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Abstract. We propose new and improved instantiations of lossy trap-
door functions (Peikert and Waters, STOC ’08), and correlation-secure
trapdoor functions (Rosen and Segev, TCC ’09). Our constructions widen
the set of number-theoretic assumptions upon which these primitives can
be based, and are summarized as follows:

– Lossy trapdoor functions based on the quadratic residuosity assump-
tion. Our construction relies on modular squaring, and whereas pre-
vious such constructions were based on seemingly stronger assump-
tions, we present the first construction that is based solely on the
quadratic residuosity assumption.

– Lossy trapdoor functions based on the composite residuosity assump-
tion. Our construction guarantees essentially any required amount
of lossiness, where at the same time the functions are more efficient
than the matrix-based approach of Peikert and Waters.

– Lossy trapdoor functions based on the d-Linear assumption. Our
construction both simplifies the DDH-based construction of Peikert
and Waters, and admits a generalization to the whole family of d-
Linear assumptions without any loss of efficiency.

– Correlation-secure trapdoor functions related to the hardness of syn-
drome decoding.

Keywords: Public-key encryption, lossy trapdoor functions, correlation-
secure trapdoor functions.

1 Introduction

In this paper, we describe new constructions of lossy trapdoor functions and
correlation-secure trapdoor functions. These primitives are strengthened variants
of the classical notion of trapdoor functions, and were introduced with the main
goal of enabling simple and black-box constructions of public-key encryption
schemes that are secure against chosen-ciphertext attacks. At a high level, they
are defined as follows:



Lossy trapdoor functions [25]: A collection of lossy trapdoor functions con-
sists of two families of functions. Functions in one family are injective and
can be efficiently inverted using a trapdoor. Functions in the other family
are “lossy,” which means that the size of their image is significantly smaller
than the size of their domain. The only computational requirement is that a
description of a randomly chosen function from the family of injective func-
tions is computationally indistinguishable from a description of a randomly
chosen function from the family of lossy functions.

Correlation-secure trapdoor functions [26]: The classical notion of a one-
way function asks for a function that is efficiently computable but is hard
to invert given the image of a uniformly chosen input. Correlation security
generalizes the one-wayness requirement by considering k-wise products of
functions and any specified input distribution, not necessarily the uniform
distribution. Given a collection of functions F and a distribution C over k-
tuples of inputs, we say that F is secure under C-correlated inputs if the
function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk are independently
chosen from F and (x1, . . . , xk) are sampled from C.

Lossy trapdoor functions were introduced by Peikert and Waters [25], who
showed that they imply fundamental cryptographic primitives, such as trap-
door functions, collision-resistant hash functions, oblivious transfer, and CCA-
secure public-key encryption. In addition, lossy trapdoor functions have already
found various other applications, including deterministic public-key encryption
[3], OAEP-based public-key encryption [17], “hedged” public-key encryption for
protecting against bad randomness [1], security against selective opening at-
tacks [2], and efficient non-interactive string commitments [22].

The notion of correlation security was introduced by Rosen and Segev [26],
who showed that any collection of injective trapdoor functions that is one-way
under a natural input distribution can be used to construct a CCA-secure public-
key encryption scheme.1 They showed that any collection of lossy trapdoor func-
tions that are sufficiently lossy is in fact also correlation-secure. This result was
recently refined by Mol and Yilek [19] who showed that even lossiness of any
polynomial fraction of a single bit suffices.

These applications motivate us to investigate new constructions of lossy and
correlation-secure functions. Such constructions would enable us to widen the
basis upon which one can achieve the above cryptographic tasks in a simple and
modular way.

1.1 Our Contributions

We propose new and improved constructions of lossy and correlation-secure trap-
door functions based on well-established number-theoretic assumptions (some of

1 Any distribution where (x1, . . . , xk) are (1 − ϵ)k-wise independent, for a constant
ϵ < 1, can be used in their framework. In particular, this includes the case where x1

is uniformly distributed and x1 = · · · = xk.



which were previously not known to imply either of the primitives). By directly
applying the results of [25, 26, 19], we obtain new CCA-secure public-key encryp-
tion schemes based on these assumptions. Concretely, we present the following
constructions:

1. Lossy trapdoor permutations based on the quadratic residuosity assumption.
Our construction relies on Rabin’s modular squaring function and is based
solely on the quadratic residuosity assumption. More precisely, the function
is defined as f(x) = x2 · δr,s(x) mod N , where N = PQ is an RSA modulus
and δr,s(·) is a function indexed by two public elements r, s ∈ ZN serving
two independent purposes. First, it extends the modular squaring function
to a permutation over ZN . Second, f(x) loses the information about the sign
of x if and only if s is a quadratic residue. Therefore, under the quadratic
residuosity assumption f has one bit of lossiness. We note that although a
function with only one bit of lossiness (or, more generally, with only a non-
negligible amount of lossiness) is not necessarily a (strong) one-way function,
it nevertheless can be used as a building block for constructing even a CCA-
secure public-key encryption scheme (see [19, 26]).

