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Abstract. In many practical settings, participants are willing to de-
viate from the protocol only if they remain undetected. Aumann and
Lindell introduced a concept of covert adversaries to formalize this type
of corruption. In the current paper, we refine their model to get stronger
security guarantees. Namely, we show how to construct protocols, where
malicious participants cannot learn anything beyond their intended out-
puts and honest participants can detect malicious behavior that alters
their outputs. As this construction does not protect honest parties from
selective protocol failures, a valid corruption complaint can leak a single
bit of information about the inputs of honest parties. Importantly, it is
often up to the honest party to decide whether to complain or not. This
potential leakage is often compensated by gains in efficiency—many stan-
dard zero-knowledge proof steps can be omitted. As a concrete practical
contribution, we show how to implement consistent versions of several
important cryptographic protocols such as oblivious transfer, conditional
disclosure of secrets and private inference control.

Keywords. Consistency, equivocal and extractable commitment, obliv-
ious transfer, private inference control.

1 Introduction

Although classical results assure the existence of secure two- and multi-party
protocols for any functionality in the presence of malicious adversaries, the com-
putational overhead is often prohibitively large in practice. Hence, cryptogra-
phers have sought more restricted models for malicious behavior, which are still
realistic but facilitate more efficient protocol construction. A model of covert
adversaries [2] proposed by Aumann and Lindell considers a setting, where cor-
rupted parties are unwilling to deviate from the protocol unless they remain
uncaught. More precisely, they defined a hierarchy of security models, where
malicious behavior that alters the outputs of honest parties is detectable with
high probability. However, none of these models guarantee input-privacy because
a malicious adversary might potentially issue a detectable attack that completely
reveals inputs of all honest parties. We extend their hierarchy with a new security
model (consistent computing), which guarantees that malicious participants can-
not learn anything beyond their intended outputs and honest participants can
detect malicious behavior that alters their outputs. As a result, a valid corrup-
tion complaint leaks only a single bit of information about the inputs of honest



Objective Input-privacy [ Output-privacy [ Complaint handling [ Detectability

Multi-party protocols

Security Yes Yes Secure Optional
Consistency Limited leaks Limited leaks Possible Optional
K-leakage Limited leaks | Limited leaks Possible No
Covert Model No No Impossible Partial
Privacy No No Impossible No
Two-party protocols

Security Yes Yes Secure Yes
Consistency Yes Yes Possible Yes
K-leakage Limited leaks Limited leaks Possible No
Covert Model No No Impossible Yes
Privacy No No Impossible No

Table 1. Comparison of various security objectives in a malicious model

parties as opposed to the complete disclosure. Moreover, an honest participant
can often decide whether to complain or not. If a complaint is not filed, then no
information will be leaked at all unless the adversary learns it indirectly.

Our security model also guarantees that no participant can change their in-
put during a multi-round protocol, which consists of many sub-protocols, i.e.,
there exists an input that is consistent with all outputs. Additionally, the client
can prove cheating to third parties without active participation from the server,
since the protocol failure together with a proof that shows correctness of client’s
actions is sufficient. Hence, our security model is sufficient for many client-server
applications, where a server’s long-term reputation is more valuable than infor-
mation revealed by corruption complaints.

Finally, note that the ability to detect cheating from legitimate protocol fail-
ures can be important, as well. A good example is private inference control [31],
where the client makes queries to the server’s database. To protect the server’s
privacy, certain query patterns are known to be forbidden and should be rejected,
though without the server necessarily getting to know which one of the “forbid-
den” query patterns was used. Hence, a client really needs to know whether the
query failed due to insufficient privileges or the server just cheated.

Our contributions. Our main contribution is the new security model, which
provides more strict security guarantees than the semihonest model, all flavors
of covert models [2], and the k-leakage model [23] as depicted in Table 1.

We also present concrete, efficient protocols for consistent adaptive obliv-
ious transfer and consistent conditional disclosure of secrets. Notably, all our
constructions are much more efficient than their fully secure counterparts. For
instance, the new consistent oblivious transfer protocol is secure against un-
bounded malicious clients, uses 2 messages per query, and has communication
and computation comparable to that of the underlying private oblivious trans-



fer protocol. As a main technical tool, we use list commitment schemes, which
allow to commit to a list of elements so that, given a short certificate, one can
later verify the value of a single element of the committed list. Besides conven-
tional hiding and binding properties, we need equivocality and extractability.
See Sect. 3 for details and constructions.

Notation. Throughout this paper, k denotes the security parameter, {A;} is
a shorthand for a non-uniform adversary. The shorthand ¢(k) € poly(k) denotes
that ¢(k) can be bounded by a polynomial and (k) € negl(k) means that (k)
decreases asymptotically faster than any reciprocal of a polynomial.

Full Version and History. Full version of this paper can be found at [20]. The
first version of this eprint from the March of 2006 already defines consistency
(although under a different name). The 2-message argument system from [14]
was influenced by the first version of the eprint.

2 Definition of Consistent Computations

Achieving security against malicious behavior usually involves a large computa-
tional overhead, since one must provide a universal fraud detection mechanism
such that honest parties can detect a fraud even if it does not affect their con-
crete private outputs. As a possible trade-off between efficiency and security, we
could protect honest parties only against such actions that alter their outputs.
As a result, malicious adversaries might still cause selective protocol failures,
where honest parties fail if their inputs are in a specific range. In the following,
we use the standard ideal versus real world paradigm to formalize this concept
of consistent computations for various protocols. Note that we use standard se-
curity definitions [8, 18] with modified ideal world implementations, which give
additional power to the adversary, see Fig. 1 as an example.

