
Solving a 676-bit Discrete Logarithm Problem
in GF(36n)

Takuya Hayashi1⋆, Naoyuki Shinohara2, Lihua Wang2, Shin’ichiro Matsuo2,
Masaaki Shirase3, and Tsuyoshi Takagi1⋆

1 Graduate School of Mathematics, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

2 Information Security Research Center, National Institute of Information and
Communications Technology,

4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-9795, Japan.
3 School of Systems Information Science, Future University Hakodate,

116-2, Kamedanakano-cho, Hakodate, Hokkaido, 041-0806, Japan.

Abstract. Pairings on elliptic curves over finite fields are crucial for con-
structing various cryptographic schemes. The ηT pairing on supersingular
curves over GF(3n) is particularly popular since it is efficiently imple-
mentable. Taking into account the Menezes-Okamoto-Vanstone (MOV)
attack, the discrete logarithm problem (DLP) in GF(36n) becomes a con-
cern for the security of cryptosystems using ηT pairings in this case. In
2006, Joux and Lercier proposed a new variant of the function field sieve
in the medium prime case, named JL06-FFS. We have, however, not yet
found any practical implementations on JL06-FFS over GF(36n). There-
fore, we first fulfill such an implementation and we successfully set a new
record for solving the DLP in GF(36n), the DLP in GF(36·71) of 676-
bit size. In addition, we also compare JL06-FFS and an earlier version,
named JL02-FFS, with practical experiments. Our results confirm that
the former is several times faster than the latter under certain conditions.

Key words: function field sieve, discrete logarithm problem, pairing-
based cryptosystems

1 Introduction

Based on pairings, many novel cryptographic protocols have been successively
constructed, such as identity-based encryptions [8], forward-secure cryptosys-
tems, proxy cryptosystems, keyword searchable PKEs [7]. As a result, two re-
quirements arose: efficient pairing computation and security parameter selection.

The ηT pairing [5] on supersingular curves over GF(3n) has been efficiently
implemented both in software and hardware [6, 13, 14]1. Along with the increase
⋆ This work was done when authors belonged to Future University Hakodate.
1 Here, n is a prime number such as n = 97, 163 and 193 [25].
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in computation speed on the ηT pairing, one may ask whether cryptosystems
based on the ηT pairing are still secure. It is well known that a discrete loga-
rithm problem (DLP) on supersingular curves over GF(q) can be converted to
a DLP in GF(qm) (where q is a prime power and m is not larger than 6) [24].
Therefore, the DLP in GF(36n) is one of the most important problems in analyz-
ing the cryptosystems constructed with the ηT pairing on supersingular curves
over GF(3n).

The function field sieve (FFS) is the most efficient algorithm for solving the
DLP in finite fields of small characteristic. The complexity of the FFS for solving
the DLP in GF(36n) is L36n [1/3, c] with constant c, where

L36n [1/3, c] = exp((c+ o(1))(log 36n)1/3(log log 36n)2/3).

Here o(1) stands for a function that converges to zero as n approaches infinity.
The first FFS was proposed by Adleman [1] in 1994. Five years later, Adle-

man and Huang proposed an improved FFS (AH-FFS) with c = (32/9)1/3 [2].
In 2002, Joux and Lercier proposed a practical improvement of the FFS (JL02-
FFS) [16]. Since a definition polynomial of the function field in JL02-FFS can
select more flexibly, JL02-FFS is more practical than AH-FFS, though its asymp-
totic complexity is the same as that of AH-FFS. Furthermore, by using JL02-
FFS, Joux and Lercier succeeded in solving the DLP in GF(2613). This refreshed
the record for solving the DLP in finite fields of characteristic two with regard to
bit size [15]. In 2006, Joux and Lercier proposed another new variant of the FFS
(JL06-FFS) [18]. JL06-FFS has the same asymptotic complexity with JL02-FFS
for solving the DLP in GF(36n), where n is a prime number2. This work im-
plied that JL06-FFS might be efficient for solving the DLP in extension fields of
GF(36) of degree n. However, to our knowledge, there have been no practical ex-
periments. Note that JL02-FFS can also be applied to extension fields of GF(36)
of degree n, but [12] showed no advantage using GF(36) as the base field.

Our contributions. We have first conducted experiments on JL06-FFS in
GF(36n). In JL06-FFS, GF(36n) is constructed as extension fields of GF(36) of
degree n, and thus the Galois action can be dealt for reducing required relations.
By our implementation, we succeeded in solving the DLP in GF(36·71) of 676-bit
size with about 33 days computation, which is the new record for solving the
DLP in GF(36n). Our work contributes to the selecting of security parameters.
Additionally, we compared JL06-FFS [18] with JL02-FFS [16], and according
to the experimental results, we confirmed that JL06-FFS is several times faster
than JL02-FFS with n = 19, 61.

