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Abstract. In functional encryption (FE) schemes, ciphertexts and pri-
vate keys are associated with attributes and decryption is possible when-
ever key and ciphertext attributes are suitably related. It is known that
expressive realizations can be obtained from a simple FE flavor called
inner product encryption (IPE), where decryption is allowed whenever
ciphertext and key attributes form orthogonal vectors. In this paper, we
construct (non-anonymous) IPE systems with constant-size ciphertexts
for the zero and non-zero evaluations of inner products. These schemes
respectively imply an adaptively secure identity-based broadcast encryp-
tion scheme and an identity-based revocation mechanism that both fea-
ture short ciphertexts and rely on simple assumptions in prime order
groups. We also introduce the notion of negated spatial encryption, which
subsumes non-zero-mode IPE and can be seen as the revocation analogue
of the spatial encryption primitive of Boneh and Hamburg.
Keywords. Functional encryption, identity-based broadcast encryption,
revocation, efficiency.

1 Introduction

Ordinary encryption schemes usually provide coarse-grained access control since,
given a ciphertext, only the holder of the private key can obtain the plaintext. In
many applications such as distributed file systems, the need for fine-grained and
more complex access control policies frequently arises. To address these concerns,
several kinds of functional public key encryption schemes have been studied.
Functional encryption can be seen as a generalization of identity-based en-
cryption (IBE) [24, 8]. In IBE schemes, the receiver’s ability to decrypt is merely
contingent on his knowledge of a private key associated with an identity that
matches a string chosen by the sender. In contrast, functional encryption (FE)
systems make it possible to decrypt using a private key sk, corresponding to a
set x of atomic elements, called attributes, that is suitably related — according to
some well-defined relation R — to another attribute set y specified by the sender.
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The goal of this paper is to describe new (pairing-based) functional encryp-
tion constructions providing short ciphertexts (ideally, their length should not
depend on the size of attribute sets) while providing security against adaptive
adversaries or supporting negation (e.g. decryption should be disallowed to hold-
ers of private keys sk, for which R(x,y) =1).

RELATED WORK. The first flavor of functional encryption traces back to the
work of Sahai and Waters [22] that was subsequently extended in [16, 21]. Their
concept, called attribute-based encryption (ABE), allows a sender to encrypt data
under a set of attributes w while an authority generates private keys for access
control policies 7. Decryption rights are granted to anyone holding a private key
for a policy T such that 7 (w) = 1. Identity-based broadcast encryption (IBBE)
(2,23,13,9] and revocation (IBR) [19] schemes can also be thought of as func-
tional encryption systems where ciphertexts are encrypted for a set of identities
S ={IDy,...,ID,}: in IBBE (resp. IBR) systems, decryption requires to hold a
private key skip for which ID € S (resp. ID ¢ S).

The above kinds of functional encryption systems are only payload hiding in
that they keep encrypted messages back from unauthorized parties but cipher-
texts do not hide their underlying attribute set. Predicate encryption schemes
[10, 18, 26, 25] additionally provide anonymity as ciphertexts also conceal the at-
tribute set they are associated with, which enables [7,1] efficient searches over
encrypted data. In [18], Katz, Sahai and Waters devised a predicate encryption
scheme for inner products: a ciphertext encrypted for the attribute vector Y can
be opened by any key sk ¢ such that XY =0. As shown in [18], inner product
encryption (IPE) suffices to give functional encryption for a number of relations
corresponding to the evaluation of polynomials or CNF/DNF formulae.

OUR CONTRIBUTIONS. While quite useful, the IPE scheme of [18] strives to
anonymize ciphertexts, which makes it difficult to break through the linear com-
plexity barrier (in the vector length n) in terms of ciphertext size. It indeed seems
very hard to avoid such a dependency as long as anonymity is required: for in-
stance, anonymous FE constructions [10,17] suffer from the same overhead. A
similar problem appears in the context of broadcast encryption, where the only
known scheme [3] that conceals the receiver set also has O(n)-size ciphertexts.
This paper focuses on applications of IPE schemes, such as identity-based
broadcast encryption and revocation systems, where the anonymity property is
not fundamental. Assuming public ciphertext attributes rather than anonymity
may be useful in other contexts. For instance, suppose that a number of cipher-
texts are stored with varying attributes y on a server and we want to decrypt
only those for which R(x,y) = 1. Anonymous ciphertexts require to decrypt all
of them whereas public attributes y make it possible to test whether R(zx,y)
(which is usually faster than decrypting) and only decrypt appropriate ones.
At the expense of sacrificing anonymity, we thus describe IPE schemes where
the ciphertext overhead reduces to O(1) as long as the description of the cipher-
text attribute vector is not considered as being part of the ciphertext, which is
a common assumption in the broadcast encryption/revocation applications. In
addition, the number of pairing evaluations to decrypt is also constant, which



significantly improves upon O(n), since pairings calculations still remain costly.

Our first IPE system achieves adaptive security, as opposed to the selective
model, used in [18], where the adversary has to choose the target ciphertext vec-
tor Y upfront. To acquire adaptive security, we basically utilize the method used
in the Waters’ fully secure IBE [27], albeit we also have to introduce a new trick
called “n-equation technique” so as to deal with the richer structure of IPE. Our
system directly yields the first adaptively secure identity-based broadcast en-
cryption scheme with constant-size ciphertexts in the standard model. Previous
IBBE with O(1)-size ciphertexts were either only selective-1D secure [2, 13,9, 23]
or in the random oracle model [15]. Among IBBE systems featuring compact
ciphertexts (including selective-ID secure ones), ours is also the first one relying
on simple assumptions (i.e., no g-type assumption) in prime order groups.