For clarity and brevity, we present the definitions without delving into subtle
technical issues. In particular, we have omitted all low-level details of the ideal
and real world executions, as these are thoroughly discussed in common reference
materials [8,18]. Other more model specific details are separately discussed at
the end of the section.

Idealized implementations. In an idealized two-party protocol corresponding
to consistent computing, both parties send their inputs z1,xs to the trusted
third party TTP, which computes the corresponding outputs yi,y2. Next, a
corrupted participant sends the description of a randomized halting predicate
7(+) to TTP, who internally computes 7(x1, o). If 7(x1,z2) = 1, then TTP halts
the computations and sends L to the honest participant. If 7(z1,z2) = 0, then
TTP sends back the outputs y; exactly the same way as in the standard ideal
model. In particular, the corrupted party can still cause a premature abortion
and thus still learn its output.
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Fig. 1. Ideal world model for consistent two-party computations. A corrupted partic-
ipant P, can cause selective halting by specifying a predicate 7(:). In the standard
model, the dominant party P2 can cause only a premature abortion

Generalization to the multi-party setting is straightforward. However, there
are two subtle issues connected with fairness and detectability. A protocol guar-
antees fair selective abortion if an adversary can specify only a single predicate
7(-) such that TTP halts the computations and sends L to all participants iff
m(x1,...,2,) = 1. Alternatively, corrupted participants can separately specify
different halting predicates m;(-) for each party P; and thus some parties might
get their outputs while others do not. Also, note that the identity of the mali-
cious coalition might remain hidden for multi-party protocols, whereas this can-
not happen in a two-party protocol. A consistent protocol provides detectability
if TTP sends L to P; together with the identity of a corrupted participant who
specified the halting predicate whenever m;(z1,...,z,) = 1.

Consistency can also be formalized for adaptive computations, where the
outputs of each round can depend on the inputs submitted in previous rounds.
For the sake of brevity, we define consistency only for client-server protocols,
where the server initially commits to his or her input, and after that the client
can issue various oblivious queries. This model covers many practical settings
such as selling digital goods and private inference control [1,31]. To start such
a protocol, a server sends his or her input z to TTP. After that the client(s)
can adaptively issue various queries ¢; to TTP. When a query ¢; arrives, TTP
sends a notification message to the server who can then specify a description of
a halting predicate m;(z1,...,z;). Next, TTP evaluates the predicate and sends
f(gi, ) back to the client if m;(q1,...,q;) = 0, otherwise the client receives L.
As a small subtlety, note that the ability to issue halting predicates one-by-one
is needed only in the adaptive corruption model, where there are many clients
and the server might become corrupted in the middle of computations.

Formal security definition. As usual, we define security of a protocol by com-
paring its output distribution in the standalone setting with the corresponding
output distribution in the ideal world. More formally, fix a security parameter k
and let ©y, denote the input distribution of all parties including the adversary Ay.
W.l.o.g. we assume that each input is a pair (¢;, z;), where the auxiliary input
¢; models the internal state of the participant before the protocol and z; is the
actual protocol input. Now, if we fix the exact details how protocols are executed



and what the plausible attacks are, then a protocol instance I and an adversary
Ay, together determine uniquely a joint output distribution REALg, (Ag, IIj) of
all parties including Ay. Let IDEALgp, (A5, II},) denote the joint output distribu-
tion determined by the ideal world adversary and the corresponding ideal world
implementation II7. We say that the protocol family {II;} securely implements
{113} if for any non-uniform polynomial-time adversary {.Ay} there exists a non-
uniform polynomial-time adversary {Aj} such that for any input distribution
family {®y}, the output distributions REALg, (Ag,II;) and IDEALs, (A}, II3})
are computationally indistinguishable. If the output distributions are statisti-
cally indistinguishable or coincide, then we can talk about statistical and perfect
security. Finally, a protocol family {II;} correctly implements {II}} if for any
input distribution family {®} the output distributions coincide provided that
the adversaries remain inactive (corrupt nobody) in both worlds.

Basic properties. Note that the only difference between the formal definitions
of consistency and security in the malicious model is in the description of the
ideal world execution. Hence, we can treat a consistent protocol as a secure
implementation of a modified functionality that allows explicit specification of
halting predicates. As a result, standard composability results carry over and
each consistent protocol in a sequential composition can be replaced with the
ideal implementation. However, the resulting hybrid protocol does not necessar-
ily correspond to a consistent ideal world execution. For instance, if we execute
two client-server protocols in a row, then the server’s input is not guaranteed to
be the same for both ideal implementations. Also, a malicious server can specify
two halting predicates instead of a single one.

The main advantage of consistent computations over other weakened security
models is an explicit correctness guarantee. By the construction of the idealized
model of consistent computations, an honest participant reaches the accepting
state iff his or her output is consistent with the inputs submitted in the beginning
of the protocol. Hence, a successful protocol run provides consistency guarantees
in the real world, as well. Consequently, a non-accepting honest participant can
prove without the help of other participants that a malicious attack was car-
ried out. Moreover, any consistent protocol can be augmented with a complaint
handling mechanism that reveals nothing beyond the validity of the complaint.

Theorem 1. Let a protocol family {1} be a correct and consistent implemen-
tation of a functionality {II3} such that all messages are signed by their creators.
Then an honest participant can prove the existence of a malicious attack that al-
ters his or her output without help from others provided that the signature scheme
is secure. This proof can be converted to a zero-knowledge proof if the messages
received by the honest participant reveal nothing about his or her input.