2. Lossy trapdoor functions based on the composite residuosity assumption. Our
construction is based on the Damg̊ard-Jurik encryption scheme [8] with addi-
tional insights by Damg̊ard and Nielsen [9, 10]. The Damg̊ard-Jurik scheme
is based on computations in the group ZNs+1 , where N = PQ is an RSA
modulus and s ≥ 1 is an integer (it contains Paillier’s encryption scheme [23]
as a special case by setting s = 1). At a high level, each function is described
by a pair (pk, c), where pk is a public key for the encryption scheme, and c is
either an encryption of 1 (injective mode) or an encryption of 0 (lossy mode).
By using the homomorphic properties of the encryption scheme, given such
a ciphertext c and an element x, it is possible to compute either an encryp-
tion of x in the injective mode, or an encryption of 0 in the lossy mode. We
note that this construction was concurrently and independently proposed by
Boldyreva et al. [3]. We also give an “all-but-one” version of the construction.

3. Lossy trapdoor functions based on the d-Linear assumption. Our construction
both simplifies and generalizes the DDH-based construction of Peikert and
Waters [25, Section 5]. (Recall that DDH is the 1-Linear assumption.) Let
G be a finite group of order p and choose an n × n matrix M over Fp that
has either rank d (lossy mode) or rank n (injective mode). We “encrypt”
M = (aij) as the matrix gM = (gaij ) ∈ Gn×n, where g is a generator of G.
If x⃗ is a binary vector of length n, then given gM we can efficiently evaluate
the function fM (x⃗) = gMx⃗ ∈ Gn. If M has rank n, then given M we can
efficiently invert fM on the image of {0, 1}n. On the other hand, if M has
rank d and p < 2n/d, then f is lossy. The d-Linear assumption implies that
the lossy and injective modes cannot be efficiently distinguished. We also give
an “all-but-one” version of the function fM based on the DDH assumption.

4. Correlation-secure trapdoor functions based on the hardness of syndrome
decoding. Our construction is based on Niederreiter’s coding-based encryp-
tion system [21] which itself is the dual of the McEliece encryption sys-



tem [18]. Our trapdoor function is defined as f(x) = Hx, where H is a
binary (n − k) × n matrix (of a certain distribution that allows for embed-
ding a trapdoor) and x is bit string of small Hamming weight. We show that
the function’s correlation security is directly implied by a result of Fischer
and Stern [12] about the pseudorandomness of the function f . Interestingly,
the related McEliece trapdoor function (which can be viewed as the dual
of the Niederreiter function) is not correlation-secure.2 It is however pos-
sible to extend the framework of correlation security in a natural way to
obtain a direct construction of a CCA-secure encryption scheme from the
McEliece trapdoor function. This was recently demonstrated by Dowsley et
al [11] (who proposed the first coding-based encryption scheme that is CCA-
secure in the standard model) and, for the related lattice case, independently
by Peikert [24] and Goldwasser and Vaikuntanathan [14]. Our contribution
is to show that the Niederreiter function admits a simple construction of
correlation-secure trapdoor functions based on the same security assump-
tions as [11].3 The resulting CCA-secure encryption scheme is as efficient as
the one from [11].

1.2 Related Work

Most of the known constructions and applications of lossy and correlation-secure
trapdoor functions are already mentioned above; here we include a few more.
Besides their construction based on DDH, Peikert and Waters [25] also present
a construction of lossy trapdoor functions based on the worst-case hardness of
lattice problems. The construction does not enjoy the same amount of lossiness as
their DDH-based one, but it still suffices for their construction of a CCA-secure
public-key encryption scheme. The worst-case hardness of lattice problems is also
used by Peikert [24] and by Goldwasser and Vaikuntanathan [14] to construct
a CCA-secure encryption scheme using a natural generalization of correlation-
secure trapdoor functions.

Kiltz et al. [17] show that the RSA trapdoor permutation is lossy under
the Φ-Hiding assumption of Cachin et al. [6]. (Concretely, it has log2(e) bits
of lossiness, where e is the public RSA exponent.) Furthermore, they propose
multi-prime hardness assumptions under which RSA has greater lossiness.

In concurrent and independent work, Mol and Yilek [19] propose a lossy
trapdoor function based on the modular squaring function. Though this con-
struction is related to ours, its security is based on the stronger assumption that
a random two-prime RSA modulus is indistinguishable from a random three-
prime RSA modulus. In another concurrent and independent work, Hemenway

2 The McEliece trapdoor function is defined as f ′
H(x, e) := Hx ⊕ e, where H is a

binary k × n matrix, x is a k-bit string and e is a error vector of small Hamming
weight. Given H1, H2 and two evaluations y1 = H1x⊕ e and y2 = H2x⊕ e one can
reconstruct the unique x by solving (H1 ⊕H2)x = y1 ⊕ y2 for x.