It is worth mentioning that techniques developed by Lewko and Waters [20]
can be applied to the construction of Boneh and Hamburg [9] to give fully se-
cure IBBE with short ciphertexts in composite order groups. However, it was
not previously known how to obtain such a scheme in prime order groups (at
least without relying on the absence of computable isomorphism in asymmet-
ric pairing configurations). Indeed, despite recent progress [14], there is still no
black-box way to translate pairing-based cryptosystems from composite to prime
order groups. In particular, Freeman’s framework [14] does not apply to [20].

Our second contribution is an IPE system for non-zero inner products: ci-
phertexts encrypted for vector Y can only be decrypted using sk g if XY #0,
which — without retaining anonymity — solves a question left open by Katz,
Sahai and Waters [18][Section 5.4]. The scheme implies the first identity-based
revocation (IBR) mechanism [19] with O(1)-size ciphertexts. Like the schemes of
Lewko, Sahai and Waters [19], its security is analyzed in a non-adaptive model
where the adversary has to choose which users to corrupt at the outset of the
game?. In comparison with [19] where ciphertexts grow linearly with the num-
ber of revoked users and public/private keys have constant size, our basic IBR
construction performs in the dual way since key sizes depend on the maximal
number of revoked users. Depending on the application, one may prefer one
scheme over the other one. We actually show how to generalize both implemen-
tations and obtain a tradeoff between ciphertext and key sizes (and without
assuming a maximal number of revoked users): the second scheme of [19] and
ours can be seen as lying at opposite extremities of the spectrum.

On a theoretical side, our non-zero IPE realization turns out to be a par-
ticular case of a more general primitive, that we call negated spatial encryption,
which we define as a negated mode for the spatial encryption primitive of Boneh
and Hamburg [9]. Namely, keys correspond to subspaces and can decrypt ci-
phertexts encrypted under points that lie outside the subspace. This generalized
primitive turns out to be non-trivial to implement and we had to use a fully

3 We indeed work in a slightly stronger model, called co-selective-ID, where the adver-
sary chooses which parties to corrupt at the beginning — before seeing the public key
— but is not required to announce the target revoked set until the challenge phase.



generalized form of our new “n-equation” technique. The proposed scheme is
proven secure under a non-standard assumption defined in [19].

OUR TECHNIQUES. The core technique of our non-zero IPE scheme will be used
throughout the paper, including in our adaptively secure zero IPE scheme. This
can be viewed analogously to fact that Waters’ fully secure IBE [27] uses the
revocation technique of [19]. Our non-zero IPE also builds on [19]. However, the
fact that non-zero IPE has much richer structure than revocation scheme and
the pursued goal of achieving constant ciphertext size together prevent us from
using their techniques directly. To describe the difficulties that arise, we first
outline the Lewko-Sahai-Waters revocation scheme in its simplified form where
security proof is not provided and where only one user is revoked.

Construction 1. (A SIMPLIFIED REVOCATION SCHEME)
» Setup: lets (G,Gyz) be bilinear groups of prime order p and picks g & G,
o, a1, ag < Z,. The public key is (g,gal,go‘%e(g,g)o‘). The master key is g.

» KeyGen: chooses t <~ Z, and outputs a private key for an identity ID € Z, as
(KO _ gt’ K, = ga+a1t, Ky, = gt(oqIDJrag))'

» Encrypt: encrypts M and specifies a revoked ID’ by choosing s < Z,, and
computing (Ey = M- e(g, 9)*, By = g8@D'+e2) ) — gs),

» Decrypt: decryption computes e( Ko, Eg)'D—llD’ e(Ey, Ko)le—llD’ = e(g, g)*1t* if
ID # ID'. Tt then computes e(g, g)** as e(K1, Ea)/e(g, 9)** = e(g, g)**.

The scheme can be explained by viewing a key and a ciphertext as forming a
linear system of 2 equations in the exponent of e(g, g) with variables a;ts, asts.

M arts\ _ (ID 1\ [aats\ _ (log(e(K2, Es))
DD\ qots )~ \ID" 1) \agts) — \log(e(E1, Ko)) )
Computing e(g, g)*'** amounts to solve the system, which is possible when
det(M;p o) # 0 (and thus ID # ID', as required). In particular, decryption
computes a linear combination (in the exponent) with coefficients from the first
row of MIB}lD, which is (5357, 5—157)- In [19], this is called “2-equation tech-
nique”. The scheme is extended to n-dimension, i.e., the revocation of n users
{ID},...,ID.,}, by utilizing n local independent systems of two equations

T T
M|D,|D_; (altsj, agtsj) = (log(e(Kg,Eg,j)), log(e(ELj,KO))) for j € [1,n],

that yield 2n ciphertext components (E j;, Es ;), each one of which corresponds
to a share s; of s such that s = Y | s;. The decryption at j-th system returns
e(g,g)**** if ID # ID);. Combining these results finally gives e(g, g)****.

We aim at constant-size ciphertexts for non-zero IPE schemes of dimension
n. When trying to use the 2-equation technique with n dimensions, the following
difficulties arise. First, the “decryptability” condition XY = 0 cannot be de-
composed as simply as that of the revocation scheme, which is decomposable as
the conjunction of ID # ID; for j € [1,n]. Second, the ciphertext size was O(n).