The rest of the paper is organized as follows. In Section 2, we briefly review
the FFS algorithm. In Section 3, we compare JL02-FFS with JL06-FFS according
to the polynomial selection method and experimental results. In Section 4, we
describe our implementation on how to solve the DLP in GF(36·71) in detail,
which is based on JL06-FFS. Concluding remarks are made in Section 5.
2 When n is a composite number, this variant may have complexity L36n [1/3, 31/3]

for solving the DLP in GF(36n) (When JL06-FFS has complexity Lqm [1/3, 31/3], we
call it JL06-FFS-2). We do not deal with this case in this paper.
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2 Outline of Function Field Sieve

In this section, we describe an overview of the FFS [1], which consists of four
steps: polynomial selection, collection of relations, linear algebra, and individual
logarithm. We particularly deal with the FFS for solving the DLP in extension
fields of GF(36) of degree n and describe the four steps below. For more details,
refer to related work as [1, 12, 16, 18].

Throughout this paper, let γ be a generator of the multiplicative group of
GF(36n) and α ∈ ⟨γ⟩, then we try to find the smallest positive integer logγ α

such that γlogγ α = α, which is called the discrete logarithm.

1. Polynomial selection: Select f ∈ GF(36)[x] such that f is a monic irreducible
polynomial of degree n, then GF(36n) ∼= GF(36)[x]/(f). Next, find a poly-
nomial H(x, y) ∈ GF(36)[x, y] satisfying the eight conditions proposed by
Adleman [1]. Then there is a surjective homomorphism

Φ :
{

GF(36)[x, y]/(H) → GF(36n) ∼= GF(36)[x]/(f)
y 7→ m,

where m is in GF(36)[x] such that H(x, m) ≡ 0 (mod f). Here we select the
smoothness bound B and define a rational factorbase BR and an algebraic
factorbase BA as follows:

BR = {p ∈ GF(36)[x] | deg(p) ≤ B, p is irreducible},
BA = {⟨p, y − t⟩ ∈ Div(GF(36)[x, y]/(H)) | p ∈ BR, t ≡ m (mod p)},

where Div(GF(36)[x, y]/(H)) is the divisor group of GF(36)[x, y]/(H) and
⟨p, y − t⟩ is a divisor generated by p and y − t.

2. Collection of relations: For r, s ∈ GF(36)[x] of degree not larger than B, find
at least (#BR + #BA) relatively prime pairs (r, s) such that

rm+ s =
∏

pi∈BR

pai
i

⟨ry + s⟩ =
∑

⟨pj ,tj⟩∈BA

bj⟨pj , y − tj⟩. (1)

Such a pair (r, s) is called a double smooth pair. For each (r, s), compute

rm+ s, (2)

(−r)dH(x, −s/r). (3)

Polynomial (3) is said to be B-smooth if it is factorized into irreducible
polynomials of degree not larger than B, and then we have

(−r)dH(x, −s/r) =
∏

⟨pj ,tj⟩∈BA

p
bj

j , (4)
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where tj is uniquely determined by r, s and pj . Then the bj in Equation (4)
is exactly the same as the one in Equation (1). When both Polynomials (2)
and (3) are B-smooth, a pair (r, s) is a double smooth pair. Eventually, we
obtain the following relation:∑

pi∈BR

ai logγ pi ≡
∑

⟨pj ,tj⟩∈BA

bj logγ κj (mod (36n − 1)/(36 − 1)), (5)

where
κj = Φ(λj)1/h, ⟨λj⟩ = h⟨pj y − tj⟩, (6)

for the class number h of the quotient field of GF(36)(x)[y]/(H).
3. Linear algebra: For the number R of relations, construct an R×(#BR+#BA)

matrix M from the relations in Equation (5) and (#BR +#BA) dimensional
column vector v as follows:

M =


a
(1)
1 . . . a

(1)
#BR

−b(1)1 . . . −b(1)#BA

...
...

...
...

a
(R)
1 . . . a

(R)
#BR

−b(R)
1 . . . −b(R)

#BA

 , v =



logγ p1

...
logγ p#BR

logγ κ1

...
logγ κ#BA


.

Then we solve the linear equation

Mv ≡ 0 (mod (36n − 1)/(36 − 1)). (7)

4. Individual logarithm: Find integers ei, fj such that

logγ α ≡
∑

pi∈BR

ei logγ pi +
∑

⟨pj ,tj⟩∈BA

fj logγ κj (mod (36n − 1)/(36 − 1)),

then compute the discrete logarithm logγ α. This is done using the special-q
descent method [16, 18, 19].