Proof (Sketch). For the proof, note that by our security assumptions no partic-
ipant can forge messages sent by others. Hence, if an honest party reveals his or
her input and randomness together with all received messages, then anybody can
verify correctness of her computations. Since the protocol implements correctly



{II3 }, semi-honestly behaving participants cannot cause a non-accepting output.
This proof can be converted to a zero-knowledge proof, since it is sufficient to
present all received messages and then prove that there exists a valid input and
randomness that leads to the non-accepting state. The corresponding statement
belongs to an NP-language and thus has an efficient zero-knowledge proof. The
claim follows as messages in the proof reveal nothing about his or her input. O

Note that the last assumption in Theorem 1 is not a real restriction and can
be easily met by using a secure public key cryptosystem. Namely, if all messages
are encrypted with public keys of corresponding recipients, then messages leak
no information to outside observers but the protocol remains consistent.

However, differently from secure computations, a valid complaint reveals ad-
ditional information, namely, the adversary learns that the corresponding halting
predicate m;(z1, ..., x,) holds. On the other hand, a honest party does not have
to issue a complaint and thus the adversary is not guaranteed to learn halt-
ing predicates—in some applications, the honest parties can untraceably recover
from protocol failures. For all consistent and detectable protocols, such a com-
plaint also reveals the identity of the maliciously behaving participant. Hence,
there is a trade-off between the utility of a single bit m;(x1,...,2,) and a long-
term reputation of a participant. As a result, consistency of computations is
an adequate protection mechanism for all settings, where participants are un-
willing to cheat if they are caught with high probability or a single bit leakage
is much smaller compared to the amount of information revealed by legitimate
protocol outputs. For instance, the intended output of privacy-preserving data-
aggregation is usually several kilobytes (if not megabytes) long, and therefore
the effect of a single bit leakage is likely to be irrelevant.

The same argumentation holds also for consistent protocols without account-
ability. However, finding the identity of the culprit is difficult in such settings,
because everybody must prove the correctness of their actions and the corre-
sponding zero-knowledge proofs can be intractable in practice. Finally, note that
the potential damage of a valid complaint depends on the set of possible halting
predicates ;. In Section 6, we study this question explicitly and show how to
restrict the class of enforceable predicates.

Relation to other security definitions. The concept of covert corruption is
rather old and has been discussed in many contexts. The earliest definitions were
given for the multi-party setting [15, 9] and only recently modified to work in two-
party settings by Aumann and Lindell [2]. In particular, note that the definition
of t-detectability given in [15] and various definitions of e-detectability given
in [2] guarantee only that malicious behavior, which alters the outputs of honest
parties, is detected with notable probability. However, none of the definitions
limit the amount of information acquired during a successful fraud attempt.
Thus, our definition of consistent computations is a natural strengthening of
these definitions, which also guarantees the privacy of inputs. Another related
security notion is the k-leakage model [23], where the adversary can learn up
to k bits of auxiliary information about the inputs of honest parties. Similarly



to consistent computations, the adversary cannot alter outputs without being
detected. However, differently from consistent computations, the information
is guaranteed to reach adversary and such an attack is undetectable. Hence,
the k-leakage model provides less strict security guarantees. See Table 1 for a
comprehensive summary.

Subtle details. Note that halting predicates must be efficiently computable.
Otherwise, participation in an idealized computation can provide significant
gains to the adversary. Hence, we require that for any adversary { Ay}, the time
needed to evaluate halting predicates is polynomial in the running-time of {4 }.

Also, observe that many important cryptographic protocols are not secure
in the strict sense. The problem starts with classical zero-knowledge proofs, for
which, we know only how to construct simulators A° that work in expected poly-
nomial time. However, a model where ideal world adversaries have expected poly-
nomial running time causes many technical and philosophical drawbacks [19].
For instance, we loose sequential composability guarantees. Hence, we use an
alternative formalization. A protocol {II;} is secure in a weak polynomial se-
curity model, if for any time bound t(k) € poly(k), for any notable difference
e(k) € 2(k™°), and for any polynomial-time real world adversary {A}, there
exists an polynomial-time ideal world adversary {.A5} such that no non-uniform
distinguisher {By} with running-time ¢(k) that can distinguish REALs, (A, I1))
and IDEALg, (A3, II5) with advantage more than (k). This definition has the
virtue of being formalized with strict time bounds and thus free of technical
issues. In particular, it is sequentially composable and formalizes our knowledge
about the reductions as precisely as possible.

3 List Commitment Schemes

To achieve consistency, a corrupted participant must be unable to change his or
her input during the protocol without being caught. The latter can be achieved
by forcing participants to commit to their inputs. More precisely, we need com-
mitment schemes for lists of elements, such that individual elements can later
be decommitted by presenting short certificates. A list commitment scheme is a
quadruple of probabilistic polynomial-time algorithms (gen, com, cert, open) with
the following semantics. The key-generator algorithm gen(1%) is used to generate
public parameters ck that fix the message space Mj and the maximal number
of list elements N}, € poly(k). Given a list & = (21,...,2,) € M™ with n < N,
the commitment algorithm comcy(x) outputs a pair (¢,d) of commitment and
decommitment values. The certificate generation algorithm certe(d,?) returns
a partial decommitment value (certificate) s; for the ith element. The verifi-
cation algorithm open(c, s) returns either a pair (i,a;) or L. It is required
that open(c, certe(d,i)) = (i,x;) for all possible values of ck « gen(1¥) and
(¢,d) — come(x). We now define various (optional) security properties through
games that are played between a challenger and a nonuniform adversary.



