulnerability of hash functions even if the parties are allowed to utilize ideal ones as in
the ROM. By usingWROMSs, Liskov constructed hash functions based on weak ideal
compression functions and proved it is ifidrentiable from the random oracle.

Several results already analyzed the security inttROMs. Hoch and Shamir ap-
plied Liskov's idea to prove the infferentiability of another hash construction [16].
Pasini and Vaudenay also applied Liskov’s idea to the security analysis of digital sig-
nature schemes [17]. They considered the securitiiash-then-sigriype signature
schemes in the first-preimage tractable random oracle model. Numayama, Isshiki, and
Tanaka formalized th&/ROMs, which allows us to formally analyze the security of the
schemes [18]. By using these models, they classified several digital signature schemes
by the properties of thROM. Fischlin and Lehmann also proposed a weakened random
oracle model in a similar way to Liskov's one in the context of secure combiners [19].

Our contributions: In this paper, we investigate whether public-key encryption schemes
constructed in thdROM essentially require the standard security of hash functions
by further extending the direction originated from Liskov. In particular, we consider
their security in the standard, collision tractable, second-preimage tractable, and first-
preimage tractable random oracle mod8®, CT-ROM, SPT-ROM, andFPT-ROM,
respectively for short). Note that they are ordered according to their strengths, i.e., the
security of encryption schemes in tReT-ROM implies that in theSPT-ROM and such
implications hold between each adjacent two models.

We demonstrate that the security notions in the fMROMs can be strictly sepa-
rated in the context of encryption schemes. For the separation, we focus on the security
of the encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) [20], its
two artificial variants (dFO and wFO), and the OAEP [14]. Precisely, we prove the
following four statements:

1. OAEP isIND-CCA2 secure in th&PT-ROM.

2. FOIisIND-CCA2 secure in th&PT-ROM, butnotIND-CPA secure in th&PT-ROM.
3. wFOisIND-CCA2 secure in th€T-ROM, butnotIND-CCA2 secure in th&PT-ROM.
4. dFO isIND-CCA2 secure in thé&ROM, butnot IND-CCA2 secure in the€T-ROM.

We summarize the security of four schemes in Table 1.

schemgmode[ ROM |CT-ROM[SPT-ROM[FPT-ROM
OAEP secure
FO secure [ insecure
wFO secure | insecure
drFO securé insecure

Table 1. Security of four schemes.



This separation suggests that some public-key encryption schemes essentially re-
quire the standard security of hash functions. These notions were also separated in the
context of digital signature schemes in [18]. We stress that the role of the collision and
second-preimage oracles in encryption schemes is not as clear as that in digital signature
schemes. For example, it is easy to see that the collision oracle, breaking the collision
resistance property of the random oracle, directly makes a simple scheme vulnerable,
but not so easy for the case of encryption schemes. Actually, we need to develop new
proof techniques for the (in)security of encryption schemes under additional oracles.

It also suggests that standard encryption schemes such as the OAEP and FO-based
ones do not always require the standard security of hash functions for the random oracle.
We believe that our results do not only give an example of the first application of the
WROMs to encryption schemes, but they are also of independent interest. As far as we
know, our results give the first evidence that the OAEP encryption scheme can be used
in a practical application even without the first-preimage resistance property, i.e., the
one-wayness property. In other words, the OAEP remains secure even if we remove
the first-preimage resistance property. This can also be said on FO-based encryption
schemes on the second-preimage resistance property.

On the security of the OAEP, Kiltz and Pietrzak recently showed that there is no
construction for padding-based encryption schemes including the OAEP that has a
black-box reduction from ideal trapdoor permutations téN3-CCA2 security in [21].
However, they wrote in the paper that the security proof inrRB# can be still a valid
argument in practice. We believe so is our security proof intfOMs.

For the security proof, we explicitly show how to sample approximately in poly-
nomial time from binomial distributions with exponentially large parameters, that is, a
polynomial-time sampling algorithm whose output distribution is statistically close to
the binomial distribution. For this algorithm, we arrange and combine sampling algo-
rithms that run over real numbers proposed in the field of statistics [22—-25], and give a
precise analysis for discretization.

It should be noted that on the security proofs of the digital signature schemes in the
WROMs [18], Numayama et al. assumed such fiicient sampling algorithm and thus
gave no explicit construction. They left the construction of the sampling algorithm as
an open problem. By the sampling algorithm we explicitly show, it is no longer neces-
sary to assume the sampling algorithm in their security proofs of the digital signature
schemes [18] as well as those of the public-key encryption scheme in this paper.