3 Comparison of Polynomial Selection on JL02-FFS and
JL06-FFS

The two most efficient variants of the FFS for solving the DLP in GF(36n) are
JL02-FFS and JL06-FFS. Although they have the same asymptotic complexity,
there is a considerable difference between them in the fixed extension degree for
practical use. The time complexities of JL02-FFS and JL06-FFS depend on the
size of each sieving area, which is the number of pairs (r, s), and each size is
explained in the following subsections. Note that our comparison is done merely
by the size of the sieving area, and the detailed analysis should incorporate the
non-integer smoothness bound estimated by Granger [11].
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3.1 Polynomial Selection of JL02-FFS and Its Sieving Area

At first we describe an outline of the polynomial selection of JL02-FFS, after that
we estimate the size of the sieving area. In order to distinguish from previous
section, we set the subindex “02” after the symbols.

Let H02(x, y) of degree d02 in y be formed as Cab curves [23]:

H02(x, y) = ha,0y
a + h0,bx

b +
∑

ib+ja<ab

hi,jy
ixj (hi,j ∈ GF(3), ha,0, h0,b ̸= 0).

Randomly choose polynomials u1, u2 ∈ GF(3)[x] of degree at most ⌊6n/d02⌋,
and try to find an irreducible polynomial f02 = ud02

2 H02(x, −u1/u2) ∈ GF(3)[x]
of degree 6n such that gcd(u2, f02) = 1, then u2 is invertible modulo f02. Then,
there is a surjective homomorphism

Φ02 :
{

GF(3)[x, y]/(H02) → GF(36n) ∼= GF(3)[x]/(f02)
y 7→ −u1/u2,

where H02(x, y) holds H02(x, −u1/u2) ≡ 0 (mod f02). In this polynomial se-
lection, we need to modify Polynomial (2) to su2 − ru1. Note that r and s are
chosen in GF(3)[x] of degree not larger than B02 in JL02-FFS, the size of the
sieving area in the collection of relation step is

3B02+1 · 3B02+1. (8)

From heuristic analysis in [16], JL02-FFS becomes optimized when we choose
the smoothness bound B02 as

B02 = ⌈(4/9)1/3(6n)1/3 log3(6n)2/3⌋. (9)

and the extension degree d02 of H02(x, y) as d02 = ⌈
√

6n/(B02 + 1)⌋. For exam-
ple, for n = 97, 163, 193, we have (n, B02) = (97, 21), (163, 26), (193, 28).

3.2 Polynomial Selection of JL06-FFS and Its Sieving Area

Next we describe an outline of the polynomial selection of JL06-FFS and estimate
the size of the sieving area of JL06-FFS.

For each extension degree n of GF(36), we choose the smallest smoothness
bound B06 in JL06-FFS satisfying the following condition,

(B06 + 1) log(36) ≥
√
n/B06 log(n/B06) (10)

For example, for n = 97, 163, 193, we have (n, B06) = (97, 3), (163, 4), (193, 4).
Next, we choose positive integers d and d′ such that d ≈

√
n/B06 and d′ ≈√

nB06, where dd′ ≥ n. After that, we randomly generate g(y) ∈ GF(36)[y]
of degree d and set H(x, y) = g(y) + x. Finally, we try to find an irreducible
polynomial f in GF(36)[x] of degree n, which divides H(x, m), where m ∈
GF(36)[x] of degree d′ is chosen randomly. In this polynomial selection, each of
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the leading coefficients of Polynomials (2) and (3) depends on r, so we avoid
obtaining duplicate relations by fixing the leading coefficient of r as a monic
polynomial. Therefore, the size of the sieving area in the collection of relations
step is at most

(36)B06+1 · (36)B06 . (11)

3.3 Comparison of Sieving Area

We compare JL06-FFS with JL02-FFS with respect to the size of the sieving area
in the collection of relations step in three classes of extension degree n: exper-
imental class as {19, 31, 47, 61}, medium-security class as {97, 163, 193}, and
high-security class as {239, 313, 353, 509}. Table 1 lists the smoothness bound
and size of the sieving area in each variant. For each n, we obtain the smoothness
bound B02 in Equation (9) and B06 in Equation (10), and estimate the size of
the sieving area by Form (8) in JL02-FFS and by Form (11) in JL06-FFS.

Table 1. Parameters and sieving area

n

Polynomial selection
in JL02-FFS

Polynomial selection
in JL06-FFS

6n B02
Size of

sieving area
n B06

Size of
sieving area

Experimental
class

19 114 10 3.1 × 1010 19 1 3.9 × 108

31 186 12 2.5 × 1012 31 2 2.1 × 1014

47 282 15 1.9 × 1015 47 2 2.1 × 1014

61 366 17 1.5 × 1017 61 2 2.1 × 1014

Medium-
security

class

97 582 21 9.8 × 1020 97 3 1.1 × 1020

163 978 26 5.8 × 1025 163 4 5.8 × 1025

193 1158 28 4.7 × 1027 193 4 5.8 × 1025

High-security
class

239 1434 30 3.8 × 1029 239 4 5.8 × 1025

313 1878 34 2.5 × 1033 313 5 3.1 × 1031

353 2118 36 2.0 × 1035 353 5 3.1 × 1031

509 3054 42 1.1 × 1041 509 6 1.6 × 1037

Figure 1 shows the size of the required sieving area over GF(36n). The siev-
ing area in JL06-FFS is much smaller than that in JL02-FFS when n ̸= 31, 163.
Moreover, the differences between the sieving areas in JL06-FFS and in JL02-
FFS increase along with the increase in n. The computational cost in the col-
lection of relations step is closely related to the size of the sieving area, so the
collection of relations step in JL06-FFS might be several times faster than that
in JL02-FFS.