3 We remark that our construction of a correlation-secure trapdoor function from
coding theory does not carry over to the lattice case since the “dual” of the one-way
function used in [24, 14] is not injective.



and Ostrovsky [15] generalize the framework of Peikert and Waters [25] to rely
on any homomorphic hash proof system, a natural generalization of hash proof
systems introduced by Cramer and Shoup [7]. Hemenway and Ostrovsky then
show that homomorphic hash proof systems can be constructed based on either
the quadratic residuosity assumption or the composite residuosity assumption.
Their approach is significantly different than ours, and the resulting construc-
tions seem incomparable when considering the trade-off between efficiency and
lossiness.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review the
definitions of lossy and correlation-secure trapdoor functions. In Sections 3, 4,
and 5 we present our constructions that are based on the quadratic residuosity
assumption, the d-Linear assumption, and the hardness of syndrome decoding,
respectively. Due to space constraints, the construction based on the composite
residuosity assumption is only given in the full version [13].

2 Preliminaries

2.1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions. Func-
tions in one family are injective and can be efficiently inverted using a trapdoor.
Functions in the other family are “lossy,” which means that the size of their im-
age is significantly smaller than the size of their domain. The only computational
requirement is that a description of a randomly chosen function from the family
of injective functions is computationally indistinguishable from a description of
a randomly chosen function from the family of lossy functions.

Definition 2.1 (Lossy trapdoor functions). A collection of (n, ℓ)-lossy trap-
door functions is a 4-tuple of probabilistic polynomial-time algorithms (G0,G1,F,
F−1) such that:

1. Sampling a lossy function: G0(1
n) outputs a function index σ ∈ {0, 1}∗.

2. Sampling an injective function: G1(1
n) outputs a pair (σ, τ) ∈ {0, 1}∗×

{0, 1}∗. (Here σ is a function index and τ is a trapdoor.)
3. Evaluation of lossy functions: For every function index σ produced by

G0, the algorithm F(σ, ·) computes a function fσ : {0, 1}n 7→ {0, 1}∗, whose
image is of size at most 2n−ℓ.

4. Evaluation of injective functions: For every pair (σ, τ) produced by G1,
the algorithm F(σ, ·) computes an injective function fσ : {0, 1}n 7→ {0, 1}∗.

5. Inversion of injective functions: For every pair (σ, τ) produced by G1 and
every x ∈ {0, 1}n, we have F−1(τ,F(σ, x)) = x.

6. Security: The two ensembles {σ : σ ← G0(1
n)}n∈N and {σ : (σ, τ) ←

G1(1
n)}n∈N are computationally indistinguishable.



Note that ℓ can be a function of n. Note also that we do not specify the
output of F−1 on inputs not in the image of fσ.

A collection of all-but-one lossy trapdoor functions is a more general primi-
tive. Such a collection is associated with a set B, whose members are referred to
as branches. (If B = {0, 1} then we obtain the previous notion of lossy trapdoor
functions.) The sampling algorithm of the collection receives an additional pa-
rameter b∗ ∈ B, and outputs a description of a function f(·, ·) together with a
trapdoor τ and a set of lossy branches β. The function f has the property that
for any branch b ̸∈ β the function f(b, ·) is injective (and can be inverted using
τ), and the function f(b∗, ·) is lossy. Moreover, the description of f hides (in a
computational sense) the set of lossy branches β.

Our definition is slightly more general than that of Peikert and Waters [25,
Section 3.2], which allows only one lossy branch (i.e., β = {b∗}). We allow pos-
sibly many lossy branches (other than b∗), and require that given a description
of a function and b∗ it is computationally infeasible to find another lossy branch.
The proof of security of the Peikert-Waters CCA-secure public-key encryption
scheme [25, Section 4.3] can easily be adapted to our more general context. (We
are currently not aware of other applications of all-but-one lossy trapdoor func-
tions).

Definition 2.2 (All-but-one lossy trapdoor functions). A collection of
(n, ℓ)-all-but-one lossy trapdoor functions is a 4-tuple of probabilistic polynomial-
time algorithms (B,G,F,F−1) such that:

1. Sampling a branch: B(1n) outputs a value b ∈ {0, 1}∗.
2. Sampling a function: For every value b produced by B(1n), the algorithm

G(1n, b) outputs a triple (σ, τ, β) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ consisting of a
function index σ, a trapdoor τ , and a set of lossy branches β with b∗ ∈ β.

3. Evaluation of lossy functions: For every value b∗ produced by B(1n) and
for every (σ, τ, β) produced by G(1n, b∗), the algorithm F(σ, b∗, ·) computes a
function fσ,b∗ : {0, 1}n 7→ {0, 1}∗, whose image is of size at most 2n−ℓ.

4. Evaluation of injective functions: For any b∗ and b produced by B(1n)
and for every (σ, τ, β) produced by G(1n, b∗), if b ̸∈ β, then the algorithm
F(σ, b, ·) computes an injective function fσ,b : {0, 1}n → {0, 1}∗.

5. Inversion of injective functions: For any b∗ and b produced by B(1n) and
for every (σ, τ, β) produced by G(1n, b∗), if b ̸∈ β then we have

F−1(τ, b,F(σ, b, x)) = x.

6. Security: For any two sequences {(b∗n, bn)}n∈N such that b∗n and bn are
distinct values in the image of B(1n), the two ensembles {σ : (σ, τ, β) ←
G(1n, b∗n)}n∈N and {σ : (σ, τ, β) ← G(1n, bn)}n∈N are computationally indis-
tinguishable.