The sampling algorithm shown in this paper is adapted for cryptographic use since
the statistical closeness to the original distribution is measured by the total variation
distance, which is standard in cryptography but not usually required in statistics. The
sampling algorithm is useful for other cryptographic tasks as in Numayama et al.’s and
this paper.

Comparisons with other modelsAs mentioned above, a few models that weaken the
power of the random oracle were already proposed such as the non-programmable
model [12] and the oracle-dependent auxiliary input model [13].

The non-programmable model is not simply comparable WROMs since the
programmability does not imply the collision resistance and vice versa. The target of
the oracle-dependent auxiliary input model partially overlaps that oMROMSs.



For a simple comparison, we now focus on the security of the OAEP in both mod-
els. Unruh showed a similar result as ours for the OAEP encryption scheme [13]. He
proposed a random oracle model where oracle-dependent auxiliary inputs are allowed.
In his setting, the adversary of some cryptographic protocol obtains an auxiliary input
that contains the information (e.g., collisions) on the random oracle. He showed that
the OAEP encryption scheme [14] is still secure in the random oracle model even in his
model. This result indicates an important fact that the security of the OAEP encryption
scheme does not depend on the collision resistance property since the oracle-dependent
auxiliary input can contain a fliciently long list of collisions.

Our results also present the security of the OAEP in a weak version of the ran-
dom oracle. However, there are at least twifedences between Unruh’s result and
ours. First, the random oracle model with the oracle-dependent auxiliary input does not
completely capture thadaptivesecurity of hash functions, and this model still has the
second-preimage resistance and the first-preimage resistance properties. Hence, only by
his result, we cannot say whether these two properties are necessary or not in order to
prove the security of the OAEP encryption scheme. In contrast to Unruh’s result, our
result clearly shows that the two adaptive securities of hash functions such as the first-
preimage resistance and the second-preimage resistance are not necessary to prove the
security of the OAEP encryption scheme.

Second, Unruh constructed the reduction algorithm which breaks the partial-domain
one-wayness of the underlying trapdoor permutation using the adversary which breaks
the IND-CCA2 security of the OAEP encryption scheme. The running time of the re-
duction algorithm is not bounded by any polynomial. Therefore, he use the security
amplification technique for the partial-domain one-wayness. By using this technique,
he can avoid employing a stronger assumption that even quasi-polynomial time adver-
sary cannot break the partial-domain one-wayness, and can prove the security under the
standard partial-domain one-wayness against polynomial-time adversary.

In contrast to Unruh’s result, we construct the polynomial-time reduction algorithm
using the adversary, and hence we do not require the security amplification technique
for the partial-domain one-wayness, which can be considered as a simplification of
Unruh’s proof.

Organization: In Section 2, we describe the details of IWRROMs and their properties.

We also discuss the simulation methods that are applicable to these models. In Section 3,
after reviewing the encryption schemes we consider, we show their (in)security in the
WROMSs. Many technical details will be omitted from this extended abstract. We will
describe them in the full version [26].

Notation: Before starting technical parts of this paper, we introduce our notation used
in the rest of the paper. For a talife= {(x,y)}, we defineT(y) = {(X,y) e T |y =V}
For a distributionD, x <« D denotes thak is sampled according tB. The function
D(x) stands for the probability function of the distributitn

Let s « S denote thas is sampled from the uniform distribution over a finite set
S. #S denotes the number of elementsSnFor a probabilistic Turing machiné@ and
its inputx, let A(X) denote the output distribution ¢ on inputx.



We usually denote blga security parameter of a cryptographic scheme in this paper.
We also denote bl length of plaintexts unless it is specifidd.is implicitly assumed
to be polynomially related to the security paramektethat is,k’ = k?@. We say a
function f (k) is negligible ink if f(k) < 279X _For two distributiondd; andD, over
a finte setS, we denote the statistical distance (the total variation distance) between
them by4(D4, D,), defined by% > ses |D1(s) — D2(9)|. We say two distribution®; and
D, are statistically close ifi(D1, D,) < 2-<(09K)

2 The Weakened Random Oracle Models

In this section, we first review the definitions of ti¢ROMs. Next, we present an
important property called/eak uniformityof the WROMs, which is useful for security
proofs of encryption schemes. We also discuss the simulation methods of [18] used for
the security proofs in th&/ROMSs.