We have conducted experiments on the collection of relations step in JL02-
FFS and JL06-FFS to confirm the difference between their computational costs
of that step. Parameters in JL02-FFS and JL06-FFS are listed in Table 2. The
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Fig. 1. Size of sieving area over GF(36n) in JL02-FFS and JL06-FFS

curves that we used in our experiments are superelliptic ones, but not Cab curves
as [12]. Note that we have only experimented with the experimental class as
n ∈ {19, 31, 47, 61}, not with medium and high-security classes.

Table 2. Parameters in our experiments

n
Bit size of
GF(36n)

Experiments with
JL02-FFS

Experiments with
JL06-FFS

6n B02 H02(x, y) n B06 H(x, y)

19 181 114 10 y4 + x 19 1 y5 + x
31 295 186 12 y4 + x 31 2 y4 + x
47 447 282 15 y4 + x 47 2 y5 + x
61 581 366 17 y5 + x 61 2 y6 + x

In our experiments, we used 96 cores, each of which had the same performance
about Intel 2.83GHz Xeon. We implemented the lattice sieve [26] in JL02-FFS as
[12, 15, 16]. On the other hand, we implemented the polynomial sieve [10] in JL06-
FFS, since we fixed r as a monic poynomial in the collection of relations step
and so the lattice sieve might not be efficient. The details of our implementation
in JL06-FFS are described in Section 4.
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Fig. 2. Estimated time taken to compute entire sieving area in the collection of relations
step over GF(36n) in JL02-FFS and JL06-FFS

Figure 2 shows the time complexity of JL02-FFS and JL06-FFS to com-
pute the entire sieving area in the collection of relations step in GF(36n) with
n = 19, 31, 47, 61, respectively. Note that we estimated the time when the com-
putation lasts over one hour.

When n = 19, 61, our implementation on JL06-FFS is faster than that on
JL02-FFS, and we confirm that JL06-FFS is more efficient than JL02-FFS for
solving the DLP in GF(36n). In particular, when n = 61, our implementation
of JL06-FFS takes about 66 days for the collection of relations step, but our
implementation of JL02-FFS takes about 165 days for the same step. Therefore,
the former is 2.5 times faster than the latter. Accordingly, we expect that JL06-
FFS will be efficient for solving the DLP in GF(36n) for larger n.

4 Solving the DLP in GF(36·71)

In this section, we report that the DLP in GF(36·71) of 676-bit size is solved
by improving JL06-FFS. In our implementation, we deal with four practical
improvements, polynomial sieve, free relation, Galois action, and parallel Lanczos
method.

Particularly, by using the polynomial H(x, y) = y6 +x, we only need to find
about 1/8 of the originally required relations in the collection of relations step.
Furthermore, via the Galois action, the size of the matrix given by the relations
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is also decreased to 1/6 of the original. To the best of our knowledge, the 676-bit
size is currently the record for solving the DLP in GF(36n).

4.1 Collection of Relations

In the collection of relations step, we collect many double smooth pairs (r, s). The
simple idea for collecting them is factoring Polynomials (2) and (3) for all pairs
(r, s). This is not practical since we have to factor them about (36)B × (36)B+1

times. In order to reduce the number of factorings, we use a sieving method.
The idea of sieving is merely factoring Polynomials (2) and (3) of the pair (r, s),
which has a high probability of becoming a double smooth pair. Such a pair is
called a candidate.

The polynomial sieve [10] and the lattice sieve [26] are well-known sieving
algorithms. Although the lattice sieve has been implemented in some experiments
of the FFS [12, 15, 16], we implemented the polynomial sieve since r is fixed as a
monic polynomial by the polynomial sieve in JL06-FFS, whereas neither r nor
s is able to be fixed by the lattice sieve.

Polynomial Sieve We describe the polynomial sieve in Polynomial (2), namely,
rm+s. Notice that we can also sieve in Polynomial (3) with the same procedure.
Moreover, we discuss the case where s is fixed and omit the details when r is
fixed. By fixed s, we can lead r such that rm + s is divisible by p ∈ BR or its
power, where the degree of p is not larger than B. Additionally, (rm + s) + kp
with k ∈ GF(36)[x] is also divisible by p. Hence, we can obtain all r of degree
less than or equal to B such that rm+ s is divisible by p. After computing such
all r for each p, we can obtain the pair (r, s) such that rm + s is divisible by
some p. If the summation of the degree of all p, which divide rm + s, reaches
deg(rm+ s), then rm+ s has a high probability of becoming B-smooth and the
pair (r, s) becomes a candidate.

