
Security of Sanitizable Signatures Revisited

Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, Florian Volk

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. Sanitizable signature schemes, as defined by Ateniese et al.
(ESORICS 2005), allow a signer to partly delegate signing rights to an-
other party, called the sanitizer. That is, the sanitizer is able to modify
a predetermined part of the original message such that the integrity
and authenticity of the unchanged part is still verifiable. Ateniese et
al. identify five security requirements for such schemes (unforgeability,
immutability, privacy, transparency and accountability) but do not pro-
vide formal specifications for these properties. They also present a scheme
that is supposed to satisfy these requirements.
Here we revisit the security requirements for sanitizable signatures and,
for the first time, present a comprehensive formal treatment. Besides a
full characterization of the requirements we also investigate the relation-
ship of the properties, showing for example that unforgeability follows
from accountability. We then provide a full security proof for a modifi-
cation of the original scheme according to our model.

1 Introduction

Sanitizable signature schemes, introduced by Ateniese et al. [1] and, in a slightly
different vein, by Steinfeld et al. [2] and Miyazaki et al. [3], allow a signer to
delegate signature rights in a controlled way. Namely, the signer can determine
parts of the message which a designated party, the sanitizer, can later modify but
such that the authenticity and integrity of the remaining parts is still guaranteed.
In particular, even the sanitizer should not be able to change inadmissible parts of
the message and produce a valid signature for such illegitimate transformations.

A straightforward application of sanitizable signatures are medical data which
should be published in an anonymized but authentic form. Suppose for example
that for infectious disease surveillance a hospital is obliged to report excerpts
of their patients medical data like dates of birth, genders etc. to an authority.
Yet other parts of these data can and should be anonymized, e.g., pseudonyms
replacing the patients names or deleting psychiatric information.

Ideally, the administrative department of the hospital assembles the requested
information from their records, holding the medical data signed by different
health professionals, and sanitizes them without further interaction with their
personnel. At the same time the authenticity and integrity of the dedicated data
should be preserved. Then, clearly, sanitizable signatures in which the hospital

acts as a sanitizer provide a solution. Ateniese et al. [1] provide further applica-
tions of sanitizable signature schemes, including multicast, data base outsourcing
and secure routing.

Security Requirements. As discussed in [1] meaningful sanitizable signatures
come with the usual unforgeability requirement of regular signature schemes:

Unforgeability. It should be infeasible for an outsider (i.e., neither the signer
nor the sanitizer) to forge signatures in the name of the signer or the sanitizer.

But the introduction of the sanitizing party and its relationship to the signer
entail further desirable security properties. These are:

Immutability. The sanitizer should not be able to produce valid signatures for
messages where it has changed other than the designated parts (this can be
thought of as an insider attack).

Privacy. Sanitized messages and their signatures should not reveal the original
data (i.e., the parts which have been sanitized).

Transparency. It should be infeasible to decide whether a message has been
sanitized or not. This may be desirable in applications where one should not
be able to discriminate against messages produced by the sanitizer.

Accountability. A party (the signer or the sanitizer) should not be held re-
sponsible for messages originating from the other party.

While unforgeability can be formalized straightforwardly from the basic case
for regular signatures, as it is done in [1], Ateniese et al. remain rather vague
when it comes to the other security requirements. Instead, they introduce tech-
nical conditions for the sanitizable signature scheme, aiming to achieve the re-
quirements above. Besides unforgeability these are indistinguishability —roughly
saying that signatures generated by the signer are computationally independent
of the messages— and the property of identical distributions, saying that the
signatures produced by the signer and the sanitizer have identical distributions.
This approach is arguable in several ways.

First, without having a formal definition of the security requirements above it
is hard to tell if a signature scheme with the technical conditions really achieves
the desired goals; as always in cryptography, without a robust security model
underneath it is impossible to make precise statements about the hardness of
attacks. Secondly, having a more abstract view on the desirable security require-
ments (instead of the scheme’s conditions) facilitates the understanding of their
relationships among each other and with other cryptographic primitives. Finally,
trying to achieve the security requirements via technical properties seems to be
exceedingly restrictive and may exclude otherwise viable solutions.