2.1 Definitions of the Weakened Random Oracle Models

To give formal definitions of th&VROMs, we define some notation. L¥tandY be
finite sets. LeH be a hash function chosen randomly from all of the functions flom
to Y. We denote byl'y the table{(x, H(X)) | x € X}. We identify the hash functiohl
with the tableTy.

We next define the random oracle and the additional oracles associateHl with
X — Y as follows. (For more details, see [18].)

Random oracleRO": Givenx, returny such thatx,y) € Th.

Collision oracle CO™: On the query, first pick one entry.(y) € Ty uniformly at ran-
dom. If there is no other entrk( y) € Ty, then answerL. Otherwise, pick one
entry (X', y) € Ty satisfyingx # X’ uniformly at random and answex, (x’).

Second-preimage oracleSPO": Given (x,y), if (x,y) ¢ Ty answerdL. If there is no
other entry ¥',y) € Ty, then answetL. Otherwise, pick one entryx(,y) € Ty
satisfyingx # X’ uniformly at random and answeat.

First-preimage oracle7PO™: Giveny, if there is any entryX,y) € Ty then return
such arx uniformly at random. Otherwise retum

Remark 1.We usually identify the random oracle and the underlying hash function.
However, in this paper as in [18], we explicitly distinguish them by regarding the ran-
dom oracle as an interface to the underlying hash function. This setting helps us to make
the WROMSs with an additional oracle well-defined.

The formal definitions of th&/ROMSs are given as follows. TH&ROMs consist of
three components, a hash functiochosen randomly from all of the functions from
XtoY, the random oracle, and the additional oracle associatedwithe models are
called theCT-ROM, SPT-ROM, andFPT-ROM, if the additional oracle is the collision,
second-preimage, and first-preimage oracle, respectively.



Remark 2.The collision oracle may output even if there exists a collision(x)

in the table. This stems from the simulation method of Numayama et al. [18], and
causes no serious problems. Note that the collision oracle outpuiish probability

(1 - 1/#Y)™1, In the case whereX#> #Y, we can find a collision with polynomially
many queries since since @1/#Y)™1 < exp#X — 1)/#Y). In the case where

#Y = KOD . #X, we can again find a collision with polynomially many queries—(1
1/#Y)>1 < 1-1/k°D, Finally, in the case wherev#= k*@ . #X, the following lemma
shows that there are no collisions with overwhelming probability.

Lemmal. LetH: X — Y be the hash function, ang the number of preimages of y
under the function H, that is,yn= #T(y). LetBAD denote the event that there is some
y such that p > L. Then for all sificiently large Y, we havBry[BAD] < 1, where

(#WZ)
_ 5In#Y #X i _ Sin#y )
L= Py s T #X > #Y, or L= 205 otherwise.

The proof is obtained by the standard argument on the balls and bins game by regarding
XandyY as sets of balls and bins, respectively. For the details on the game, see a standard
textbook (e.g., [27]).

2.2 Difference from the Random Oracle Model

We observe an importantfirence between tHROM andWROMs by considering the
ROM andFPT-ROM. In the both models, the functidt, i.e., the tablély is uniformly
distributed.

In theROM, if one queries somethat has never been queried to the random oracle,
the value ofH(x) is uniformly distributed regardless of the past queries. That is, the
knowledge of the past queries does nideet the entries not queried in the table. This
property of theROM is calleduniformity. In contrast to the situation in tHROM, when
it comes to thePT-ROM, this property is not attained. Recall that the first-preimage
oracleuniformly returns one of the preimages, sayof queried valugy. If the first-
preimage oracle leaks a number of preimageg, tiie value ofH(x) is not uniformly
distributed for arx not queried yet.

In order to observe this situation, let us consider the following extreme case. Let
y* = H(x*) for somex* € X and suppose thgt has the unique preimagé. Then the
first-preimage oracle always returns the safnen the inputy*, which convinces us that
the number of the preimages yfis exactly 1. This implies that the othgr+ x* does
not take a valug* underH. Therefore, the random oracle no longer has the uniformity
in the FPT-ROM. This is a critical diference between tHeROM andFPT-ROM since
we often make use of the uniformity in the security proofs of the public-key encryption
schemes.

We prove the following lemma to overcome this barrier int#iROMs, which states
that theWROMs still has weak uniformity instead of the uniformity. The weak unifor-
mity is still useful for the security proofs of the public-key encryption schemes in the
WROMS.