In this procedure, the most time-consuming work is to compute r + kp for
all k ∈ GF(36)[x] whose degree is not larger than B. In characteristic two, Gor-
don and McCurley proposed a method using binary gray codes [10] to compute
these r + kp. Using ternary gray codes, we can also compute them efficiently in
characteristic three.

In the polynomial sieve, we sieve with all powers of p whose degree is not
larger than B. Since B is very small, such as 1 or 2 in our experiments, the power
of p is only p2 when deg(p) = 1. Such polynomials are exceptional since there
are 36 monic irreducible polynomials of degree 1 in GF(36)[x]. In this way, we
can obtain only candidates each of which generates a relation in Equation (5)
(except that r and s are not relatively prime). Thus, we only check the greatest
common divisor of r and s, but not the smoothness of Polynomials (2) and (3)
using the B-smooth test [10].

Free Relation By considering how a divisor ⟨p⟩ where p ∈ BR is factorized
into divisors in GF(36)[x, y]/(H), namely, obtaining the following congruent
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expression that

H(x, y) ≡
d∏

i=1

(y − ti) (mod p),

where d is the degree of H(x, y) on y, we can obtain a relation virtually for free,
without the sieving procedure. We call such a relation a free relation.

The number of free relations depends on the degree d of H(x, y) on y and the
characteristic of the field treated in the FFS. In fact, there are about #BA/d free
relations in many cases and, furthermore, they increase when the characteristic
is small. For example, in the case of GF(36n) and H(x, y) = y6 + x, there are
about #BA/2 free relations since y6 +x is generally factored as (y− t1)3(y− t2)3
modulo p.

4.2 Linear Algebra

In the linear algebra step, we solve the linear equation depending on the relations.
Specifically, we construct a matrix from the relations and reduce it to a much
smaller one using the Galois action. After that, we solve the reduced linear
equation modulo (36n − 1)/(36 − 1), by applying the parallel Lanczos method
described as [3]. In this section, we describe the Galois action and our ideas
about parallel computation of the matrix operation.

Galois Action Here, we consider to reduce unknowns of linear equations, using
the Galois action which was presented in [18].

Let M ′ be the matrix given by the relations, whose row M ′
(i) means the i-th

relation and j-th column M ′(j) corresponds to the factorbase pj . In order to use
the Galois action, we choose the polynomial f ∈ GF(36)[x] satisfying that all
coefficients of f are in GF(3) and deg(f) = n, then we construct GF(36n) as
GF(36)[x]/(f). Let ϕ be the Frobenius power such that ϕ(ξ) = ξ3

n

. As ϕ fixes
the element x in GF(3)[x]/(f), we also have ϕ(x) = x in GF(36)[x]/(f) by the
assumption of f . However, for an element c ∈ GF(36)\GF(3), ϕ does not fix c
in GF(36)[x]/(f) by the above assumption that n is coprime to 6. The monic
irreducible polynomial pj ∈ BR of degree not larger than B, and we assume that
B = 1 for convenience. In fact, pj = x + cj where cj ∈ GF(36) since B = 1, so
we have

ϕ(pj) = ϕ(x+ cj) = x+ ϕ(cj)

in GF(36)[x]/(f). If cj is not in GF(3), cj ̸= ϕ(cj) in GF(36)[x]/(f). This fact
implies that there are ordinarily many unknowns of linear equations, which can
be rewritten by the other one via the Galois action. Clearly, for such pj , there
exists pj′ satisfying that

logγ pj′ = logγ ϕ(pj) = 3n logγ pj (12)

where pj ̸= pj′ . Therefore, we can remove the j′-th column M ′(j′) and set the j-
th column M ′(j) as M ′(j) +3nM ′(j′). Then we denote the new matrix M∗ as the
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reduced M ′. Notice that this technique is also used for the algebraic factorbase.
Consequently, the number of unknowns is about 1/6 of the original; thus, the
number of relations is reduced to about 1/6. In our implementation, we do not re-
duce the factorbase in the sieving phase (the computation is the same as the case
without the Galois action). After sieving, we compress obtained relations using
rewritable elements of the factorbase via the Galois action as Equation (12), and
so the factorbase is reduced to about 1/6. Using this procedure, we almost do
not lose the probability of obtaining the relation. Hence, this technique enables
us to perform computations for the collection of relations step about 6 times as
fast as before, and the linear algebra step can be also done about 62 times faster.

Parallel Lanczos method The reduced matrix M∗ is reconstructed to opti-
mize first, then we apply the parallel Lanczos method to it. Before explaining
the reconstruction, we begin with the explanation of the parallel computation.
Assume that there are four nodes written as N1,1, N1,2, N2,1, N2,2 and each node
has 4 or 8 cores. As the Figure 3, we partition the reconstructed matrix M into
four matrices Mi,j , and each Mi,j is allotted to node Ni,j respectively. The given
vector v is also partitioned into v1,v2, and vj is given to nodes Ni,j , Ni′,j where
i ̸= i′. Moreover, Mi,j is partitioned into L matrices Aℓ when Ni,j has L cores.