Binding and hiding. A list commitment scheme is computationally binding if
every polynomial-time adversary { Ay} wins the following game with negligible
probability:

1. Challenger generates ck < gen(1*) and sends ck to Ay.

2. Aj generates a commitment ¢ and two certificates Sy and 7.

3. Aj wins if the commitment can be opened to different values of x;.
That is, locations coincide ig = i1 but 1 # zy # x1 # L for the
openings (ig, xo) < openg (¢, 50) and (i1, x1) < openg (¢, 51).

A list commitment scheme is statistically hiding if for any non-uniform adversary
A the probability that 4; wins the following game is negligibly close to one half:

1. Challenger generates ck < gen(1*) and sends ck to Ay.
2. A sends two lists (@, () € M™ with n < Ny, to the challenger.
3. Challenger generates a random bit b « {0, 1}, computes
(¢,d) « comg(2z®)) and sends the commitment value ¢ to Ay.
4. In the next phase, Aj can make a number of oracle queries to certq(d, )
provided that xgo) = :1:21) for any queried index i.
5. A wins the game if he or she correctly guesses the bit b.

Equivocality. In several proofs, we use simulators that send a fake commit-
ment value ¢ to the adversary and then gradually open parts of it according to
the instructions sent by TTP. To preserve the closeness of real and simulated
executions in such a setting, the commitment scheme must be equivocal. A list
commitment scheme Ic is perfectly equivocal if there exist three additional al-
gorithms gen®, com® and equiv, such that no unbounded adversary {A;} can
distinguish between the following two experiments:

NORMAL EXECUTION:

1. Challenger generates ck < gen(1*) and sends ck to Ay.
2. Aj sends © = (x1,...,2,) to the oracle O who computes
(¢,d) — come(x), s; < certek(d, i) and replies with (¢, s1,...,8p).

SIMULATED EXECUTION:
1. Challenger generates (ek,ck) < gen®(1%) and sends ck to Ag.
2. The oracle O computes (¢,n) < comg, (n) and, given = (z1,...,%,)
from Ay, computes §; «— equivy (&, 7,1, ;) and replies with (¢,51,...,8y,).

One can build non-interactive equivocal commitment schemes based on any
one-way functions in the common reference string (CRS) model [12]. In the
standard model, 3 messages are needed to implement an equivocal commitment
scheme. Thus, all subsequent results that use equivocal commitment schemes
require at least 3 messages. However, as the initialization phase can be shared
between different runs, the round complexity is not a problem in practice.



Extractability. Many commitment schemes have an explicit extraction mecha-
nism such that a person who possesses some extra information sk can open com-
mitments without decommitment value, see for instance [29, 13]. These commit-
ments are often used in simulator constructions, where one has to extract inputs
for committed values. For obvious reasons, such trapdoors do not exist when the
final commitment value is shorter than the length of a committed string.
Buldas and Laur showed that if the creator of a commitment gets no addi-
tional information besides the commitment parameters ck, then all committed
elements are efficiently extractable given white-box access to the committing
algorithm and to the randomness used by it. See the definition of knowledge-
binding and corresponding proofs in [5]. However, in the context of two- and
multi-party computations, an adversary always gets additional inputs and thus
we must amend the definition. A list commitment scheme is white-box extractable
if for any polynomial-time adversary {.A} there exists a polynomial-time extrac-
tor machine {K 4, } such that for any input distribution ®; and for any family
of advice strings {ay} the adversary Ay can win the following game with negligi-
ble probability. The family of advice strings {aj} in the game models unknown
future events, which might help the adversary to open the commitments.

1. Challenger generates ck < gen(1¥), ¢ «+ @}, and a new random tape w.
2. Ay gets ¢ and ck as inputs and w as the random tape and outputs
a list commitment ¢ together with size n, (¢,n) «— Ak(¢, ck;w).
3. K4, gets ¢, ck and w as inputs and outputs (&1, ...,2,) «— Ka, (¢, ck;w).
4. Given advice ay, Ay outputs certificates (s1,...,$m) — Ag(ax).
5. The adversary wins if Ay outputs at least one certificate that is consistent
with the commitment and that corresponds to a list element, not correctly
guessed by the extractor, i.e., if 3j : L # (i, x,) = openg(c, s;) A x4 # Z;.

Currently it is not know how to construct a non-interactive compressing com-
mitment scheme that is provably white-box extractable.* However, if we consider
interactive commitment schemes, where a sender executes a zero-knowledge proof
of knowledge that he or she knows how to open all elements under the list com-
mitment, we can construct such a knowledge extractor by definition. By using
suitable zero-knowledge techniques as detailed in [24], the total communication
between the receiver and the sender can be made sublinear, although the com-
putational overhead might be too large for practical applications.

As the security of proofs of knowledge is often defined in a weaker model [3],
we also relax other definitions to be compatible. A list commitment scheme is
weakly white-box extractable if for any polynomial-time adversary {A} and an
error bound e(k), there exists a extractor machine {K 4, } such that, for any input
distribution @y, and for any family of advice strings {ay}, the adversary Aj wins
the extractability game with a probability at most (k) and the running-time of
K4, is at most O(poly(k)/e(k)) times slower than Ay.

* The results of [5] assure existence of extractors K4, o, that depend on Dy.