Lemma 2 (Weak Uniformity). In the WROMSs, the output distribution of the random
oracle is statistically close to the uniform distribution. More formally, it is stated as



follows. Let H: X — Y be the hash function in thyROMs. LetA be a probabilistic
oracle Turing machine that makes at most q queries to the random oR&@feand
the additional oracleO", whereO" represents one of the additional oracle®",
SPo, andFPo". Va.1(X) denotes the random variable that represents the hash value
ROM(x), where x— AR and the correspondende, H(x)) € Ty is not answered
by the two oracles.

Then, for anyA, the following holds:

& (5a+ 1+ 5% + 200980 ) if x> #Y,

A(Van(x), Uy) <

A (5a+ 1+ 5 + 20080 ) ifax <.
Here, the probability is taken over random choices of the hash function H and the
random coin ofA.

2.3 Simulation Methods

In almost all the security proofs in thROM, the reduction algorithms simulate the
random oracles. When it comes to the security proofs inROMs, the reduction
algorithms have to simulate both the random and the additional oracle, which makes
differences of the simulation methods in iNROMSs from those in th&@OM.

Numayama et al.’s method€lumayama et al. proposed the simulation methods for
WROMSs, but they required an unproven assumption.Bg$ denote the binomial dis-
tribution with parametersl and p whose probability function i8y(x) = () PX(1 -
p)N~* for x = 0,..., N, where the parametef¢ and p take values approximatelyX#
and J/#Y for a hash functioH : X — Y, say, (N, p) = (2128 2-128). Their simulation
methods required theficient sampler foBy, , with exponentially largéN and smallp,

and they assumed its existence.

Assumption 1. There is a probabilistic Turing machiri®y such that the output distri-
butionBn(N, p) oninputs N and p is equal to the binomial distributiog Band it runs
in polynomial time ilog N andlog p~%, where N is a positive integer afid< p < 1is
a rational number.

Under this assumption, they constructed the simulation algoritR@sCO, SPO, and
FPO, for the security proofs in th®/ROMs as given in the following proposition.
See [18] for the details of the algorithms.

Proposition 1 (Simulation Method [18]). We can perfectly simulate the random or-
acle, the collision oracle, second-preimage oracle, and first-preimage oracle in the
WROMs under Assumption 1. That is, the output distributions of the random oracle,
collision oracle, second-preimage oracle, and first-preimage oracle intROMs are
identical to the output distributions of the algorithiR®, CO, SPO, andFPO, under
Assumption 1.



Removing the assumptiorfzor the security proof in the&ROMs of digital signature
schemes in [18] and encryption schemes in this paper, iffic&nt to utilize a weaker
sampling algorithm that generates a distributimt equal but statistically clos® the
binomial distributionBy . Then, their security proofs can work by just adding negligi-
bly small errors induced by the statistical distance in their analyses.

There are quite many papers (e.g., [25]) on thiient sampling methods from the
binomial distribution in the field of statistics. However, their basic computation model is
totally different from the model in the cryptography. As far as the authors’ knowledge,
all these results are based on the computation model that directly manipakltesm-
bers without errors. If we translate them to those in the bit computation model used in
the cryptography, we have to bound the statistical distance between the real distribution
and the output distribution generated by the sampling algorithms in the bit computation
model rather than the real-number one. Numayama et al. mentioned that they could
neither find precise analyses of the statistical distance, nor construct the sampling algo-
rithms by themselves in [18]. Therefore, they had to put the above assumption.

In fact, there is anféicient sampling algorithm appropriate for our purpose in the
real-number computation model [25]. We modify the algorithm and rigorously analyze
the error bound in the bit computation model. We can finally obtain the following the-
orem on the sampling algorithm.

Theorem 1. There is a probabilistic Turing machirgy such that, for the output dis-
tribution By(N, p, €) on inputs Np ande, the statistical distance betwe®g (N, p, €)
and By is at most and it runs in polynomial time itog N, log p~ andlog e~*, where
N is a positive integer an@ < p < 1,0 < € < 1 are rational numbers.

Note that the algorithm can control the error parameteFhis property is useful in
cryptographic applications for the security proofs even if the other paraniétns p
are not stficiently large. We will put the details of the algorithm and its analysis in the
full version.

As a result, we can remove the above assumption and obtain the following theorem.

Theorem 2 (Simulation Method without Assumption 1). We can statistically simu-
late the random oracle, collision oracle, second-preimage oracle, and first-preimage
oracle in theWROMSs. That is, the output distributions of the oracles in YWWROMs

are statistically close to the output distributions of the algoritiR@, CO, SPO, and

FPO, respectively.