Towards solving these, we introduce a technique called “n-equation tech-
nique”. First, we utilize n secret exponents & = (aq,...,a,)" and let a; func-
tion as the “master” exponent while as, ..., a, serve as the “perturbed” factors.
Intuitively, we will set up a system of n linear equations of the form:

-
MX',?(altSa ey antS)T = (log(e(Kil7Ej1))’ sy IOg(e(Kin’ Ejn))) (1)
where {K;, } and {E;, } are elements of G defined for a key for X and a ciphertext
for Y respectively. At first, this generalized system seems to require linear-size

ciphertexts (Ej,, ..., Ej,). A trick to resolve this is to reuse ciphertext elements
throughout the system: we let E;, = Ey = ¢*° for k € [1,n — 1]. This effectively
yields a constraint My ¢ = (Q; RT)T, where Q¢ is a (n — 1) X n matrix
parameterized only by X and R is a 1 x n matrix. The remaining problem is
then to choose My ¢ in such a way that the system has a solution if X - Y # 0
(the decryptability condition). To this end, we define
_z2 q
x

_z3 1
T1

_Tp 1
x

Y Y2Ys ... Yn

where it holds that det(Myg ) = (=1)"*1X .Y /z1. By translating this concep-
tual view back into algorithms, we obtain a basic non-zero IPE scheme. From
this, we propose two schemes for non-zero IPE: the first one is a special case of
negated spatial encryption scheme in section 5.1, while the second one is proven
secure under simple assumptions and given in section 5.2.

ORGANIZATION. In the forthcoming sections, the syntax and the applications of
functional encryption are explained in sections 2 and 3. We describe our zero
mode IPE system in section 4. Our negated schemes are detailed in section 5.

2 Definitions

2.1 Syntax and Security Definition for Functional Encryption

Let R : Xy x Xe — {0,1} be a boolean function where Xy and X, denote
“key attribute” and “ciphertext attribute” spaces. A functional encryption (FE)
scheme for R consists of the following algorithms.

o Setup(1*,des) — (pk,msk): takes as input a security parameter 1* and a
scheme description des (which usually describes the dimension n), and outputs
a master public key pk and a master secret key msk.

o KeyGen(x, msk) — sky: takes as input a key attribute & € ¥\ and the master
key msk. It outputs a private decryption key skg.



o Encrypt(y, M, pk) — C: takes as input a ciphertext attribute y € X, a message
M € M, and public key pk. It outputs a ciphertext C.

o Decrypt(C,y,sksz, ) — M: given a ciphertext C' with its attribute y and the
decryption key sk, with its attribute x, it outputs a message M or 1.

We require the standard correctness of decryption, that is, for all A, all
(pk, msk) « Setup(1?), all & € X, all sk, « KeyGen(x, msk), and all y € X,

o If R(x,y) = 1, then Decrypt(Encrypt(y, M, pk), sk;) = M.
o If R(x,y) = 0, Decrypt(Encrypt(y, M, pk), sky) = L with probability nearly 1.

Terminology and Variants. We refer to any encryption primitive A that can
be casted as a functional encryption by specifying its corresponding function
RA: XA x XA — {0,1}. For a FE primitive A, we can define two variants:

o Dual Variant, denoted by Dual(A), is defined by setting ZkDual(A) = X2 and

oA YA and RA(x,y) = RP%!A) (y, ). In a dual variant, the roles of
key and ciphertext attributes are swapped from those of its original primitive.

o Negated Variant, denoted by Neg(A), is defined by using the same domains
as A and setting RN8(A) (z, ) = 1 & RA(x,y) = 0. The condition is thus the
opposite of the original primitive.

Security Definition. A FE scheme for a function R : Xy x X — {0, 1} is fully
secure if no PPT adversary .4 has non-negligible advantage in this game.

Setup. The challenger runs Setup(n) and hands the public key pk to A.

Query Phase 1. The challenger answers private key queries for € Xy by
returning sk, «— KeyGen(z, msk).

Challenge. A submits messages Mg, M; and a target ciphertext attribute vector
y* € X, such that R(x,y*) = 0 for all key attributes « that have been queried
so far. The challenger then flips a bit 8 <~ {0,1} and computes the challenge
ciphertext C* « Encrypt(y, Mg, pk) which is given to A.

Query Phase 2. The adversary is allowed to make further private key queries
x € X\ under the same restriction as above, i.e., R(x,y*) = 0.

Guess. The adversary A outputs a guess 5’ € {0,1} and wins if 8’ = 3. In the
game, A’s advantage is typically defined as Adv4()) = |Pr[8 = 3] — 1|.

(Co-)Selective Security. We also consider the notion of selective security [11,
4], where A has to choose the challenge attribute y* before the setup phase, but
can adaptively choose the key queries for «, ..., x,. One can consider its “dual”
notion where A must output the ¢ key queries for attribute vectors x1, ..., x,
before the setup phase, but can adaptively choose the target challenge attribute
y*. We refer to this scenario as the co-selective security model, which is useful
in some applications such as revocation. By definition, both notions are incom-
parable in general and we do not know about their relation yet.

We shall show how one FE primitive can be obtained from another. The
following useful lemma from [9] describes a sufficient criterion for implication.



Proposition 1 (Embedding Lemma [9]). Consider encryption primitives
A,B that can be casted as functional encryption for functions R™, RB, respec-
tively. Suppose there exists efficient injective mappings fi : Z{f — EkB and
fe: X8 — XB such that RB(fi(x), f-(y)) = 1 < RA(x,y) = 1. Let IIg be a con-
struction for primitive B. We then construct IIa for primitive A from Ilg by ap-
plying mappings fx, fe to all key attributes and ciphertext attributes, respectively.
More precisely, we use exactly the same setup algorithm and define key genera-
tion and encryption procedures as IIp.KeyGen(x, msk) := IIg.KeyGen( f(z), msk)
and IIp.Encrypt(y, M, pk) := IIg.Encrypt(fe(y), M, pk), respectively. Then, if Ilg
is secure, so is IIn. This holds for adaptive, selective, co-selective security models.

We denote this primitive tmplication by B Tols

We immediately obtain the next corollary stating that the implication applies
to the negated (resp. dual) variant with the same (resp. swapped) mappings.

Corollary 1. B Tods implies Dual(B) Loty Dual(A) and Neg(B) fios Neg(A).