Mv =

(
M1,1 M1,2

M2,1 M2,2

)(
v1

v2

)
. Mi,jvj := Avj =


A1

A2

...

AL

vj .

Fig. 3. Partitioning M into four matrices Mi,j and Mi,j into L matrices Aℓ.

We now give the notation of the Lanczos method. The Lanczos method can
operate only a symmetric matrix; however, the given matrix M is usually non-
symmetric. Therefore, we try to solve the linear equation of the form MTMv =
α, where v is an unknown column vector consisting of the logarithms of the
factorbase and α is the given column vector. Note that computing MTM is not
efficient, so we compute the vector u = Mv and MT u. For more details about
this computation is in [22].

After partitioning M , we perform a parallel computation for u := Mv and
w := MT u with Mi,j . Let v1, v2, u1, and u2 be the partitioned vectors such
that v = v1⊕v2 and u = u1⊕u2. From Algorithm 1, we obtain the partitioned
vector wi such that w = wi ⊕ wi′ in node Ni,j , where i ∈ {1, 2} and i′ = 3 − i.
The symbol j′ also means that j′ = 3 − j for j ∈ {1, 2}.
Lines 4, 5, and 6 describe the computation of MTu. Note that in each node Ni,j ,
by regarding the column of Mi,j as the row of MT

j,i, we do not have to trade Mi,j

with MT
j,i, namely, we can cut unnecessary operations.
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Algorithm 1 (Computation with node Ni,j .)
Input : the partitioned matrix Mi,j and the partitioned vector vj .
Output : the partitioned vector wj such that w1 ⊕w2 = MT Mv, where j is equal to
1 or 2.
[Step for computation of u := Mv]
1. ui,j := Mi,jvj .
2. Give ui,j to Node Ni,j′ and receive ui,j′ from Ni,j′ .
3. ui := ui,j + ui,j′ .
[Step for computation of w := MT u]
4. wi,j := MT

i,jui.
5. Give wi,j to Node Ni′,j and receive wi′,j from Ni′,j .
6. wj := wi,j +wi′,j .

We have discussed the parallel computations among nodes, and now we move
on to the parallel computations among cores in one node. Here, Aℓ denotes the
partitioned matrix of Mi,j such that Mi,j = ⊕L

ℓ=1Aℓ. From Algorithm 2, we can
easily obtain Aℓvj , and then we set the new vector ui,j = (A1vj , . . . , ALvj)T ,
where L is the number of cores in the same node. Similarly, we can easily obtain
AT

ℓ ui and compute wi,j =
∑L

ℓ=1A
T
ℓ ui by using Algorithm 3.

Algorithm 2 (Parallel computation of Mi,jvj among L cores in the same node.)
Input : the partitioned matrix A := Mi,j whose size is s×t and the partitioned t-vector
vj .
Output : the partitioned vector ui,j such that ui,j = Avj .
1. Compute bℓ := Aℓvj for ℓ = 1 to ℓ = L in parallel.
2. ui,j = ⊕L

ℓ=1bℓ.

Algorithm 3 (Parallel computation of MT
i,jui among L cores in the same node.)

Input : the partitioned matrix A := Mi,j whose size is s×t and the partitioned s-vector
ui.
Output : the partitioned vector wi,j such that wi,j = ATui.
1. Compute cℓ := AT

ℓ ui for ℓ = 1 to ℓ = L in parallel.
2. wi,j =

∑L
ℓ=1 cℓ.

From the parallel computations of Mi,jvj and so on, we obtain the vector
MTMv from Algorithm 1 and 2. Therefore, we need to reconstruct M so that
each node has the balanced calculation amount of computing Mi,jvj and so
on. It is clear that the calculation amount depends on the number of non-zero
elements in the allotted matrix, and the distribution of non-zero elements in M
is not uniformity. In fact, the number of non-zero elements in a column of M
is not balanced, but that in a row is balanced. Thus, we reconstruct the new
matrix M so that the number of non-zero elements in M1,1 and M2,1 is almost
equal to that in M1,2 and M2,2 by sorting columns of M∗ defined in the section
of the Galois action. We perform a similar strategy as above for the parallel
computation among cores in the same node, namely, A is partitioned into 4 or
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8 smaller matrices Aℓ so that each Aℓ has almost the same number of non-zero
elements.

4.3 Computation Results

In this section, we describe our computation results of the 676-bit DLP in
GF(36·71), which contains a multiplicative subgroup whose order is a 112-bit
prime. We construct GF(36) as GF(3)[z]/(z6 + 2z + 2) and define a mapping
ψ : Z → GF(36)[x], such that ψ−1 : z 7→ 3, x 7→ 36, in order to represent the
element in GF(36)[x].