3 The Encryption Schemes and Their Security in the Weakened
Random Oracle Models

In this section, we examine the security in tWROMs of the public-key encryption
schemes. We particularly discuss separations for notioROd, CT-ROM, SPT-ROM,
andFPT-ROM by showing (in)security of public-key encryption schemes obtained by
the Fujisaki-Okamoto conversion (FO) and its two variants (dFO and wFO), and OAEP.



Public-key encryption scheme$Ve first give notation and notions for public-key en-
cryption schemes briefly. For details, see standard textbooks, e.g., [28].

A public-key encryption schen@KE& = (Gen, Enc, Dec) over a plaintext spac#1
and a random coin spadeis defined by the following three algorithms. Letlenote
the security parameter.

Key Generation: On input X, the key generation algorith@en(1¥) produces a pub-
lic/secret key pairgk, sk).

Encryption: Given a public keypk, a plaintextm € M, and a random string € R,
the encryption algorithnEncp(m; r) outputs a ciphertext corresponding to the
plaintextm.

Decryption: Given a secret kegk and ciphertext, the decryption algorithrdecg(c)
outputs the plaintextn € M or the special symbal ¢ M corresponding to the
ciphertextc.

We require the perfect completeness, that is, for evekysk) generated byzen(1%),
every plaintextm € M, and every random string € R, it should be satisfied that
Decsk(Ency(m;r)) = m.

We only consider three standard security notions for public-key encryption schemes,
the one-wayness against chosen-plaintext att@-CPA), the indistinguishability
against chosen-plaintext attadilD-CPA), and the indistinguishability against adap-
tive chosen-ciphertext attackD-CCA?2).

Fory = y(k), we sayPKE is y-uniform if for any key pair pk, sk) generated by
Gen(1), anym € M, andc € {0,1}*, we have Rt g[c = Enc(m;r)] < y. There
exists aOW-CPA public-key encryption scheme witiruniformity (e.g., the EIGamal
encryption scheme).

Brief review forFO: Fujisaki and Okamoto proposed a conversion, called the Fujisaki-
Okamoto (FO) conversion, to obtain highly secure public-key encryption schemes in
the ROM [20]. Since the standard one-time pad satisfies the requirement of the FO
conversion, we fix the one-time pad as the symmetric-key encryption scheme used in
the FO conversion for simplicity.

Let PKE be aOW-CPA secure ang-uniform public-key encryption scheme over
a plaintext spacé and a randomness spakeThen the FO conversion convefR(E
to anIND-CCA2 secure onePKE = FOPKE) over a plaintext spacat’ = {0, 1)¥
and a randomness spaRé = M, wherek’ denotes the length of plaintexts, which is
polynomially related to the security paramekteThe encryption procedure K&’ is
given as follows: For a plaintexh € M’ = {0,1}¥ and a random stringe R’ = M,
the ciphertext is

(€1, C2) = (Encpi(r; H(m. 1), G(r) & m),

whereH : {0,1} x M — R andG : M — {0,1}¥ are hash functions modeled as the
random oracles. The decryption procedure is given as follows: For a given ciphertext
(c1, ¢2), decryptc; by sk and obtainr. Then, extractm by ¢, @ G(r) and verifyc; =
Encpk(r; H(m, r)). If not outputL. Roughly speakindd(m, r) ensures that if a ciphertext

(c1, ¢p) is valid then the encryptor producing (c,) knows correspondinm andr.
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3.1 The First Variant dFO

We introduce the first artificial variant dFO and show that dFO is secure iR@,
but not secure in general in ti@T-ROM.

The variant dFO converts a public-key encryption sch@%&E (with the one-time
pad) to another public-key encryption schef& & = dFOPKE) similarly to FO.
The encryption procedure ¢*K&' is defined as follows. For a plaintert € M’ =
{0, 1} and a random stringe R’ = M, the ciphertext ofPKE' is

(€1, ©2) = (Encp(r; H(F(m), 1)), G(r) & m),

whereF : {0,1) - £,G: M — {0,1)¥, andH : P x M — R, for an appropriate set
P, are hash functions modeled as the random oracle.

The idea to weaken the conversion is summarized as follows: Recalil {hat) in
the FO conversion can be considered as encryptor’s signature (or a proof of knowledge)
onmandr. To make it vulnerable by a collision, we introduce a new random ofacle
and replacéd(m, r) with H(F(m), r). The replacement does not harm the security in the
rangom oracle model, while it can be exploited by the presence of the collision oracle
co".