2.2 Complexity Assumptions in Bilinear Groups

We consider groups (G, Gr) of prime order p with an efficiently computable map
e : GxG — Gr such that e(g%, h®) = e(g, h)? for any (g,h) € GxG and a,b € Z
and e(g, h) # 1g, whenever g, h # 1g. In these groups, we assume the hardness
of the Decision Bilinear Diffie-Hellman and Decision Linear [5] problems.

Definition 1. The Decision Bilinear Diffie-Hellman Problem (DBDH) in
(G,Gry) is, given elements (g, 9%, g%, g% ,n) € G* x G with 01,05,05 < Z, to
decide whether n = e(g, 9)2%2% or n €r Gr.

Definition 2. The Decision Linear Problem (DLIN) in G consists in, given
a tuple (g, f,v, g%, f%,m) € G® with 01,05 < Z, and f,g,v < G, deciding
whether n = v9119% or v ep G.

3 Functional Encryption Instances and Their Implications

3.1 Inner Product Encryption and Its Consequences

We underline the power of IPE by showing its implications in this section. Each
primitive is defined by describing the corresponding boolean function R. We
then show how to construct one primitive from another by explicitly describing
attribute mappings. In this way, correctness and security are consequences of the
embedding lemma. Basically, the approach follows exactly the same way as [18].
A new contribution is that we also consider the negated variant of primitives,
which will be useful for non-zero polynomial evaluation and revocation schemes.
The implication for negated variants follows from Corollary 1.

Inner Product. An inner product encryption (IPE) scheme over Z,, for some
prime p, is defined as follows. Both attribute domains are ELPE" = YIPEn — Ly



We consider two distinct IPE modes here. The first one is zero-mode IPE where
RAPE+(XY) =1iff X-Y = 0. The other one is its negated primitive, which we
call the non-zero-mode IPE, where RNPEn (X, V) = 1iff X -V # 0.

Polynomial Evaluation. Functional encryption for the zero evaluation of poly-

nomials of degree < n is defined as follows. The ciphertext and key attribute

domains are defined as Z'eZPOWS” = Z, and ZEPOIyS" ={P € Zyx] | deg(P) < n},

respectively. The relation is defined by R“"°Y<» (P, z) = 1 iff P(z) = 0. The non-
zero evaluation mode can be defined as its negated primitive Neg(ZPoly,,).

Given an IPE scheme over Z;}'H, one obtain a functional encryption system
for polynomial evaluation via the following embedding. For the key attribute,
we map the polynomial P[X] = pg + ;1 X + -+ + pp X™ to X}, = (poy--sPn)-
Regarding ciphertext attributes, each element w € Z, is mapped onto a vector
Y, = (1,w,w?,...,w"). Correctness and security hold since P(w) = 0 whenever
Xp . Vw = 0. The non-zero evaluation case can be analogously derived from the
non-zero-mode IPE using the same mappings, due to Corollary 1.

We can also consider other variants such as a scheme that supports multi-
variate polynomials and a dual variant, where the key attribute corresponds to a
fixed point and the ciphertext attribute corresponds to a polynomial, as in [18].

OR, AND, DNF, CNF Formulae. We now consider a FE scheme for some
boolean formulae that evaluate disjunctions, conjunctions, and their extensions
to disjunctive or conjunctive normal forms. As an example, a functional encryp-
tion scheme for boolean formula ROR<» : Z3" x Zy — {0,1} can be defined
by ROR<n((Iy,...,I}),2) — 1 (for k < n) iff (z = I) or --- or (¢ = I). This
can be obtained from a functional encryption for the zero evaluation of a uni-
variate polynomial of degree smaller than n by generating a private key for
fora...1.(2) = (z—1I1)--- (2 — Ij), and letting senders encrypting to z.

Other fundamental cases can be considered similarly as in [18] and are shown
below. In [18] only non-negated policies (the first three cases below and their
extensions) were considered. Schemes supporting negated policies (the latter
three cases below and their extensions) are introduced in this paper. The negated
case can be implemented by IPE for non-zero evaluation. One can combine these
cases to obtain DNF, CNF formulae. Below, 7 & Z, is chosen by KeyGen.*

Policy Implementation
(z=1)or (z=1I2) fori1,12(2) = (2 = h)(2 = I2) = 0
(21 = 1) or (22 = I2) for1 1, (71, 22) = (21 — [1)(22 — [2) = 0

(z1 = ) and (22 = I2) fanp 1,15 (21, 22) = (21 — )r 4+ (22 — I2) = 0
(21 # 1) or (22 # I2) fNoR 1y, 15 (21, 22) = (21 — I1)r + (22 — [2) #0
(2 # 1) and (2 # I2) fuanp, 1,15 (2) = (2 — 11)(2 — I2) # 0

(Zl 75 11) and (Zz ;é IQ) fm 11’12(21722) = (Zl - 11)(2:2 - 12) 75 0

ID-based Broadcast Encryption and Revocation. Let 7 be an identity
space. An ID-based broadcast encryption scheme (IBBE) for maximum n re-

4 As noted in [18], the AND (and NOR) case will not work in the adaptive security
model since the information on r leaks.



ceivers per ciphertext is a functional encryption for R'BBE<n : Tx 2% — {0,1} de-
fined by R'®BE<» . (ID, S) ~ 1iff ID € S. An IBBE system can be constructed by
a functional encryption for RPU(OR<n) To encrypt a message for the receiver set
S ={ID4,...,IDy}, one encrypts using the policy (z =1D;) or -+ or (z = IDy).

Likewise, identity-based revocation (IBR) [19] for at most n revocations per
ciphertext can be casted as a negated IBBE, i.e., R'BR<» . (ID, R) — 1iffID ¢ R.