Double-layered commitments. There are two principally different ways how
to construct a list commitment scheme with extractability and equivocality prop-
erties. First, one can commit elements individually using ordinary commitment
scheme with these properties, such as [13]. As a result, we get strong extractabil-
ity guarantees but cannot get beyond linear communication complexity. Alter-
natively, we can first build a double-layered equivocal commitment scheme, and
then add extractability by an interactive proof of knowledge. A double-layered
commitment scheme dlc is specified by a conventional commitment scheme cs
and a list commitment scheme lc. The key-generator procedure dlc.gen runs
both key generation procedures and outputs a pair of resulting public param-
eters (cky,cks). To commit to & = (x1,...,2,), one first computes conven-
tional commitments (¢;,d;) < cs.comey, (x;) for i € {1,...,n} and then outputs
(Cx,dy) «— lc.comey, (¢, - - ., ¢n). To decommit x; one has to first decommit ¢; by
giving lc.certek, (dy, ) and then also reveal d; so that the receiver could compute
cs.openy (c;, d;). Other operations are defined analogously.

Theorem 2. Let Ic be a binding commitment scheme and cs be a conventional
commitment scheme. Then dlc inherits statistical hiding, perfect hiding; compu-
tational binding; statistical equivocality and perfect equivocality from cs.

Proof. Hiding and binding are evident. For the equivocality, note that given the

equivocation key ek for cs, it is possible to use cs.com® to generate a list ¢q, ..., ¢,
of fake commitments for lower level that can be later opened to any values using
the function cs.equiv,, and the claim follows. O

The list commitment scheme does not have to be hiding. Hence, we can
use hash trees to compress large lists into succinct digests. The corresponding
construction is based on a collision-resistant hash function family {H} and the
length of certificates is known to be of size O(klogn). The Pedersen commitment
scheme [27] is a good candidate of the conventional commitment scheme, as it is
perfectly equivocal in the CRS model and can be easily set up in the standard
model. More precisely, the public parameter is a uniformly chosen group element
y € (g) and the corresponding equivocality trapdoor is the discrete log of y. As
the first option, parameters can be generated jointly by the sender and the
receiver by using a secure three-message multiplication protocol to multiply two
random group elements. Alternatively, the client may specify y since the Pedersen
commitment scheme is perfectly hiding. Then, we lose equivocality unless we are
willing to find the discrete logarithm of y in exponential time.

4 Consistent Adaptive Oblivious Transfer

Oblivious transfer protocols are often used as building blocks for complex pro-
tocols. In an adaptive oblivious transfer protocol, a server has an input database
x = (21,...,2,) of £-bit strings and a client can adaptively query up to m ele-
ments from this database. The client should learn nothing beyond z,,..., x4,
and the the server should learn nothing. In particular, the client should learn



Client’s inputs: adaptively chosen indexes qi1,. .., qm.
Server’s inputs: a database x = (z1,...,Zn).
Common inputs: a description of Ic and ot.

TRUSTED SETUP
If needed, the trusted dealer executes the shared setup phase for ot.
The trusted dealer broadcasts public parameters ck < lc.gen(1¥) to everybody.

COMMITMENT PHASE
The server computes (¢, d) < lc.com () and sends the commitment (¢, n) to
the client. Then the server computes s; < lc.certe(d, i) for each ¢ € {1,...,n},
and stores the database of partial decommitment values s < (s1,...,8xn).

QUERY PHASE. To fetch the g;th element form the database:
1. The client sends Q; < ot.query(g;) to the server.
2. The server returns R; < ot.reply(s, Q;).
3. The client computes A; < ot.decode(g;, R;) and (j,z+) < lc.open, (¢, A;).
If j = ¢; then the client outputs x., otherwise the client outputs L.

Protocol 1: The new consistent adaptive oblivious transfer protocol

L if its query is not in the range {1,...,n}. In the asymptotic setting, all pa-
rameters m, n, £ must be polynomial in the security parameter k. Two standard
security notions for the oblivious transfer protocol in the malicious model are
security and privacy. In brief, private protocols guarantee only that a malicious
client cannot learn anything beyond zq, , ..., %4, but do not assure that an hon-
est client indeed learns x4, ..., %, if the server is malicious. As such they are
inapplicable for many practical applications.

In most adaptive oblivious transfer protocols that are secure in the malicious
model, the server first commits to his or her individual database elements, and
then at every query helps the client to “decrypt” a single database element, see
for example [7, 28]. A natural alternative is to use a sublinear-length commitment
scheme together with suitable zero-knowledge techniques as detailed in [24].
However, the resulting low-communication protocol is only a theoretical solution
with computational overhead that is too large for practical applications.

As a practical solution, we show how to convert any private oblivious trans-
fer protocol into a consistent protocol with low computational and communi-
cational overhead, see Prot. 1. By using protocols [17,22] for oblivious trans-
fer, we get an efficient protocol with almost optimal communication. For the
sake of simplicity, we assume that the underlying private 1-out-of-n oblivious
transfer protocol ot has 2 moves and is determined by a triple of algorithms
(query, reply, decode) such that for any ¢; € {1,...,n} and = € {O,l}lxn, we
have decode(qg;, reply(z, query(g;))) = x4,. This assumption is not a big restric-
tion, since most practical oblivious transfer protocols are in this form, and gener-
alization to multi-round protocols is obvious. As a second simplification, we use
a trusted setup phase for generating the public parameters. One can eliminate
the need for a trusted dealer by running a secure multiparty protocol, but the
explicit use of the trusted setup makes security proofs more modular.




The underlying idea behind the protocol is rather simple. First, the server
uses a list commitment scheme lc to commit all inputs @. Then the server com-
putes an intermediate database s = (s1,...,s,) of certificates corresponding
to every z;. In an query phase, the client and the server execute the oblivious
transfer protocol ot with the server’s input s to fetch the g;th certificate s, . If
this value opens a database element x, that is consistent with the commitment
of & and the query g;, then we output z., otherwise we return L.