Our Results. In this paper we revisit the aforementioned security requirements
and formalize them according to common game-based approaches. As part of
this, we simplify the unforgeability experiment from [1]. We also make several
refinements for accountability. First, we augment the model by new algorithms

Proof and Judge where Proof allows to provide evidence to Judge that a mes-
sage has been sanitized. Then we distinguish between sanitizer- and signer-
accountability, saying that a malicious sanitizer resp. signer cannot falsely accuse
the other party. The original approach in [1] only seems to discuss our notion of
sanitizer-accountability.

Concerning the relationship of the now-defined security requirements we ob-
tain some useful and also some unexpected results: First, we prove that trans-
parency implies privacy, i.e., any transparent sanitizable signature scheme is also
private and for such schemes there is no need to look at the privacy property
separately. Secondly, we show that the two accountability types together imply
unforgeability, which is in contrast to the position of Ateniese et al. [1] who argue
that unforgeability implies accountability. Having a clean model tells us that it
is the other way around, and that accountability needs to be considered.

As for the other security properties, immutability, transparency, sanitizer-
and signer-accountability we show that each property is independent of the other
ones. That is, for each property we present a sanitizable scheme which satisfies
all the other requirements except for the one in question. Technically we assume
that there are schemes having all properties and then modify the scheme to an-
nihilate the one property. Finally, we show that unforgeability does not follow
from sanitizer- or signer-accountability alone (but only if both versions of ac-
countability hold simultaneously). This gives us a complete characterization of
the relationship of the notions.

We also revisit the sanitizable signature scheme presented in [1] in light of our
formal definitions. We show that a modification of their scheme indeed meets our
requirements for immutability, transparency, sanitizer-accountability and signer-
accountability. This already implies, via our relationship results, that the scheme
is also unforgeable and private and thus a secure sanitizable scheme.

Related Work. As mentioned before, Miyazaki et al. [3] also use the notion of
sanitizable signature schemes, but refer to a slightly different approach. Accord-
ing to their notion only deletions of message parts are considered (instead of
modifications) and, secondly, the sanitizer is usually not bound to change des-
ignated parts of the message but can decide which portions should be deleted.
The basic security properties of such sanitizable signature schemes are unforge-
ability and privacy (following the terminology above). Independently, several
similar proposals like content extraction signatures [2] and redactable signatures
[4] have been made.

The two approaches for sanitizable signatures and their solutions resemble
each other, making the distinction somewhat obscure. This is especially true
since further properties have been added to the models in subsequent works, like
the requirement that the sanitizer’s identity remains hidden [5] in the sanitizable
signature model of [3], resembling the above notion of transparency. Nonetheless,
one can divide the literature about sanitizable signatures roughly into the works
following the approach by Ateniese et al., e.g., [6,7], and the works based on the
approach by Miyazaki et al., including [8,9,10,5,11].

We adhere to the notion of sanitizable signature of Ateniese et al. [1], cov-
ering message modifications and security requirements like accountability. Some
improvements concerning the scheme’s efficiency have been made [6] and some
extensions concerning multiple, a-posteriori determined censors have been sug-
gested [7]. None of these proposals goes beyond the original approach to model
the security properties formally, though. We note that some of the previous
works in the vein of Miyazaki et al. [3] come with security models, especially
for privacy and unforgeability [2,5,12]. Yet, they often provide limited security
guarantees, like privacy requirements holding for a single message-signature pair
only. In contrast our models allow more sophisticated attacks where for instance
privacy should still hold for multiple message-signature pairs and even if the
attacker can ask for further signatures.

Independently of our work, Yuen et al. [13] also revisit the security of sani-
tizable signatures, but focus on new constructions.

2 Preliminaries

In this section we define sanitizable signatures. Like a regular signature scheme a
sanitizable signature scheme allows to sign messages under the secret signer key
sksig, generated together with the public verification key pksig. The signing pro-
cess itself includes a public key pksan of a designated sanitizer and a description
adm of division into blocks and admissible blocks which the sanitizer is allowed
to change with the help of its secret key sksan. Any such modification takes
the original message and signature and some modification information mod and
produces a signature σ′ for the modified message m′.