Formally, we have following theorems on the (in)security. We omit the proof of
Theorem 3, which is similar to the original one.

Theorem 3. Assume thaPKE is a OW-CPA secure and-uniform public-key encryp-
tion scheme for some negligibje Then,PKE" = dFOPKE) is IND-CCA2 secure in
the ROM if #pP = 2¢(1ogk),

Theorem 4. Let PKE be a public-key encryption scheme#f® < 2 thenPKE' =
dFO(PKE) is notIND-CCA2 secure in theCT-ROM.

Proof. We construct the adversamgt = (A1, Ay) that breaks théND-CCA2 security
of PKE’, which exploits the collision oracleO™ of F.

The adversaryA;, on inputpk, first queries tacO". If the answer isL, then the
adversary flips a random fair cob, outputsh’, and halts. Otherwise, it obtains a col-
lision (my, mp) of F and outputs it as a challenge. The advers@syreceives the target
ciphertext €;,¢5) = (Encp(r; H(F(my),r)), G(r) @ my) for somer € R'. It queries
(¢}, c;) = (c}, c; & mp & my) to the decryption oracle and obtaims_, since

¢, = Ency(r; H(F(mp). 1)) = Encp(r; H(F(my). 1)),
=G emedmem = G(r) ® m_.

Hence, the adversary can answée b correctly.

Finally, we upper-bound the probability that the collision oracle outpyte/hich
stems from the definition of the collision oracle. The probability is bounded by (1
1/#P)% -1 < exp((2¥ - 1)/#P) < 1/ v&. This completes the proof. |
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3.2 The Second Variant wFO

We next introduce the second artificial variant wFO and show that the obtained scheme
by wFO is secure in th€T-ROM, however not generally secure in tSET-ROM.
The encryption procedure FKE = wFOPKE) is given as follows. For a plain-
textme M’ = {0, 1}¥ and random strings,(s) € R = M x S, the ciphertext ofPKE’
is
(C1, €2, €3) = (Encp(r; H(F(M, 5), 1)), G(r) @ m, s),

whereF : {0, 1}k xS - P,G : M — {0, 1)K, andH : £ x M — R are hash functions
modeled as the random oracles.

Notice that H(F(m, s),r), s) is a proof of knowledge onnf,r, s) which resists a
collision onF however is vulnerable by a second-preimage attack aggiastin Nu-
mayama et al. [18].

We can show that the obtained scheméNB-CCA2 secure in theCT-ROM by
using Lemma 2.

Theorem 5. Suppose tha®K & is aOW-CPA secure and-uniform public-key encryp-
tion scheme for some negligibje Then PKE" = wFOPKE) is IND-CCA2 secure in
the CT-ROM if #P~1 and#S~* are negligible in k.

However, its security is broken under the presence of the second-preimage oré&cle for

Theorem 6. Let PKE be a public-key encryption. #P < 2¢ . #S, then the scheme
PKE = wFOPKE) is notIND-CCA2 secure in theSPT-ROM.

Proof. We construct the adversatfl = (A, A) that exploits the second-preimage
oracleSPO" associated t&. The adversaryA; chooses random distinct plaintextg
andm, and queries them to the challenger. The challenger responses

(€1, &2, €3) = (Encp(r; H(F(my, 9),1)), G(r) ® M, ).

Receiving €, C;, C3), the adversaryA, queries (n, S) to the second-preimage oracle
SPOF. Ifit receivesL from the second-preimage oracle, then it flips a random fair coin
b’, outputsb’, and halts. Otherwise, it obtaing( s’) # (my, s) such thatF(mp, s) =
F(m,s). So, the adversary queries

(¢, €5 C) = (Cl.c;®@ Mo, )

to the decryption oracle. Notice that, &;( c;, c3) is the valid ciphertext ofny, then we
have

¢, = Encpi(r; H(F(mo, 5).1)) = Enc(r; H(F (Y, §), 1)),
c,=Grememen =G(r)em,
=5,

and €;,c;, c;) is a valid ciphertext fonv. On the other hand, if the ciphertext is the
encryption ofmy, we have

(€}, 5. ¢3) = (Ency(r; H(F(my, 9),1)),G(r) @ my@ mp & nt, S).

12



Thus, if f = F(my, s) is equal toF(my & my & nY, §) the decryption oracle returns
my. @ My @ MY (¢ nv). Otherwise, the decryption oracle returns

Thus, if the answer g7, then the adversary concludes thgt €, ;) is the cipher-
text of mp, that is, it outputdy’ = 0. Otherwise, the adversary concludes that it is the
ciphertext ofmy, that is, it output®’ = 1. Therefore,A can output the correct answer
unlessA receivesL from the second-preimage oracle.