Theorem 3. If the oblivious transfer protocol ot is computationally private in
the shared setup model and the list commitment scheme Ic is binding and equiv-
ocal, then Prot. 1 is a consistent adaptive m-out-of-n oblivious transfer protocol
in the polynomial security model provided that n™ € poly(k).

Proof. For the proof, we fix a security parameter k, consider an adversary Ay
and show how to convert it into an ideal world adversary Aj, such that the output
distributions are close enough for any input pair (¢, @s).

SECURITY OF HONEST CLIENT. Let Aj be a corrupted server and Cj an hon-
est client. As the number of potential queries is polynomial, we can construct a
black-box extractor K*C that fixes random coins of the client and the malicious
server, and makes all n™ queries in order to recover all valid openings (j, ;).
As the slowdown is polynomial and the commitment scheme is binding, double
openings &; # i; are revealed with negligible probability. Hence, we can use
JCA#:€ in the construction of ideal world server. By the definition, the oblivious
transfer protocol ot is private in the shared setup model if for any adaptively
chosen inputs vectors ¢ = (q1,...,¢m) and ¢ = (¢4, -.-,3,,) the output distri-
bution of Ay is computationally indistinguishable. Hence, we can replace the
missing messages in the ideal world by simulating the honest receiver with input
7 = (1,...,1). We can combine these results and consider the following ideal
world adversary Ag:

1. Run the setup phase to obtain public parameters for Ic and ot.

2. Choose randomness w and store (21, ..., &, ) « KACr (g, ck; w).

3. Send (Z1,...,%&,) to TTP and specify halting predicates 7y, ..., T, through
the interaction between the client Cx(q) and the adversary A (¢s, ck; w), that
is, mi(q1, ..., ¢q;) = 1 iff C with input ¢1,...,q; obtains x4, # L.

4. Output whatever A (¢s,ck;w) outputs in interaction with Cx(q).

Let (v¢,%5) denote the outputs of the real execution and (12,?) the outputs
of the ideal execution. W.l.o.g. we can assume that the output of Ay contains
¢s,ck,w and thus given the advice ¢. we can efficiently compute . form ),
or 2. Hence, the distributions (., %) and (¢, 1?) must be computationally
indistinguishable, or otherwise we can distinguish s form 7, which violates
the privacy of ot. Now, note that for fixed (¢s, ck,w) the corresponding outputs
Y. and 17 can differ only if the client recovers z,, # I4. As this can hap-
pen with negligible probability, the distributions (¢, %) and (¥2,2) must be

computationally indistinguishable and thus also (v, 1s) and (¥2,9?2).

S



SECURITY OF HONEST SERVER. Since the output of the server in the ideal and
real model is empty, only the output of a malicious client A must be analyzed.
Consider a hybrid implementation of the protocol, where all instances of ot
are replaced with ideal implementations of oblivious transfer protocol with the
database s. Then as the ot protocol is private in the shared setup model, there
exists an adversary Aj such that the output distributions of A and A} are
computationally indistinguishable.

To complete the proof, we construct a true ideal world adversary A} and show
that the outputs of A7 and A}, are computationally indistinguishable. Indeed,
let the ideal world adversary A}, proceed as follows:

1. Generate the equivocality key (ek,ck) « lc.gen®(1¥) and broadcast ck.

2. Compute (¢,1) « lc.comg ., (n) and send ¢ to the adversary Aj.

3. If A} queries g;, obtain x,; from TTP and reply 3; « lc.equivy (&, 7, q;, 24, )-
4. Return whatever the adversary Aj finally outputs.

Then it is easy to see that in the hybrid world A} plays the first equivocality
game with the honest server and in the ideal world A} plays the second equivo-
cality game with a challenger consisting of the simulator A7, TTP and the honest
server. To nitpick, A} does not query all faked decommitment values at once,
but clearly we can write a wrapper that queries all decommitments and then
gradually releases them to A}. Thus, the outputs of A} and A7 must be com-
putationally indistinguishable or otherwise A} together with the distinguisher
would break the equivocality property. a

Corollary 1. If ot is (weakly) statistically server-private and lc is statistically
equivocal, then Prot. 1 is (weakly) statistically server-private.

Proof. If ot is statistically private, then for each Ay there exists poly(k) times
slower A}, such that the output distributions are statistically close. Weak statis-
tical privacy guarantees only the existence of A} without bounds on the running
time. Both claims follow as A is only poly(k) times slower than Aj. O

The limitation that the number of potential queries must be polynomial in
k seems to be essential for getting a low-communication solution with a small
computational overhead. To bypass this restriction, we can either use list com-
mitment schemes that are both extractable and equivocal.

Corollary 2. If the oblivious transfer protocol ot is computationally private in
the shared setup model and the list commitment scheme Ic is (weakly) white-
boz extractable and equivocal, then Prot. 1 is a consistent adaptive m-out-of-n
oblivious transfer protocol in the (weak) polynomial security model.

Proof. Note that the algorithm pair (Ag,Cx) can be treated as a compound
adversary, which generates a list commitment (¢,n) and then later opens m
elements according to the advice a = (g1, ..., ¢m). As the commitment scheme
is white-box extractable, there exists an extractor machine K 4, ¢, that, given
the parameters ck, the server’s input ¢4 and the random tape w, outputs a list



of candidate elements & = (Z1,...,Z,) such that at the end of the execution C
accepts xy, # 4, with negligible probability. This extractor can be used in the
simulator construction of Thm. 3 instead of KA%:Cx.