In the sequel we assume for simplicity that the description adm of admissible
blocks defines the block length t ∈ N and contains a set of block numbers from N

which can be changed, and that all messages are aligned to block length (say, by
standard padding techniques). The modification information mod is then a list
of pairs (j, m′[j]) consisting of a block number j and the new content m′[j] for
this block. We say that mod matches adm if all the block numbers in mod are
admissible according to adm and the length of the blocks in mod equals the value
in adm. The case of a more general transformation, where the modifications are
modeled as arbitrary algorithms, is straightforward and discussed in Appendix A.

In addition, to settle disputes about the origin of a message-signature pair,
an algorithm Proof enables the signer to produce a proof π that a signature has
been created by the sanitizer. The proof π is generated from a set of previously
signed messages. A Judge algorithm then uses the proof π to decide if a valid
message-signature pair (m, σ) has been created by the signer or the sanitizer
(the lack of such a proof is interpreted as a signer origin). We note that Judge

is usually only called for valid pairs (m, σ); for invalid pairs settling the dispute
is beyond the scheme’s scope.

Definition 1 (Sanitizable Signature Scheme). A sanitizable signature
scheme SanSig consists of seven efficient algorithms (KGensig, KGensan, Sign,
Sanit, Verify, Proof, Judge) such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key:

(pksig, sksig)← KGensig(1
n), (pksan, sksan)← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the se-
cret key sksig of the signer, the public key pksan of the sanitizer as well as
a description adm ∈ N × 2N of the block length t and admissibly modifi-
able message blocks from {0, 1}t. It outputs a signature (or ⊥, indicating an
error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ 6=⊥.
Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the

public key pksig of the signer and the secret key sksan of the sanitizer. It
modifies the message m according to the modification instruction mod ⊆
N× {0, 1}t (where t is the block length described in adm) and determines a
new signature σ′ for the modified message m′. Then Sanit outputs m′ and σ′

(or possibly ⊥ in case of an error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying
the correctness of a signature σ for a message m with respect to the public
keys pksig and pksan.

d← Verify(m, σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a mes-
sage m and a signature σ as well a set of (polynomially many) additional
message-signature pairs (mi, σi)i=1,2,...,q and the public key pksan. It outputs
a string π ∈ {0, 1}∗:

π ← Proof(sksig, m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the
public keys of the parties and a proof π. It outputs a decision d ∈ {Sig, San}
indicating whether the message-signature pair has been created by the signer
or the sanitizer:

d← Judge(m, σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.

Signing Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1

n), any key pair (sksan, pksan) ← KGensan(1n), any

message m ∈ {0, 1}∗, any adm ∈ N × 2N and any σ ← Sign(m, sksig, pksan,
adm) we have

Verify(m, σ, pksig, pksan) = true.

Sanitizing Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1

n), any key pair (sksan, pksan) ← KGensan(1n), any
message m ∈ {0, 1}∗, any σ with Verify(m, σ, pksig, pksan) = true, any
mod ⊆ N× {0, 1}t matching adm from σ, and any pair (m′, σ′)← Sanit(m,
mod, σ, pksig, sksan) we require

Verify(m′, σ′, pksig, pksan) = true.

Proof Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1

n), any key pair (sksan, pksan) ← KGensan(1n), any
message m ∈ {0, 1}∗, any signature σ, any mod matching adm from σ,
any (m′, σ′)← Sanit(m,mod, σ, pksig, sksan) with Verify(m′, σ′, pksig, pksan) =
true, and any (polynomially many) m1, . . . , mq and adm1, . . . ,admq with
σi ← Sign(mi, sksig, pksan,admi) and (m, σ) = (mi, σi) for some i, any π ←
Proof(sksig, m

′, σ′, m1, σ1, . . . , mq, σq, pksan) we require:

Judge(m′, σ′, pksig, pksan, π) = San.