7. Hiding lossy branches: Any probabilistic polynomial-time algorithm A
that receives as input (σ, b∗), where b∗ ← B(1n) and (σ, τ, β) ← G(1n, b∗),
has only a negligible probability of outputting an element b ∈ β \ {b∗} (where
the probability is taken over the randomness of B, G, and A).



2.2 Correlation-Secure Trapdoor Functions

A collection of efficiently computable functions is a pair of algorithms F = (G,F),
where G is a key-generation algorithm used for sampling a description of a func-
tion, and F is an evaluation algorithm used for evaluating a function on a given
input. The following definition formalizes the notion of a k-wise product, which
is a collection Fk consisting of all k-tuples of functions from F .

Definition 2.3 (k-wise product). Let F = (G,F) be a collection of efficiently
computable functions. For any integer k, we define the k-wise product Fk =
(Gk,Fk) as follows:

– The key-generation algorithm Gk on input 1n invokes k independent in-
stances of G(1n) and outputs (σ1, . . . , σk). That is, a function is sampled
from Fk by independently sampling k functions from F .

– The evaluation algorithm Fk on input (σ1, . . . , σk, x1, . . . , xk) invokes F to
evaluate each function σi on xi. I.e., Fk(σ1, . . . , σk, x1, . . . , xk) = (F(σ1, x1),
. . . ,F(σk, xk)).

A one-way function is a function that is efficiently computable but is hard
to invert given the image of a uniformly chosen input. This notion extends natu-
rally to one-wayness under any specified input distribution, not necessarily the
uniform distribution. Specifically, we say that a function is one-way with respect
to an input distribution I if it is efficiently computable but hard to invert given
the image of a random input sampled according to I.

In the context of k-wise products, a straightforward argument shows that
for any collection F which is one-way with respect to some input distribution
I, the k-wise product Fk is one-way with respect to the input distribution that
samples k independent inputs from I. The following definition formalizes the
notion of one-wayness under correlated inputs, where the inputs for Fk may be
correlated.

Definition 2.4 (One-wayness under correlated inputs). Let F = (G,F)
be a collection of efficiently computable functions with domain {Dn}n∈N, and let
C be a distribution where C(1n) is distributed over Dk

n = Dn×· · ·×Dn for some
integer k = k(n). We say that F is one-way under C-correlated inputs if Fk is
one-way with respect to the input distribution C.

For the special case that distribution C is the uniform k-repetition distribution
(i.e., C samples a uniformly random input x ∈ Dn and outputs k copies of
x), we say that F is one-way under k-correlated inputs. Rosen and Segev [26,
Theorem 3.3] show that a collection of (n, ℓ)-lossy trapdoor functions can be
used to construct a collection F that is one-way under k-correlated inputs for

any k < n−ω(log n)
n−ℓ .



3 A Construction based on the Quadratic Residuosity
Assumption

Our construction is based on the modular squaring function x 7→ x2 mod N ,
where N = PQ for prime numbers P ≡ Q ≡ 3 mod 4 (i.e., Blum integers).
This is a 4-to-1 mapping on Z∗

N , and the construction is obtained by embedding
additional information in the output that reduces the number of preimages to
either 2 (these are the lossy functions) or 1 (these are the injective functions)
in a computationally indistinguishable manner. Although this results in one bit
of lossiness when the functions are defined over Z∗

N , all lossy trapdoor functions
in a collection are required to share the same domain (i.e., the domain should
depend only on the security parameter). We overcome this difficulty with a
simple domain extension, which results in lossiness of log2(4/3) bits.

For any odd positive integer N , we denote by JSN : Z→ {−1, 0, 1} the Jacobi
symbol mod N . We define functions h, j : Z→ {0, 1} as follows:

h(x) =

{
1, if x > N/2
0, if x ≤ N/2

j(x) =

{
1, if JSN (x) = −1
0, if JSN (x) = 0 or 1

We define h and j on ZN by representing elements of ZN as integers between 0
and N − 1.

Fact 3.1 Let N = PQ where P ≡ Q ≡ 3 mod 4, and let y ∈ Z∗
N be a

quadratic residue. Denote by {±x0,±x1} the distinct solutions of the equation
x2 = y mod N . Then, JSP (−1) = JSQ(−1) = −1 and therefore

1. JSN (x0) = JSN (−x0) and JSN (x1) = JSN (−x1).
2. JSN (x0) = −JSN (x1).

In particular, the four square roots of y take all four values of (h(x), j(x)).

The construction. We define a 4-tuple F = (G0,G1,F,F
−1) (recall Definition

2.1) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an n-
bit modulus N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime numbers.
Then it chooses random r ∈ Z∗

N such that JSN (r) = −1, and a random
s ∈ Z∗

N such that JSN (s) = 1 and s is a quadratic residue. The function
index is σ = (N, r, s).

2. Sampling an injective function: On input 1n the algorithm G1 chooses
an n-bit modulus N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime
numbers. Then it chooses random r ∈ Z∗

N such that JSN (r) = −1, and a
random s ∈ Z∗

N such that JSN (s) = 1 and s is a quadratic non-residue. The
function index is σ = (N, r, s), and the trapdoor is τ = (P,Q).