3.2 Spatial Encryption

We now recall the concept of spatial encryption [9]. For a n x d matrix M of
which elements are in Z;, and a vector ¢ € Z;, we define its corresponding affine
space as Aff(M, @) = {M@ + ¢ | & € Z%}. Let V,, C 2(Z2) be the collection of all
affine spaces inside Zj. That is, V,, = {Aff(M,¢) | M € Myxq,c € Zy,d < n},
where M, x4 is the set of all n X d matrices in Z,,.

A spatial encryption in Zj is a functional encryption for a relation RSpatial .
Vo x Z — {0,1} defined by RSP (Vi) — 1iff j€ V.

The notion of spatial encryption was motivated by Boneh and Hamburg [9]. It
has many applications as it notably implies broadcast HIBE and multi-authority
schemes. Nevertheless, its connection to inner-product encryption has not been
investigated so far. In section 4.1, we prove that spatial encryption implies inner
product encryption by providing a simple attribute mapping.

As a result of independent interest, we also consider the negated spatial
encryption primitive (namely, FE that is defined by RNeg(Spatial) . (17 ) s 1
iff ¥ ¢ V) and provide a construction in section 5.1. From this scheme and
Corollary 1 together with our implication result of zero-mode IPE from spatial
encryption, we then obtain a non-zero-mode IPE construction.

4 Functional Encryption for Zero Inner-Product

4.1 Warm-up: Selectively Secure Zero IPE from Spatial Encryption

We first show that spatial encryption implies zero IPE. For the key attribute,

we map X = (w1,...,0,)" € Zy to an (n — 1)-dimension affine space Vg =
Aff(Mg,0,) = {Mg@ + 0, | @ € Z2~'} with the matrix Mg € Zy "~V
_ &z _&s . _Tn
[ T’ T’ ’om
M= (TR, B

—

For any Y = (y1,...,yn)" € Zy, we then have X Y=0& Yc¢ V¢ since

XY=0&p=p (-2)+ -ty (-2) e ¥Y=Mg-(y2,...0m) &
Y e V¢. By the embedding lemma, we can therefore conclude its implication.
In [9], Boneh and Hamburg described a selectively secure construction of
spatial encryption that achieves constant-size ciphertexts (by generalizing the
Boneh-Boyen-Goh HIBE [6]). We thus immediately obtain a selectively secure

zero IPE scheme with constant-size ciphertext as shown below.



We give some notations here. For a vector @ = (ay,...,a,)" € Ly, we write
g% to denote (¢,...,g%)". Given g%, Z, one can easily compute (g%)7 := g{@2)

where (@, ) denotes the inner product @- 7= a' z.

Construction 2. (SELECTIVELY SECURE ZERO IPE)

» Setup(1*,n): chooses bilinear groups (G,Gr) of prime order p > 2* with
a generator g <~ G. It chooses o, o, . .., < Z,. Let & = (ai,...,ay). The
public key is pk = (g,gao, H=¢% 7= e(g,g)a). The master key is msk = g©.
» KeyGen(X, msk, pk) : chooses t & Z,, and parses X as (1, ...,2,) and returns
L if 21 = 0. It outputs the private key as skg = (Do, D1, Ko, ..., K,) where

Dy = ¢, Dy = gotaot, {Ki= (97" = g%) }ica, 0.

> Encrypt(?7 pk): the encryption algorithm first picks s & Z,. It parses Y as
(y1,--.,Yn) and computes the ciphertext as

Ey=M- e<g’g)a87 Ey = (gaog(&,Y>)s’ Ey = g°.

» Decrypt(C, ?,sk)?, X, pk) : to decrypt, the algorithm computes the message

blinding factor as % =e(g,9)**.

The selective security of this scheme is a consequence of a result given in [9)].

Theorem 1. Construction 2 is selectively secure under the n-Decisional Bilin-
ear Diffie-Hellman Exponent assumption (see [9] for a description of the latter).

4.2 Adaptively Secure Zero IPE under Simple Assumptions

We extend the above selectively secure zero IPE to acquire adaptive security
by applying the Waters’ dual system method [27]. However, we have to use our
“n-equation technique” as opposed to 2-equation technique used for IBE in [27].
The reason is that we have to deal with the difficulties arising from the richer
structure of IPE and the aggregation of ciphertexts into a constant number of
elements, analogously to what we described in section 1.

The scheme basically goes as follows. A ciphertext contains a random tag tagc
in the element F; while each key contains n — 1 tags (tagk; for each K; element)
that are aggregated into tagk = Y .-, tagk;y; upon decryption of a ciphertext

intended for Y. The receiver can decrypt if tagk # tagc (and X - Y = 0).

Construction 3. (ADAPTIVELY SECURE ZERO IPE)

» Setup(1*,n): chooses bilinear groups (G,Gr) of prime order p > 2*. It then
picks generators g,v,v1,vs < G and chooses o, ag,ay,...,0n,a1,a2,b & L.
Let @ = (a1,...,q,) and H= (hi,...,hy,) = g% The public key consists of

pk = (97 w =g, Z=e(g,9)*™" H=g" A =g", A :g‘“,B:gb,>

b-a b-a a a b b
By =g¢g"", Byo=g"", i =v-v", =00, T1 =77, To =79
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The master key is defined to be msk = (g%, g***, v, vy, v3).