WEAK EXTRACTABILITY. The same construction is valid for a weakly extractable
commitment scheme. However, in this case for any notable error bound e(k), we
can choose K 4, ¢, such that (¢, ¥?) and (¢2,42) are e(k)-close. As (¢, 1s) and
(1, 12) are computationally indistinguishable, we can guarantee that, for a large
enough k, distributions (¢, 1s) and (¢2,1?) are computationally 2¢(k)-close. As
the slowdown is O(poly(k)/e(k)), we have established that for any notable error
bound e(k), we can construct a polynomial-time ideal world adversary, i.e., the
correspondence { A} — {Aj5} is valid in the weak polynomial model. O

Comparison with other protocols. If n™ is polynomial in k, then we can use
very communication efficient list commitments that stretch the input O(klogn).
By combining it with the most efficient private oblivious transfer protocol [17]
we get a protocol with a communication complexity O(k-m log? n). Moreover, if
we neglect the setup, then for the amortized round complexity is two messages
per query. The latter is significantly better than the communication complexity
£2(mn) of the secure adaptive oblivious transfer protocols [11,10, 6, 25] relying
on zero-knowledge proofs. With an explicit use of the PCP theorem one can
achieve polylogarithmic communication [24] but this approach is only optimal
in the asymptotic sense.

As for the computational complexity, note that additional computational
overhead (compared to private protocols) comes from the commitment phase.
For a hash tree based list commitment scheme, this computational overhead is
O(n) hashing and commitment operations. If the number of queries is bounded
or n™ € poly(k), then there are no additional costs besides computing the com-
mitment. If the server must handle an unbounded number of queries, the server
has to prove that he or she knows how to open the commitment. In a communica-
tion inefficient version proof, the server sends all lower level commitment values
c1,...,Cy to the client and proves knowledge of each decommitment value. The
client first checks that the root of the Merkle tree is correct and then verifies indi-
vidual proofs. Such zero-knowledge proofs are particularly efficient for Petersen
commitments. Again the overhead is O(n) operations. By using suitable conver-
sion methods [24] we can achieve polylogarithmic communication by increasing
the computational overhead by a polynomial factor. Although the construction
still relies on the PCP theorem, the underlying proof is much simpler—the server
does not have to prove correctness in the query phases.

Aumann and Lindell described a 1-out-of-2 oblivious transfer protocol [2],
which is secure in the covert model. Although the resulting security guarantees
are weaker than for the consistent protocol, see Table 1, their protocol still has
7 messages and a much higher communication complexity. To be fair, three of
those messages are used to implement trusted setup for the private oblivious
transfer but there are still 4 messages per query and a malicious sender can
change its input during the protocol.



5 Consistent Conditional Disclosure of Secrets

Let ¢ = (q1, - .., qn) denote the client’s vector of inputs and let x be a secret pos-
sessed by the server. Then conditional disclosure of secrets (CDS) for a predicate
p is a protocol, where the client should learn

z, ifp(g)=1,
cds,(q,x) =
o) {J_, otherwise ,

and the server should learn nothing. CDS protocols are often used to convert
client-server protocols secure in a semihonest model to protocols that preserve
the privacy of inputs in the malicious model, see [1,21] for the details.

In the context of the current work, we are more interested in the direct
application of CDS protocols. Namely, note that a CDS protocol provides a way
to distribute a secret only if the client’s input satisfies certain condition, i.e., the
client has credentials to access the secret. As an example, consider a video on
demand service, where a client should obtain a key to a video stream only if his
or her balance is non-negative: credit > 0. However, the server should be unable
to tell the client’s exact balance. The CDS protocols described in [1,21] consist
of two moves and the client’s query consists of ciphertexts of ¢, ..., ¢q,. As the
CDS protocols of say [21] are based on an additively homomorphic cryptosystem,
the server can do a limited amount of cryptocomputing to form ciphertexts that
decrypt to the secret if the condition p is met. Thus, the client must often send
some additional encryptions of auxiliary inputs w1, . . . , w, to help the server, i.e.,
q = (credit,w; ..., wy) for our example. Since the solutions [1,21] provide only
privacy in the malicious model, it is difficult to prove that the server maliciously
declines access and the server cannot easily refute false accusations.

Now consider an extended CDS protocol, where the server first publicly com-
mits to z and the CDS protocol is executed to recover the corresponding decom-
mitment value. As the proof of Thm. 3 and Cor. 2 directly generalizes, the re-
sulting protocol is consistent under the same assumptions. If the set of plausible
client inputs is exponential, the exhaustive knowledge extraction technique from
Thm. 3 becomes infeasible and the construction, where the server proves that he
or she knows how to open the commitment is the only option. The latter is not
a big problem, as many conventional commitment schemes have efficient proofs
of knowledge for this. For instance, the equivocal Pedersen commitment scheme
has this property. Also, note that the server does not have to prove knowledge
of the decommitment value to everybody. It is sufficient, if the server proves it
to a respected peer during an initialization phase. If we can guarantee that such
auditors are semihonest, then we can further optimize the proof.

Moreover, Thm. 1 assures that the client can prove that the server acts mali-
ciously to third parties. As anybody can repeat the second phase of a CDS pro-
tocol enlisted in [1, 21] with a different secret T, the corresponding honest-verifier
zero-knowledge proof is very efficient. The complaining client has to reveal T to
the prover and then additionally prove (in zero-knowledge if necessary) that the
reply of the server is invalid.