3. Evaluation: Given a function index σ = (N, r, s) and x ∈ {0, 1}n, the
algorithm F interprets x as an integer in the set {1, . . . , 2n} and outputs

fN,r,s(x) =

{
x2 · rj(x) · sh(x) mod N, if 1 ≤ x < N
x, if N ≤ x ≤ 2n

4. Inversion: Given a description of an injective function σ = (N, r, s) together
with its trapdoor τ = (P,Q) and y = fN,r,s(x), the algorithm F−1 retrieves
x as follows. If N ≤ y ≤ 2n, then the algorithm outputs y. Otherwise,
(a) Find j(x) by computing JSN (fN,r,s(x)) (note that JSN (fN,r,s(x)) =

JSN (x)). Let y′ = yr−j(x).
(b) Find h(x) by checking whether y′ is a quadratic residue mod N (note

that h(x) = 1 if and only if y′ is not a quadratic residue). Let y′′ =
y′s−h(x).

(c) Find all square roots of y′′ in ZN , and output the one that agrees with
both j(x) and h(x). (We use Fact 3.1 if y′′ ∈ Z∗

N , and note that if
1 < gcd(y′′, N) < N , then y′′ has two square roots that are negatives of
each other.)

We now prove that the above construction is indeed lossy based on the
quadratic residuosity assumption. Let JN = {x ∈ Z∗

N : JSN (x) = 1}, and let
QN be the subgroup of squares in Z∗

N . Then the quadratic residuosity assump-
tion states that the two distributions obtained by sampling uniformly at random
from QN and from JN \ QN are computationally indistinguishable.

Theorem 3.2. Under the quadratic residuosity assumption, F is a collection of
(n, log2(4/3))-lossy trapdoor functions.

Proof. First, it follows from the correctness of the inversion algorithm that G1

outputs permutations on the set {1, . . . , 2n}. Next, we claim that G0 outputs
functions that are 2-to-1 on the set {1, . . . , N −1}. Suppose y ∈ QN . Since s is a
quadratic residue, Fact 3.1 implies that for each (η, ι) ∈ {0, 1}2 there is an xη,ι

satisfying
x2
η,ι = ys−η, h(xη,ι) = η, j(xη,ι) = ι.

Then for each η ∈ {0, 1} we have fN,r,s(xη,0) = y and fN,r,s(xη,1) = ry. Thus
each element in the setQN∪rQN has at least two preimages in Z∗

N , and since this
set has cardinality half that of Z∗

N we deduce that fN,r,s is 2-to-1 on Z∗
N . A similar

argument shows that every square in the group XP = {x ∈ ZN : gcd(x,N) = P}
has two preimages in XP , and the same for XQ. Since {1, . . . , N − 1} = Z∗

N ∪
XP ∪XQ, the function fN,r,s is 2-to-1 on this whole set.

Since N is an n-bit modulus (i.e., 2n−1 < N < 2n), the lossy functions are
2-to-1 on at least half of their domain, which implies that their image is of size
at most 3/4 · 2n = 2n−log2(4/3). In addition, descriptions of lossy functions and
injective functions differ only in the element s, which is a random element of the
subgroup of Z∗

N with Jacobi symbol 1 that is a quadratic residue in the lossy
case and a quadratic non-residue in the injective case. Therefore, the quadratic
residuosity assumption implies that lossy functions are computationally indistin-
guishable from injective functions. ⊓⊔



4 A Construction based on the d-Linear Assumption

The d-Linear assumption [16, 27] is a generalization of the decision Diffie-Hellman
assumption that may hold even in groups with an efficiently computable d-linear
map. The 1-Linear assumption is DDH, while the 2-Linear assumption is also
known as the Decision Linear assumption [4]. The assumption is as follows:

Definition 4.1. Let d ≥ 1 be an integer, and let G be a finite cyclic group of
order q. We say the d-Linear assumption holds in G if the distributions

{(g1, . . . , gd, gr11 , . . . , grdd , h, hr1+···+rd) : g1, . . . , gd, h
R← G, r1, . . . , rd

R← Zq} ,
{(g1, . . . , gd, gr11 , . . . , grdd , h, hs) : g1, . . . , gd, h

R← G, r1, . . . , rd, s
R← Zq}

are computationally indistinguishable.

For any d ≥ 1, the d-linear assumption implies the (d+1)-linear assumption
[16, Lemma 3].

Peikert and Waters [25, Section 5] give lossy and all-but-one lossy trapdoor
functions based on the DDH assumption. In the Peikert-Waters construction, the
function index is an ElGamal encryption of an n× n matrix M which is either
the zero matrix (lossy mode) or the identity matrix (injective mode) using a
finite cyclic group G of order p. The DDH assumption in G implies that these
two encryptions cannot be distinguished. The construction can be generalized to
d-linear assumptions using generalized ElGamal encryption, but such schemes
are less efficient since ElGamal based on the d-Linear assumption produces d+1
group elements per ciphertext (see e.g. [27]).