> Keygen()_('7 msk, pk): parses X as (z1,...,2,) and returns L if 1 = 0. Oth-
erwise, it picks 71,79 < Ly, 21, 22 & Zy, tagk,, ..., tagk, & Ly, sets =11 + 172
and generates sk¢ = (D1, ..., D7, Ky, ..., K,, tagk,, ..., tagk,) by computing

SkCOre = {K = (g_ala% . gai . gag-tagki)M}.
L i=2,...,n’

Sk - l)1 — gOé(ll . ,U’l‘, l)2 — gfa . ,U’Il” . gZI’ D3 — B*Zl’ D4 — ,Ug . 9227
T\ Ds=B",  Dg=B", Dy =g '

» Encrypt(Y,M, pk): to encrypt M € G under Y = (y1,...,yn) € (Z,)", pick
s1, S, t, tage <& Zy, and compute C = (C1,...,Cr, Ey, Eq, Eo, tagc) where

Ceore = (EO =M- ZS27 Ey = <goco-tagc ’ g<077Y)>ta Ey = gt)’
. Cy=BuF%, Cy=B',  Cy=A}, Cy = B,
NG =Ap, Go=riiemt, Cr=TP T w '

» Decrypt(C, )7, sk g, )_(', pk): computes tagk = tagkyys + - - - + tagk,, y, and then
Wi = IT;-1 e(C. Dy) - (T e(Cys D)™ = elg, g)™ ™ - eg,w)™, as well

1
Y2 . KYn tagk —tagc
as Wy = (W) R - e(g, w)™t. It finally recovers the plaintext as

M = Ey/Z%2 = Ey/e(g, g)* 102 — Eo- Wy - Wi

The correctness of W5 is shown in appendix A.1, while the rest follows from
[27]. As we can see, ciphertexts have the same size as in the IBE scheme of [27],

no matter how large the vector Y is. Also, decryption entails a constant number
of pairing evaluations (whereas ciphertexts cost O(n) pairings to decrypt in [18]).

Theorem 2. Construction 3 is adaptively secure under the DLIN and DBDH
assumptions.

Proof. The proof uses the dual system methodology similar to [27], which in-
volves ciphertexts and private keys that can be normal or semi-functional.

o Semi-functional ciphertexts are generated by first computing a normal ci-
phertext (C},C4,...,Ch, B}, Eb tagc’) and then choosing x < Z, before
replacing (C4, Ct, C§, C%), respectively, by

Cy=CY gh™X, C5=Ch- g™, Cp=Ch-viX, Cp=Ch o3 (4)

o From anormal key (D}, ..., D5, Kb, ... K/ tagks,..., tagkl), semi-functional
keys are obtained by choosing vy < Z, and replacing (D}, Dy, D}) by

D1 — l)/1 _gfauzz’y7 D2 — l)/2 .gag’v’ D4 — D:; .ga1’y' (5)

The proof proceeds with a game sequence starting from Gamege,;, which is the
actual attack game. The following games are defined below.

11



Gameg is the real attack game but the challenge ciphertext is semi-functional.

Gamey, (for 1 < k < q) is identical to Gameg except that the first ¢ private key
generation queries are answered by returning a semi-functional key.

Gamegy1 is as Game ¢ but the challenge ciphertext is a semi-functional encryp-
tion of a random element of G instead of the actual plaintext.

We prove the indistinguishability between two consecutive games under some
assumptions. The sequence ends in Gamegy1, where the challenge ciphertext is
independent of the challenger’s bit 3, hence any adversary has no advantage. O

The indistinguishability of Gamegeq; and Gameg as well as that of Game, and
Game,11 can be proved exactly in the same way as in [27] and the details are
given in the full version of the paper.

Lemma 1. If DLIN is hard, Gameg is indistinguishable from Gamepgeq;-

Lemma 2. For any 1 < k < gq, if an adversary A can distinguish Gamey, from
Gamey,_1, we can build a distinguisher for the DLIN problem.

This lemma is the most non-trivial part in the theorem. The main issue is that,
in order to enable adaptive security, the reduction must be done in such a way
that the simulator B can create semi-functional keys for any vector X , including
those for which X - Y* = 0. However, the crucial point is that we must prevent
B from directly deciding whether the k' queried private key is normal or semi-
functional by generating a semi-functional ciphertext for itself. Indeed, if this
were possible, the reduction from 4 would not be established.

To resolve this, we use a secret exponent vector 5 € Z, and embed the

DLIN instance so that B can simulate only the key at k*® query for X with tags
(tagky, ..., tagk, ) and the challenge ciphertext for Y* with tagc* that obey the
relation: (tagk,, ..., tagk,,tagc*) " = —M3 3.¢, where Mg 3 is the n x n matrix
defined in Eq.(2). We thereby conceptually use the n-equation technique here.
A particular consequence is that if we have X - Y* = 0 then it holds that

n n

n n
* Ti o *
tagk = » tagh;yl = (1 o > Gyr =G (—yh) = > Gyl = tage”,
=2 1=2

=2 =2

which is the exact condition that hampers the decryption, thus B cannot test
by itself, as desired. We are now ready to describe the proof of Lemma 2.

Proof. The distinguisher B receives (g, f,v, g%, f%2,1) and decides if n = %1192,
Setup. Algorithm B picks o, ay, ag, 6y, ,0v, < Z, and sets g = g, Z = e(f, g)***,

a a b a [
Alzgla A2:gz7 B:g:fa U1:V2'gl
By =g =", By=g"*=f", v=vTMe gy =t gl
T = ’U’Ufl = 95”10‘1, Ty = 1)1);2 = ‘96”2(127 7‘{) = f‘svlal’ 7—5 = f5v2a2.

Next, B chooses d,, < Zp,§: (SR = Ly, 5= (61,...,0,) & Zy, then
defines w = g = f- g% and h; = g™ = f% - g% fori = 1,...,n. Note that, as

12



in the proof of lemma 2 in [27] , B knows msk = (g%, g***, v, v1, v2).

Key Queries. When A makes the j private key query, B does as follows.