In the polynomial selection step, we set H(x, y) = y6 + x in order to use the
Galois action. Moreover, we select m ∈ GF(36)[x] such that all its coefficients
are in GF(3) to construct f whose coefficients are also in GF(3). By an easy
computation, we obtain proper m and f as follows,

m = ψ (0x456bc 60e76c11 1e679735 c929fc55)
f = ψ ( 0x9 2d3e5daf 5ac01130 4e6909f7 09cc8833 baa757d3

17dc6f99 9c8b98b5 ab8baa01 d68ec151 aec39e2e ed081c79

d851066b 3ffb2a4f a3e19c1e cef46675 0918a26d 9c7cacd4

8d74ccfe 2c1d3b79 e81e6138 ab06aef4).

Then, GF(36n) is constructed as GF(36)[x]/(f). When we set the smoothness
bound B = 2, there are 266,085 elements in the rational factorbase and 265,721
elements in the algebraic factorbase, so we need to collect at least 531,806 rela-
tions. However, the size of the sieving area when B = 2 is too small to collect
enough relations.

We settle this problem by using the Galois action, since we can considerably
reduce the number of required elements in the factorbase described in Section 4.2.
In fact, we need only 88,674 relations, and so this number is about 1/6 the
number of the originally required relations.

Moreover, we deal with free relations which are obtained without sieving. If
we choose H(x, y) as y6 + x, then it is fortunately factored as (y− t1)3(y− t2)3

(mod p) for most of elements p in the factorbase, and so there are 132,860 (≈
#BA/2) free relations. Even if we delete many duplicates which are produced
by using the Galois action, 22,155 free relations remain. Thus, we only have to
find at least 66,519 relations in the collection of relations step, and this number
is about 1/8 that of the originally required relations.

In the collection of relations step, we use the polynomial sieve described
in Section 4.1 and compute relations using five nodes, each consisting of Intel
Quad-Core Xeon E5440 (2.83 GHz) × 2 CPUs with 16-GB RAM, one node
consisting of Intel Quad-Core Xeon X5355 (2.66 GHz) × 2 CPUs with 16-GB
RAM, and twelve nodes, each consisting of Intel Quad-Core Xeon L5420 (2.33
GHz) × 1 CPU with 4-GB RAM, total of 96 cores. In 18 days of computation,
after removing duplicates, we found 66,646 relations. Thus, we obtained a total
of 88,801 relations, which are enough to solve the linear equation in Equation (7).
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The linear equation constructed from the relations has to be solved modulo
(36·71 − 1)/(36 − 1); however, the Lanczos method may fail when the modulus
has a small prime factor. Therefore, we work modulo the factor Ni of (36·71 −
1)/(36 − 1),

N1 = (32·71 + 371 + 1)/(13 · 5113),
N2 = (32·71 − 371 + 1)/(7 · 210019 · 49682251 · 55126531),
N3 = (371 + 1)/(22 · 853 · 2131 · 82219),
N4 = (371 − 1)/2.

where every prime factor of Ni is larger than 30 bits and Ni is relatively prime
to each other.

We use a cluster with four nodes, each consisting of Intel Quad-Core Xeon
E5440 (2.83 GHz) × 2 CPUs with 16-GB RAM, and three clusters with four
nodes, each consisting of Intel Quad-Core Xeon L5420 (2.33 GHz) × 1 CPU with
4-GB RAM. With about 12 hours computation, we solve the linear equation
modulo Ni via the parallel Lanczos method with the four nodes described in
Section 4.2 on each cluster. With the Chinese remainder theorem and the Galois
action of ϕ, we solved discrete logarithms of the elements in the factorbase
modulo N =

∏4
i=1Ni.

In the individual logarithm step, our target of computing the logarithm is
the element

π(x) = ψ(⌊π × 10202⌋)
= (z4 + z3 + 2z2 + 1)x70 + · · · + (z5 + 2z4 + 2z3 + z2 + 2)

in basis γ = ψ(0x456). We choose the representation of π(x) as a product of
elements of degree at most 7 as follows:

γτπ(x) ≡ z1/z2 (mod f), where
z1 = ψ(0x333) × ψ(0x345) × ψ(0x427) × ψ(0x43b) × ψ(0x4c3)

×ψ(0xd909 66c7e3ec) × ψ(0x293996d cc380672)
×ψ(0x3ff378e 3d4659d0) × ψ(0x6 27d6c281 0a0fc5a2)
×ψ(0x8 f4797e29 a9ec3b4a),

z2 = ψ(0x318) × ψ(0x45 4c6fbfd4) × ψ(0x54 c69e6f97)
×ψ(0x1686d 42782189) × ψ(0x3cf67a5 84055cd8)
×ψ(0x8 f68ab2e2 5d2bc04f) × ψ(0xb cc56922c f651b383),