The ability to complain makes CDS protocols very appealing in TV or mil-
itary broadcasts with complex access policy, where credentials are granted by
giving out random keys. This problem is commonly known as private inference
control [31]. In this setting, a server holds a database of private keys that are used
to encrypt various content, e.g., documents with different confidentiality levels.
Clients have acquired different credentials and the server’s task is to release cor-
rect keys. For security reasons, the server should not learn which documents are
accessed by different clients. At the same time, the server should deny access
for clients who do not have appropriate credentials. However, the client should
be able to distinguish between denial of service attacks, where the server acts
maliciously, and legitimate denials, where the client has no right to obtain a cor-
responding key. Moreover, to make the service accountable against inside attacks
the client should be able to prove to third parties that the denial is illegitimate.

We emphasize that the proofs of knowledge can be skipped if it is possible
to force the server to construct commitments of keys semi-honestly during the
initialization phase either by organizational means or by auditing. As efficient
CDS protocols exists for all NP /poly predicates [21], we have established that
accountable private inference control is possible. More importantly, the solution
is really practical if a complaining client is willing to reveal his input.

6 Discussion And Open Problems

Both solutions for oblivious transfer and conditional disclosure of secrets are
based on a simple principle: the server first creates a list of possible answers and
commits to it. Since all answers are independent of each other and a client can
verify that the answer is correct, the server has to prove only that he knows how
to decommit and not that all answers are consistent with some server’s input.
As soon as the answers must satisfy a certain constraint or the client cannot
check whether he or she obtained a decommitment value for a correct answer,
the construction of a consistent protocol becomes much more complicated.

Nevertheless, any such protocol must give rise to a list commitment scheme.
Indeed, we can view any client-server protocol for computing f(q,z) as a com-
pact commitment to a list with elements z, = f(q, x) where g takes all plausible
values. For three-move protocols, the first message is the commitment and the
second message together with the third corresponds to interactive opening pro-
cedure. The second and third message can be compacted into a single decommit-
ment value provided that a colluding client and server cannot fool third parties
who know the first message. As the query should not leak information about
other entries, construction of such commitment schemes with implicit correct-
ness guarantees seems a highly non-trivial task. Hence, the question whether one
can construct three-move consistent protocols for other tasks is an interesting
question, which might shed a light on what type of restrictions are implicitly
enforceable by the design of a list commitment scheme.

Another open question is how much can be learned from the complaints and
whether is it possible to limit this exposure. By the definition of consistency



the complaint leaks an output of a polynomial-time randomized predicate. In
practice, we can further restrict the set of enforceable predicates w. For in-
stance, one can force memoryless consistency in the oblivious transfer protocol.
Namely, a client-server protocol is memoryless-consistent if the halting pred-
icates m1,...,m, are independent from previous queries, i.e., m;(q1,...,¢) =
m;(¢g;) and the server cannot relate results of different queries.

Theorem 4. Prot. 1is memoryless consistent if no instantiations of ot protocols
share random variables.

Proof. Assume that an adversary A breaks the memoryless-consistent property
of Prot. 1. That is, it can force the client to abort iff a predicate m; holds on
client’s queries (qi1,...,q;), where m; is a non-trivial function of at least two
different values ¢, and ¢, for a < b < i. Since the protocol is stateless then the
adversary can play the role of the client in round b > a, to breach the privacy of
the client in round a: given its knowledge of whether the client aborted in round
b, it will have some advantage in guessing q,, given the value m;(qq, gp)- a

Analogous results can be stated for protocols consisting of several CDS pro-
tocols. However, memoryless consistency has a certain cost. Many efficient pro-
tocols for oblivious transfer [30, 1, 22] and CDS [1, 21] are based on homomorphic
encryption. In these protocols, the trusted setup phase assures that the client
indeed knows the secret key. This setup phase is replaced with a corresponding
proof of knowledge in practice. Now, if each sub-protocol has a different key pair,
the preprocessing phase becomes rather complex. Hence, it is beneficial to share
the key among many protocol instances, see [21] for further details.

By doing so we loose memoryless consistency and thus a natural question
arises: can we still bound the set of enforceable halting predicates. As all of
these protocols send the client input in an encrypted form to the server and the
replies are also encryptions, it is easy to force affine predicates. Given a list of
encryptions Enc(q1), ..., Enc(ge), the server can multiply all replies with

Enc((qra1 + -+ + qiovi — B)r) = (Enc(q1)™* - - - Enc(g;)* Enc(—))"

for a random message space element r. As a result, the replies are unaltered when
o1 + -+ + g;a; = [ and uniformly distributed otherwise. Consequently, the
server can easily force halting predicates corresponding to affine combinations
of received ciphertexts m;(q1,...,¢) = [q1a1 + -+ + gia; = (]. By multiplying
replies with several such ciphertexts, the server can also force conjunctions of
such affine combinations.

Note that these attacks are applicable for any additively homomorphic en-
cryption scheme. Hence, one can ask whether this is a complete description
of halting predicates or not. Of course, this question makes sense only for de-
terministic predicates, as any client server interaction can be formalized as a
randomized predicate. For all deterministic predicates, it is reasonable to com-
pare the behavior of a concrete cryptosystem with its idealized counterpart that
is implemented through encryption, decryption and ciphertext-addition oracles.



We say that a homomorphic cryptosystem has special cryptocomputing proper-
ties if the malicious server can force deterministic predicates that cannot be
forced if the underlying cryptosystem is ideal. As there are cryptosystems that
allow to cryptocompute quadratic polynomials [4] and even polynomials of any
length [16], cryptosystems with special properties exist. However, in all of these
cases these properties follow directly from the design of a cryptosystem. Thus, it
is reasonable to assume that standard additively homomorphic cryptosystems,
such as Paillier [26], are without special properties and the set of enforceable
predicates is limited to affine tests and their conjunctions. Any provable rejec-
tion to this fact would be interesting by itself as it would advance the set of
cryptocomputable predicates.
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