[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key, which it can do using g®1?2.
[Case j = k] It defines tagks,,...,tagk, as tagk, = (3 - H—(fori=2,...n,
which implies that (hy ™/« h; - w®ek) = g=ou(@i/z)+ditoutaek for j =2 . n.
Using these tags, it generates a normal private key (Dj,...,Dy K}, ..., K})

. $ .
using random exponents ri, rs, 21, 25 < Z,. Then, it sets

D, = ‘D/1 . nfalagv Dy = D/2 . naz . (991)51;1’ Dy = Dé . (f92)5v1’
Dy=Dj-n™-(¢")"2, Ds=Dj- (%)=, De = Dg - f*,

as well as Dy = D4-(g%) and K; = K/- (g% )0 (/) +dit0uwtagks for j =2 .. n.
If n = 01102 skg = (D1,..., D7, Ky, ..., Ky, tagk,, ..., tagk,) is easily seen
to form a normal key where r1 = 1] + 61, ro = 15 + 02, 21 = 2| — 0,02,
29 = 25 —08y,02 are the underlying random exponents. If n € G, it can be written
n=v%171% . g7 for some v € Zy, so that sk ¢ is distributed as a semi-functional
key. We note that tagks,...,tagk, are independent and uniformly distributed
since (1,...,(, (which are the solutions of a system of n — 1 equations with n
unknowns) are uniformly random and perfectly hidden from A’s view.

Challenge. A outputs My, M; € Gp along with a vector Y* = (yf,...,y%).
B flips a coin 8 & {0,1} and computes the tag tagc* = —(Y*, 5> for which B
will be able to prepare the semi-functional ciphertext. To this end, B first com-
putes a normal encryption (C}, C1,...,C%, E, Ej, tagce*) of Mg using exponents
s}, sh, . It then chooses y <~ Z, and computes

Cy=Cj-f=X, Cy=C4-g"X,  Cp=Cp-p twoax. flax,

Cg = Cé - pd2X By = Eé R R i E:/l . (V5U,~tagc +Y 7‘5>)‘11"12'X_

)

We claim that (C{, C1, C4, C%, Cy, Cs, Cs, C7, E1, Ea, tagc*) is a semi-functional
ciphertext with underlying exponents x, s1 = s, s2 = s and t = t'+log, (v)aiazx.
To prove this, we observe that

Cr; = Tfl ,T2«92 Lw~t. vgsz — Tlsl ,T282 ,w—t'_logg(u)mazx . (Val _g5v2)asz
’
— Tlsl -T282 Lt (f . g5w)—10gg(l/)a1a2x i (VCU _gtsvz)a’sz

— Cé .y Owarazx | f5712a2x’

azbx
2

where the unknown term in v is canceled out by w~¢. Also,

¥ * *\log (v)aia
ElZEi_(hzfl__.h%n.wtagC) gy (v)arazx

* * _(V* log,(v)aia
= B ((fOg™) - (g™ - (fge) )

— Ei . (V<?*7g>+6w'tag(:*)a1ﬂ2X7
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where the unknown f°8(*) vanishes due to our definition of tagc*. It then re-
mains to show that tagc*, tagk,, ..., tagk,, are still n-wise independent. But this
holds since their relations form a system

% 1 G tagky
a1 G tagks
M - C = : .. : — . ,
- 1 tagk,,
yt ws s ---un) \Gn tagc*

which has a solution in ¢ whenever det(M) = (—1)"*1X - Y*/z; # 0.
Eventually, A outputs a bit 5" and B outputs 0 if 8 = 3'. As in [27], we see
that A is playing Gamey_; if n = 91792 and Game;, otherwise. a0

Lemma 3. If DBDH is hard, Game, and Gamey41 are indistinguishable.

5 Functional Encryption for Non-Zero Inner-Product

5.1 Negated Spatial Encryption

We begin this section by providing a co-selectively-secure construction of negated
spatial encryption, which is motivated by its implication of non-zero IPE. At a
high-level, our scheme can be viewed as a “negative” analogue of the Boneh-
Hamburg spatial encryption [9], in very much the same way as the Lewko-Sahai-
Waters revocation scheme [19] is a negative analogue of the Boneh-Boyen IBE [4].
The intuition follows exactly from section 1, where we have to use “n-equation
technique”. In spatial encryption, we have to deal with, in general, how we can
set up a system of n equations similarly to Eq.(1). To this end, we confine
the vector subspaces that we can use as follows. Our construction is a FE for
RNeg(Spatial) . 1)« Ly — {0, 1}, where we define a collection W,, C V), of vector

subspaces in Zy as W, = {Aff(M, 0) € Vu | rank(M(_qy) = n — 1}, where we
denote M(_;y as the matrix obtained by deleting the first row M; € Z},Xd of M.

Construction 4. (CO-SELECTIVELY SECURE NEGATED SPATIAL ENCRYPTION)
» Setup(1*,7n): chooses a bilinear group G of prime order p > 2* with a random

generator ¢ < G. It randomly chooses o, a1, . . .,y < Zy. Let & = (01,...,an).
The public key is pk = (g, 9%, 9%, e(g, 9)*). The master key is msk = (a, @).

» KeyGen(V, msk, pk): suppose that V = Aff(M,0), from a matrix M € (Zy)>d.
The algorithm picks t < Z,, and outputs sky = (Dg, D1, ff) € G2 where

Do = g' D, = ga+ta§ K= gtMT@_
» Encrypt(#, M, pk): picks s < Z,, and computes (Cy, C1,C2,C3) as

CO =M- e(gag)as7 Cl = gsa1<g7&>a 02 = gsa C3 = gals'
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» Decrypt(C, 7, sky, V, pk): the algorithm first obtains M from V. We also recall
the the notation of M7, which is the vector of the first row of M. It first solves
the system of equations in w from M _y@ = (y2, . .. ,Yn) ", which it can do since
V € W,. It computes the message blinding factor e(g, g)** as