We finally bound the probability that the oracle outputslt is bounded by (+
1/#P)2 #S-1 < exp((2X - #S — 1)/#P) < 1/ e as required. This completes the proof.

O

3.3 The Original Fujisaki-Okamoto Conversion

We next show that the obtained scheme by the conversion FO with the one-time pad is
secure in th&PT-ROM, but not secure in thEPT-ROM in some parameter setting.

LetG : M — {0,1)¥ andH : {0,1) x M — R be hash functions modeled
as the random oracles. Recall the encryption proceduf6f’ = FOPKE). For
a plaintextm e M’ = {0,1})X and a random string € R' = M, the ciphertext is
(Encpi(r; H(m, 1)), G(r) & m).

Modifying the existing proofs, we can show the scheme is secure iBRIeROM
using Lemma 2.

Theorem 7. Suppose thaPK'&E is OW-CPA secure and/-uniform for some negligible
v. ThenPKE = FOPKE) is IND-CCA2 secure in theSPT-ROM.

However, the presence of the first-preimage oracléfeiolates thelND-CPA se-
curity of PKE’ in some parameter settings. Note thahifs O, the second component
of the ciphertext i€5(r), which is vulnerable the first-preimage oracle®f

Theorem 8. Let C = #M/2¥. Assume that G k°®. ThenPKE = FOPKE) is not
IND-CPA secure in th&=PT-ROM.

Proof. We prove the theorem by constructing the adverséry (A, A,) which ex-
ploits the first-preimage oracle &, FP0°. The adversaryA;, on inputpk, queries
mp = 0¥ andm; = 1¥ to the challenger. The adversaf, on input the target cipher-
text (cj, ¢;), queriesc; to the first-preimage oracle @. If it obtainsr’, it checks that
c1 = Ency(f; H(OX, T)). If the check passes, the adversary outputs 0. Otherwise, it
flips a random fair coir’, outputsh’, and halts.

It is obvious that ifb = 0 andr™ = r, the adversary answers correctly, that is, it
outputsb’ = b. If b = 1, the preimage of the quey(r) ® 1 never equals to since
G(r) # G(r) ® 1¥. Hence, the adversary’s check failsit 1.

We estimate the probability that the adversary wins. By Lemma 1, with probability
at least 1- 27, there is no preimage of size larger thpwhere ifC > 1 then
L=5CK In2/(Ink +InIn2) < 4CK/Ink" and otherwisé. = 5k’ In2/(Ink’ +InIn 2) <
4k’ / In kK’ for all sufficiently largek’.
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Key Generation Encryption Decryption

Input: 1 Input: me {0, 1ok, Input: ¢, ge
1: (foko Osk) < F l:ir « {0,1}% 1: s||t « gu(C)
output: (fok, Osk) 2: s« (m]| 04) ® G(r) 2:r —toH(9
it H(or 3 M« saG(r)
4: ¢« fu(sllt) 5:1f M = m| 04 seto « m
Output:c 6: Otherwise seb « L
Output:o
Fig. 1. OAEP

Let Good denote the event that— FPO0g(G(r)). We then have PGood] > (1 -
2-%)/L. Hence, we obtain that

Prb” =b] = Pr[b" = 0| b = 0 A Good] Pr[b = 0 A Good]
+ Pr[b" =0| b= 0A -Good] Pr[b = 0 A =Good]
+Prl =1|b=1]Prlb=1]
1
2

11
- Pr[Good] + 55 (1 - Pr[Good]) +

NI =
NI

=1.
1 — X
aL

1 1 1
5+2 Pr[Good] > 5%

and 4 is a polynomial in the security parameterThis completes the proof. O

As shown above, the FO conversion is not secure irFfie-ROM, but there is a
way to modify it so as to maintain the security in #l@T-ROM. Naito, Wang, and Ohta
proposed the conversion method that converts a cryptosystem secur&@hio that
secure even in thEPT-ROM [29]. In the case of the FO conversion, the public key is
(pk, ©), wherec « {0, 1}, and the ciphertext is

(€1, ¢2) = (Encp(r; H(c,m. 1)), G(c,r) ® m),

where the domains dfi andG are modified. Intuitively, this change makes the first-
preimage oraclessPO" andFP0°, useless.