τ = 0x2 0f822e8c ac48792a e2aea337 c9002b49 bbf1b864

43a6111b 24c5593d e44daf43 e26de26e 1f85f982 1ba485b3

beda74bd f782626d 6cd38bb2 8f829867 5dc04adc f8741c24,

and z1, z2 are 7-smooth. Then, we compute the logarithms of z1 and z2 in basis
γ using the special-q descent technique [16, 18]. With about 14 days computation
using five nodes, each consisting of Intel Quad-Core Xeon E5440 (2.83 GHz) ×
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2 CPUs with 16-GB RAM, and one node consisting of Intel Quad-Core Xeon
X5355 (2.66 GHz) × 2 CPUs with 16-GB RAM, we compute the logarithms,

logγ z1 ≡ 0x3 fc71c577 10be8e3f e7af0fba e00e711f 0ad6dd50

38fb8f26 c0fadb3b 448cab2f 67671247 285f9e95 dc501717

d9def844 a75f9e58 f04a9bd2 3a5d0fdb 8f8ebb9f fea4deea,

logγ z2 ≡ 0x4 82febaec ae4382e0 e651f577 09df4e7d 99d99d34

03db5d5e 521c4e2b da89ec33 6c9d45d6 2dd1f982 2f198fb2

6c069414 3b0b1544 ece8e4b1 5304872f 6ff261fd 03b271c7.

modulo N , and so we obtain logγ π(x) mod N .
The logarithm in multiplicative subgroups of less than 30 bits are computed

using the Pollard’s ρ method in a minute. Using the Pohlig-Hellman method, we
compute the logarithm logγ π(x):

logγ π(x) = 0x8 78b54797 2fb6ff9b 57add5d5 11f69de6 a3853f98

68d53cc0 5b531076 2872ac6a 320874bf ba6d66d6 8e5e245f

39778f02 31ae791a acbab8c7 5ee6850c 9f5df0e5 f6b8ab0b

95d8bdb1 aea95b1f bad82465 25590f66

and completely solve the DLP in GF(36·71) of 676-bit.

4.4 For Larger Extension Degrees

We have solved the DLP in GF(36n) for n in the experimental class, where
the smoothness bound B (i.e., B06) is less than or equal to 2 (ref. Table 1).
Note that the size of the sieving area increases (36)2-fold if the smoothness
bound B increases by one (see Form (11)). However, we expect that, if we set
B = 3, the DLP in GF(36·97) might be computed for several years by using
dozens of our computational resources through various techniques such as large
prime variation, block sieving and sieving via bucket sort [29, 4], and SIMD
implementation.

5 Concluding Remarks

In this study, we implemented a new variant of the FFS in GF(36n) (n is a
prime), proposed by Joux and Lercier in 2006 [18], and compared it with the
earlier variant, which was also proposed by Joux and Lercier in 2002 [16] with
practical experiments. In solving the DLP in GF(36n), these two variants of the
FFS have the same asymptotic complexity, but we expected the new variant
to be more efficient than the earlier one in some extension degrees n. From
our experimental results, we confirmed this forecast when the extension degree
n = 19, 61. Moreover, with our implementations, we succeeded in solving the
DLP in GF(36·71) of 676-bit size with about 33 days computation.
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Table 3. Records for solving the DLP in finite fields

Finite Fields GF(p) GF(2n) GF(p3) GF(p30) GF(36n)

Reference [21] [15] [20] [18] This Work
Date Feb. 5, 2007 Sep. 22, 2005 Aug. 23, 2006 Nov. 9, 2005 Dec. 9, 2009

Algorithm NFS⋆ JL02-FFS JLSV06-NFS† JL06-FFS-2‡ JL06-FFS

Collection
of

Relations
Many CPUs¶

4 nodes of
16 Itanium 2

(1.3GHz)

16 Alpha
processors
(1.15GHz)

16 Alpha
processors
(1.15GHz)

Xeon
(2.83GHz)
96 cores

Linear
Algebra

12–24 Xeon
(3.2GHz)

4 nodes of
16 Itanium 2

(1.3GHz)

16 Alpha
processors
(1.15GHz)

16 Alpha
processors
(1.15GHz)

Xeon
(2.83GHz)
80 cores

Timing 33 days 17 days 19 days 12 hours 33 days
Bit Size 532 613 394 556 676

⋆NFS: Number Field Sieve [9, 17]. †JLSV06-NFS: NFS in the medium prime case [20].
‡See footnote 2 on page 2. ¶There are no detailed descriptions of computational resources in [21].

We have experimented with the DLP in GF(36n) required for pairing-based
cryptosystems. The security of pairing-based cryptosystems relies on the diffi-
culty of the DLP in various finite fields, for example, GF(24n) and GF(p12).
Table 3 presents the current records for solving the DLP in various finite fields.
All the DLPs used for pairing-based cryptosystems have not examined yet. It is
an open problem to analyze the hardness of the DLP with practical key sizes in
such finite fields.
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