1 1
M@ -y (g,&) ,t M T—yq
e(qu DO) — e(gathozf,gS) . (et(_gj(;_ryﬁ » g ) ) ! n )
B(Kw,Cg) gw a7gals)

B(Dl, CQ) . (

COMPUTABILITY. We claim that the decryption can be computed if y ¢ V.
Indeed, we prove that if y ¢ V then MW — y1 # 0 (and the above equation is
well-defined). To prove the contrapositive, suppose that Mjw@ — y; = 0. Then,
we must have i € V since M@ = |:M]t/[—11):| W= [th{lfﬁ} =y

CORRECTNESS. We verify that decryption is correct as follows. First, we note
that due to our definition of 0, we have (MW —¢, &) = (M1 —y1 ). Therefore,
the correctness follows from the fact that

< e(gsoq(ﬁ,d“) , gt) m
)

e(gtu?TMTo'Z’ ges

_ 1
- 6(g7g)tsa1(1¥1u')‘

Theorem 3. Construction 4 is co-selectively secure under the q-Decisional Multi-
Ezxponent Bilinear Diffie-Hellman assumption (q is the number of key queries).
(The proof is given in the full paper where the assumption [19] is also recalled).

M @G-y 5
_ — st
m) =e(g,9)".

IMPLICATIONS. For a vector X € Zy, the embedding Vg = Aff(Mg, 0,,) defined
in Eq.(3) is easily seen to be in the limited domain W, since (Mg)(_1) is an
identity matrix of size n —1 and hence rank((M ¢)(—1)) = n— 1. Therefore, from
Corollary 1, the above scheme implies non-zero IPE.

5.2 Non-Zero IPE under Simple Assumptions

We prove the co-selective security of our negated spatial encryption scheme under
a non-standard g-type assumption introduced in [19]. Here, we show that the
dual system technique [27] makes it possible to rest on simple assumptions such
as DBDH and DLIN. The scheme is very similar to the zero IPE scheme of
section 4.2 and we only state the differences. The intuition again follows exactly
from section 1 and the security proof uses similar techniques as in [19].

Construction 5. (CO-SELECTIVELY SECURE NON-ZERO IPE)

» Setup(1*,n): outputs pk exactly as in the construction 3 except that we define
w = g*' (= hy) in this scheme, instead of g®°.

> Keygen()?, msk, pk): outputs sk ¢ = (Skadapt, SKcore) Where skagapt is the same as
> Encrypt()_}, M, pk): outputs C' = (Cadapt; Ccore) Where Cagapt is as in the con-
struction 3 (with w = g®) and Ceore = (Eo = M- Z%2, By = (¢'¥Y))t, By = gt).
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» Decrypt(C, 57 sk ~,)_(', pk): computes W; as in the construction 3 and Wy as

UG ) XY — ¢(g,w)m. (See appendix A.2).

Wy = ( “E,D7)

Theorem 4. Construction 5 is co-selectively secure under the DLIN and DBDH
assumptions. (The proof is deferred to the full version of the paper.)

5.3 A Generalization of the Scheme and Its Application

EXTENDED CIPHERTEXT ATTRIBUTE DOMAIN. The above scheme for the rela-
tion RNIPEn . Zy x Zy — {0,1} can be extended so as to support relations of
the form RN'PE. : Ly % (Z;)d — {0,1}, for some d € poly(\), and defined as
RNMPEL(X (Yy,....Yy)) =1iffforalli=1,...,d: X -Y; #0.

We construct this extended system by bettlng up exactly the same public
and private keys (for X) as in the original scheme. To encrypt to (Yi,...,Yy),
the scheme generates Cy, ..., C; as usual with the underlying exponents s1, so, t.
Then, it chooses t1,...,tq € Z, sothat t = ¢+ -+tgand fori = 1,...,d, parses
Y, = (Yi1s---,Yin) and computes Ey,; = (g@m)ti = (Y™ - Ayt and
E>,; = g", in such a way that the ciphertext is (Co,...,C7,{E1 i, F2}iz1...4)-
Decryption requires to first compute

x

KY2 . Ko Fy &7 .
Wai = ( : e(E1,, D7) ’ )) = e(g,w)"",
Jiy

fori=1,...,d, from which the receiver obtains Wy = Wy 1 --- W5 g = e(g, w)’"lt.
The rest is then done as usual and we explain in the full version of the paper
how the security proof must be adapted.

APPLICATIONS. We can obtain an identity-based revocation scheme with param-
eter tradeoff from the aforementioned extension. The instantiation of ID-based
revocation scheme (IBR<,) from our non-zero inner-product system NIPE, 4;
yields a construction with O(1)-size ciphertexts and O(n)-size private keys,
where n denotes the maximal number of revoked users.

From our extended scheme NIPE; , |, we can obtain an ID-based revocation
scheme IBR,y(x), without a fixed maximal number of revoked users. To revoke
the set R where |R| = 7, we divide it into a disjointed union R = RiU---UR, ,,
where |R;| = n for all i (we assume that n divides r). We then simply construct
the vector Y; from the revocation subset R; for each i € [1,7/n], in the same
way as we use NIPE,,;; to instantiate IBR<,,. We then finally encrypt using the
set of vectors (}71, . ,?T /n). The correctness and security properties hold since
R'®R<n(ID,R) = 1 < R'®Rev0(ID, (Ry,..., R,/,)) = 1. The construction has
O(r/n)-size ciphertexts and O(n)-size private keys. Interestingly, we note that
the second scheme described by Lewko, Sahai and Waters [19] (which indeed
inspires ours) can be viewed as a special case of our scheme where n = 1.
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Verifying Correctness in Decryption

A.1 For the Zero IPE Scheme of Section 4.2

. 1
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1
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((ga1y1+a2yz+ Fanyn . wtagc)t’gr1>
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A.2 For the Non-Zero IPE Scheme of Section 5.2
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