Our construction is based on the following basic observation from linear al-
gebra: if M is an n× n matrix over a finite field Fp and x⃗ is a length-n column
vector, then the map fM : x⃗ 7→ Mx⃗ has image of size pRk(M). If we restrict
the domain to only binary vectors (i.e., those with entries in {0, 1}), then the
function fM is injective when Rk(M) = n, and its inverse can be computed by
f−1
M : y⃗ 7→ M−1y⃗. If on the other hand we have Rk(M) < n/ log2(p), then fM
is not injective even when the domain is restricted to binary vectors, since the
image is contained in a subgroup of size less than 2n.

By performing the above linear algebra “in the exponent” of a group of order
p, we can create lossy trapdoor functions based on DDH and the related d-Linear
assumptions. In particular, for any n the size of the function index is the same
for all d.

We will use the following notation: we let Fp denote a field of p elements and
Rkd(Fn×n

p ) the set of n× n matrices over Fp of rank d. If we have a group G of
order p, an element g ∈ G, and a vector x⃗ = (x1, . . . , xn) ∈ Fn

p , then we define

gx⃗ to be the column vector (gx1 , . . . , gxn) ∈ Gn. If M = (aij) is an n× n matrix
over Fp, we denote by gM the n × n matrix over G given by (gaij ). Given a
matrix M = (aij) ∈ Fn×n

p and a column vector g = (g1, . . . , gn) ∈ Gn, we define

gM by

gM =
(∏n

j=1 g
a1j

j , . . . ,
∏n

j=1 g
anj

j

)
.



Similarly, given a matrix S = (gij) ∈ Gn×n and a column vector x⃗ = (x1, . . . , xn) ∈
Fn
p , we define Sx⃗ by

Sx⃗ =
(∏n

j=1 g
xj

1j , . . . ,
∏n

j=1 g
xj

nj

)
.

With these definitions, we have (gM )x⃗ = (gx⃗)M = g(Mx⃗).

The construction. For any positive integer d and any real number ϵ ∈ (0, 1),
we define a 4-tuple F = (G0,G1,F,F

−1) (recall Definition 2.1) as follows:

1. Sampling a lossy function: On input 1n, the algorithm G0 chooses at
random a ⌈ϵn/d⌉-bit prime p, a group G of order p, and a generator g of G.
Then it chooses a matrix M

R← Rkd(Fn×n
p ) and computes S = gM ∈ Gn×n.

The function index is σ = S.
2. Sampling an injective function: On input 1n, the algorithm G1 chooses

at random a ⌈ϵn/d⌉-bit prime p, a group G of order p, and a generator g of G.
Then it chooses a matrix M

R← Rkn(Fn×n
p ) and computes S = gM ∈ Gn×n.

The function index is σ = S, and the trapdoor is τ = (g,M).
3. Evaluation: Given a function index S and x ∈ {0, 1}n, we interpret x as a

binary column vector x⃗ = (x1, . . . , xn) ∈ Fn
2 . The algorithm F computes the

function fS(x) = Sx⃗.
4. Inversion: Given a function index S, a trapdoor τ = (g,M), and a vector

g ∈ Gn, we define F−1(τ,g) as follows:

(a) Compute h = (h1, . . . , hn)← gM−1

.
(b) Let xi = logg(hi) for i = 1, . . . , n.
(c) Output x⃗ = (x1, . . . , xn).

Theorem 4.1. Suppose ϵn > d. If the d-Linear assumption holds for G, then
the above family is a collection of (n, (1− ϵ)n)-lossy trapdoor functions.

Proof. We first note that in the lossy case, when M is of rank d, the image
of fS is contained in a subgroup of Gn of size pd < 2ϵn. The condition ϵn > d
guarantees p ≥ 3, so when M is of rank n the function fS is in fact injective. It
is straightforward to verify that the inversion algorithm performs correctly for
injective functions. Finally, by [20, Lemma A.1], the d-Linear assumption implies
that the matrix S when M is of rank n is computationally indistinguishable from
the matrix S when M is of rank d. ⊓⊔

Note that the system’s security scales with the bit size of p, i.e., as ϵn/d. In
addition, note that the discrete logarithms in the inversion step can be performed
efficiently when x⃗ is a binary vector. (Here we take advantage of the fact that
the output of F−1 is unspecified on inputs not in the image of F .)

We now describe the extension of the system to all-but-one lossy trapdoor
functions, in the case where the parameter d in the above construction is equal
to 1. Let In denote the n×n identity matrix. For any real number ϵ ∈ (0, 1), we
define a 4-tuple F = (G0,G1,F,F

−1) (recall Definition 2.2) as follows:



1. Sampling a branch: On input 1n, the algorithm B outputs a uniformly
distributed b ∈ {1, . . . , 2⌊ϵn⌋}.

2. Sampling a function: On input 1n and a lossy branch b∗, the algorithm G
chooses at random a ⌈ϵn⌉-bit prime p, a group G of order p, and a generator
g of G. Then it chooses a matrix A

R← Rk1(Fn×n
p ) Let M = A− b∗In ∈ Fn×n

p

and S = gM ∈ Gn×n. The function index is σ = S, the trapdoor is τ =
(g,M), and the set of lossy branches is β = {b∗, b∗ − Tr(A)}.