3.4 OAEP

We finally focus on the OAEP and presentiN®-CCA2 security in theFPT-ROM. For

the security parametds let kg andk; be functions irk, whereky < k — k. Let F be a
family of partial-domain one-way trapdoor permutations of a dorf@im}<—* x {0, 1}%.

(See [30] for the definition of the partial-domain one-wayness.) Furthermof@ detl

H be hash functions such th@t: {0,1}* — {0,1}*% andH : {0, 1}k — {0, 1}k,
Then, the OAEP encryption scheme basedraa described in Fig. 1.

We obtain the following theorem that states the security of the OAEP encryption

scheme in th&PT-ROM.

14



Theorem 9. Let F be a family of partial-domain one-way trapdoor permutations. Then,
the OAEP encryption scheme based on INiB-CCA2 secure in th&PT-ROM.

We here only give the sketch of the security proof.

Proof (Sketch)As in the proof of Fujisaki et al. [30], we prove the security by defining
a sequence of games and bounding the advantages of the adversary among the games.
The games are the almost same as the original ones in [30]. However, we need to pay
attention to the following two points. First, as mentioned, we no longer have the unifor-
mity of theROM because of the first-preimage oracle. Second, the adversary can make
use of the first-preimage oracle. These points make the security préodsldi

In order to observe the filerence between the security proofs in BRI-ROM and
ROM, let us consider the following two games. We will describe the sequence of the
games in the full version.

— Game;: The challenger generates a pair of kefg,(0s«) by using the key-generation
algorithm. It next produces” « {0, 1}% and obtaing* « ROg(r*). In generation
of the target ciphertext, the challenger generates the random strifithe target
ciphertexty* is generated as follows:

rer, s — (M|l 0%) e g, t* « " @ ROK(s),
X (8,1), Y fo(X).

The ciphertexy* is given toA. Finally, the adversaryA outputs a bit’.
— Game,: We modify the above game, by changing the rule for generatigh.afhat
is, g is not obtained by the query of the random oracle, but obtained by choosing
from {0, 1}"% uniformly at random. Notice that{, g*) is not contained in the table
Te.

Let AskG be the event that* is queried toROg. The original proof in the(ROM
showed that, if the value' is not queried t&ROg, theGame; andGame; are identical.

On the other hand, in our case in tABT-ROM, even if the evenAskG does not
occur, that is, the valug" is not queried, we cannot say thaame; andGame; are
identical. Notice that the adversary would distinguish the games by quegyirg
FPOg, which leads to a contradiction to the partial-domain one-wayness in the final
game. The valug™ must have the preimagée in Game; since (*,g*) is contained
in the tableTs. In contrast, the valug™ has no preimages iBame, with high proba-
bility if k — kg is much larger thalkg since ¢*, g") is not inserted in the tabl&; and
1 « FPOg(g*) with high probability. We must take care of this evéskG~. Addi-
tionally, it would distinguish betweeBame; andGame; by querying (n_||0¢)@s* to
FPOg, which also leads to contradiction to the partial-domain one-wayness in the final
game. This event is denoted BgkG°. Notice that, conditioned on the above events,
AskG, AskG™, andAskG®, do not occurg* is almost perfectly uniform itcame; by
Lemma 2. Hence, we can show two ganBssne; andGame; are statistically close if
the events do not occur.

By carefully applying similar arguments, we can show tkB-CCA2 security for
the OAEP encryption scheme RPT-ROM. O
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4 Future Work

It should be noted that oWWROM s are based on a simplified variant, which Numayama
et al. [18] and Pasini and Vaudenay [17] also adopted, of the orighROMs of
Liskov [15].

The original WROMSs consists of the ideal compression functton {0, 1} —
{0, 1}% of fixed input lengttand the first-preimage oracle. Then, he discussed the secu-
rity of the flexible input-lengtthash functiondH" : {0,1}* — {0, 1}* employingh as
the component in the context of iftérentiability [31]. A random oracléi is often
instantiated by employing a compression(See, e.g., the survey in [8, Section 2].)
Therefore, his work reflects the attacks against the compression function of MD5 and
SHA-1 rather than the constructidh

On the contrary, we (and similarly [18, 17]) discussedrttanolithicrandom oracle
H and the additional oracles associated withHence, our model has a gap from such
a realistic instantiation of the random oracle in some sense. We leave filling this gap as
future work.

Except for the FO conversion, there are several conversion methods ROte
such as REACT [32] and GEM [33]. It would also be interesting as future work to
examine the security of these conversion methods iWR©MSs.
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