3. Evaluation: Given a function index S, a branch b, and an input x ∈ {0, 1}n,
we interpret x as a binary column vector x⃗ = (x1, . . . , xn). The algorithm F
computes the function fS,b(x⃗) = Sx⃗ ∗ gbx⃗, where ∗ indicates the component-
wise product of elements of Gn.

4. Inversion: Given a function index S, a trapdoor τ = (g,M), a branch b,
and a vector g ∈ Gn, we define F−1(τ, b,g) as follows:

(a) If M + bIn is not invertible, output ⊥.
(b) Compute h = (h1, . . . , hn)← g(M+bIn)

−1

.
(c) Let xi = logg(hi) for i = 1, . . . , n.
(d) Output x⃗ = (x1, . . . , xn).

Theorem 4.2. Suppose ϵn > 1. If the DDH assumption holds for G, then the
above family is a collection of (n, (1− ϵ)n)-all-but-one lossy trapdoor functions.

Proof. We first observe that if A is the rank 1 matrix computed by G(1n, b∗),
then

fS,b(x⃗) = g(A−(b∗−b)In)x⃗. (4.1)

We now verify each property of Definition 2.2. Properties (1) and (2) are imme-
diate. To verify property (3), note that (4.1) implies that fS,b∗(x⃗) = gAx⃗. Since
A has rank 1, the image of fS,b∗ is contained in a subgroup of Gn of size p < 2ϵn.

To check property (4), we observe that the condition ϵn > 1 guarantees p ≥ 3,
so when A− (b∗ − b)In is invertible the function fS,b is injective. The condition
A−(b∗−b)In being not invertible is equivalent to (b∗−b) being an eigenvalue of A.
Since A has rank 1, its eigenvalues are 0 and Tr(A). Thus (b∗−b) is an eigenvalue
of A if and only if b ∈ β, and fS,b is injective for all b ̸∈ β. It is straightforward
to verify that the inversion algorithm performs correctly whenever b ̸∈ β, so
property (5) holds.

Properties (6) and (7) follow from the DDH assumption for G. We show
property (6) by constructing a sequence of games:

Game0: This is the real security game. The adversary is given b0, b1, and gA−bωIn

for ω
R← {0, 1} and A

R← Rk1(Fn×n
p ), and outputs a bit ω′. The adversary

wins if ω′ = ω.
Game1: The same as Game0, except the challenge is gA

′−bωIn for some full rank
matrix A′ R← Rkn(Fn×n

p ).

Game2: The same as Game1, except the challenge is gU−bωIn for some uniform
matrix U

R← Fn×n
p .

Game3: The same as Game2, except the challenge is gU .



Since the Game3 challenge is independent of ω, the advantage of any adversary
playing Game3 is zero. We now show that if the DDH assumption holds for G,
then for i = 0, 1, 2, no polynomial-time adversary A can distinguish Gamei from
Gamei+1 with non-negligible advantage.

i = 0: Any algorithm that distinguishes Game0 from Game1 can be used to distin-
guish the distributions {gA : A

R← Rk1(Fn×n
p )} and {gA′

: A′ R← Rkn(Fn×n
p )}.

By [5, Lemma 1], any algorithm that distinguishes these distributions can
solve the DDH problem in G.

i = 1: Since the proportion of full-rank matrices to all matrices in Fn×n
p is (p−

1)/p, even an unbounded adversary can distinguish Game1 from Game2 with
probability at most 1/p.

i = 2: Since the matrix U is uniform in Fn×n
p , the matrix U−bωIn is also uniform

in Fn×n
p , so Game2 and Game3 are identical.

We conclude that for any b0, b1, no polynomial-time adversary can win Game0
with non-negligible advantage.

Finally, to demonstrate property (7) we show that any adversary A that pro-
duces an element of β given S and b∗ can be used to compute discrete logarithms
in G, contradicting the DDH assumption. Choose a matrix A

R← Rk1(Fn×n
p ), and

let A′(X) be the n × n matrix over Fp[X] that is the matrix A with the first
row multiplied by X. For any value X = t ̸= 0, the matrix A′(t) is uniformly
distributed in Rk1(Fn×n

p ).
Let (g, gt) be a discrete logarithm challenge for G. For any b∗ we compute

the matrix S = gA
′(t)−b∗In and give (S, b∗) to the adversary A. If the adversary

outputs b ∈ β with b ̸= b∗, then we can compute Tr(A′(t)) since this is the only
nonzero eigenvalue of A′(t). If aii is the ith diagonal entry of A, this gives us
an equation

a11t+ a22 + · · ·+ ann = λ. (4.2)

Since a11 = 0 with probability 1/p, we can solve for t with all but negligible
probability. ⊓⊔

If we choose any integer d ≥ 1 and repeat the above construction with p a
⌈ϵn/d⌉-bit prime and A a rank d matrix, then we expect to obtain an all-but-
one lossy trapdoor function under the d-Linear assumption. Indeed, the proofs
of properties (1)–(6) carry through in a straightforward way. However, the above
proof of property (7) does not seem to generalize. In particular, the generalization
of (4.2) is the equation det(A′(t)−λIn) = 0, which can be written as ut+ v = 0
for some (known) u, v ∈ Fp. When d = 1 the element u = a11 is independent
of λ, so we can conclude that it is nonzero with high probability; however when
d ≥ 2 this is not the case. We thus leave as an open problem the completion of
the proof for d ≥ 2.

5 Correlated Input Security from Syndrome Decoding

Our construction is based on Niederreiter’s coding-based encryption system [21]
which itself is the dual of the McEliece encryption system [18].



Let 0 < ρ = ρ(n) < 1 and 0 < δ = δ(n) < 1/2 be two functions in the
security parameter n. We set the domain Dn,δ to be the set of all n-bit strings
with Hamming weight δn. Note that Dn is efficiently samplable (see e.g. [12]).
The Niederreiter trapdoor function F = (G,F,F−1) is defined as follows.

– Key generation: On input 1n the algorithm G chooses at random a non-
singular binary ρn×ρn matrix S, a (n, n−ρn, δn)-linear binary Goppa code
capable of correcting up to δn errors (given by its ρn×n binary parity check
matrix G), and a n×n permutation matrix P . It sets H := SGP , which is a
binary ρn×n matrix. The description of the function is σ = H, the trapdoor
is τ = (S,G, P ).

– Evaluation: Given a description H of a function and x ∈ {0, 1}n with
Hamming weight δn, the algorithm F computes the function fH(x) = Hx ∈
{0, 1}ρn.

– Inversion: Given the trapdoor (S,G, P ) and y = Hx, the algorithm F−1

computes S−1y = GPx, applies a syndrome decoding algorithm for G to
recover ŷ = Px, and computes x = P−1ŷ.

The Niederreiter trapdoor function can be proved one-way under the indistin-
guishability and syndrome decoding assumptions which are indexed by the pa-
rameters 0 < ρ < 1 and 0 < δ < 1/2.

Indistinguishability assumption. The binary ρn × n matrix H output by
G(1n) is computationally indistinguishable from a uniform matrix of the
same dimensions.

Syndrome decoding assumption. The collection of functions which is de-
fined as fU (x) := Ux for a uniform ρn × n binary matrix U is one-way on
domain Dn,δ.

Choosing the weight δ to be close to the Gilbert-Warshamov bound is commonly
believed to give hard instances for the syndrome decoding problem. The Gilbert-
Warshamov bound for a (n, k, δn) linear code with δ < 1/2 is given by the
equation k/n ≤ 1 − H2(δ), where H2(δ) := −δ log2 δ − (1 − δ) log2(1 − δ). It
is therefore assumed that the syndrome decoding assumption holds for all 0 <
δ < 1/2 satisfying H2(δ) < ρ [12]. Note that one-wayness also implies that the
cardinality of Dn,δ is super-polynomial in n.

The following theorem was proved in [12].

Theorem 5.1 ([12]). If the syndrome decoding assumption holds for ρ̃ and δ
then the ensembles {(M,Mx) : M

R← {0, 1}ρ̃n×n; x
R← Dn,δ)}n∈N and {(M,y) :

M
R← {0, 1}ρ̃n×n; y

R← {0, 1}ρ̃n}n∈N are computationally indistinguishable.

This theorem implies that the Niederreiter trapdoor function is one-way under
k-correlated inputs.

Theorem 5.2. Suppose ρ, δ, and k are chosen such that ρ̃ := ρk < 1, and the
indistinguishability and the syndrome decoding assumptions hold for parameters
ρ̃ and δ. Then the Niederreiter trapdoor function is one-way under k-correlated
inputs.



Proof. Fix a probabilistic polynomial-time adversary A that plays the security
game for one-wayness under k-correlated inputs. Define

ε = Pr[A(H1, . . . , Hk,H1(x), . . . ,Hk(x)) = x],

where Hi
R← G(1n) and x

R← Dn,δ. We now exchange all the matrices Hi for uni-
form matrices Ui of the same dimension. By the indistinguishability assumption
and a hybrid argument, we have that∣∣∣Pr[A(H1, . . . , Hk,H1(x), . . . , Hk(x)) = x]

− Pr[A(U1, . . . , Uk, U1(x), . . . , Uk(x)) = x]
∣∣∣ ∈ negl(n).

For ρ̃ := ρk, define the ρ̃n × n matrix U by concatenating the columns of the
matrices Ui. Then the distributions (U1, . . . , Uk, U1(x), . . . , Uk(x)) and (U,Ux)
are identical. Since H2(δ) ≤ ρ/k = ρ̃ we can apply Theorem 5.1 to obtain

|Pr[A(U,Ux) = x]− Pr[A(M,uρ̃n) = x]| ∈ negl(n),

where uρ̃n is a uniform bit-string in {0, 1}ρ̃n. Observing that Pr[A(U, uρ̃n) =
x] = 1/|Dn,δ| ∈ negl(n) (since the Niederreiter function is assumed to be one-
way) implies that ε is negligible. ⊓⊔

We remark that the above proof implies that the Niederreiter trapdoor function
has linearly many hard-core bits, which greatly improves efficiency of the CCA-
secure encryption scheme obtained by using the construction from [26].
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