3 Security Requirements

According to Ateniese et al. [1] there are several security requirements that a
secure sanitizable signature needs to satisfy. Informally, these are:

Unforgeability. No outsider should be able to forge the signer’s or the cen-
sor’s signature. This is analogously to the standard security requirement for
signatures.

Immutability. The censor is allowed to modify predefined, admissible parts of
a message, but he should not be able to modify other parts of the message.
For example, a sanitizer who is in charge of blackening names in medical
documents should not be able to modify the actual medical data.

Privacy. Nobody should be able to restore sanitized parts of a message. For
example, if we have pseudonyms in medical documents then, of course, the
original names should not be recoverable.

Transparency. The idea of sanitizable signatures is that, within well-defined
limits, the sanitizer inherits the signing authority. Sometimes knowledge of
this fact makes the sanitized data less valuable, e.g., an original business
plan coming from the CEO is a more desirable target for a spy than the
sanitized plan from the administration office. Transparency now says that
no one except for the signer and the sanitizer should be able to distinguish
signatures from the signer and the sanitizer.

Accountability. If the signer and the censor have an argument about the
origin of a valid message-signature pair (m, σ), then accountability demands
that this dispute can be settled correctly by the Judge. As an example con-
sider a public servant acting as a sanitizer, but publishing unauthorized
information in the name of the government.

We next define these notions formally. We note that we call a sanitizable
scheme secure if it is simultaneously immutable, unforgeable, private, transpar-
ent, sanitizer-accountable and signer-accountable according to the definitions
below.

We note that our definitions usually consider three parties, the signer, the
sanitizer and the adversary (for some properties the adversary takes over the
role of one of the other two parties). In practice, though, one usually has many
parties, e.g., a sanitizer assigned to many signers. Our definitions are robust in
this regard as we leave much power to the adversary and its queries, say, asking
the honest signer to sign a message for a chosen public sanitizer key and thus
for different sanitizers. By this, our models can be easily mapped to the case
of multiple parties by standard guessing strategies (i.e., trying to predict the
“target” signer-sanitizer pair and simulating the other honest parties). As an
example we show that our notion of immutability also provides security against
the “additional sanitizing attack” of [9], a typical non-malleability attack for
three parties.

3.1 Unforgeability

The unforgeability notion for sanitizable signatures follows the classical notion
for regular signature schemes. It says that nobody should be able to compute a
tupel (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true without having the
secret keys sksig, sksan. This must hold even if one can see additional signatures
for other messages. We also give the adversary access to a Proof box (as proofs
could potentially leak information about the secret signing key). Yet, except for
this secret key the adversary fully determines the other input data, including the
message-signature pairs and the public keys. This allows to capture for example
scenarios where several sanitizers are assigned to the same signer.

Definition 2 (Unforgeability). A sanitizable signature scheme SanSig is un-
forgeable if for any efficient algorithm A the probability that the following ex-
periment returns 1 is negligible (as a function of n):

Experiment Unforgeability
SanSig
A (n)

(pksig, sksig)← KGensig(1
n)

(pksan, sksan)← KGensan(1n)

(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...)(pksig, pksan)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign,
and (mj ,modj , σj , pksig,j

) and (m′
j , σ

′
j) for j = q + 1, . . . , r

denote the queries and answers to and from oracle Sanit.
return 1 if

Verify(m∗, σ∗, pksig, pksan) = true and
for all i = 1, 2, . . . , q we have (pksan, m∗) 6= (pksan,i, mi) and

for all j = q + 1, . . . , r we have (pksig, m
∗) 6= (pksig,j

, m′
j).

3.2 Immutability

The censor can use the Sanit algorithm to change message blocks which the
signer declared as modifiable. If a malicious censor tries to modify other blocks
this should not yield a correct signature. In the attack model below the malicious
sanitizer A interacts with the signer to receive signatures σi for messages mi,
descriptions admi and keys pksan,i of its choice, before eventually outputting

a valid pair (pk∗san, m∗, σ∗) such that message m∗ is not a “legitimate” trans-
formation of one of the mi’s under the same key pk∗san = pksan,i. The latter is
formalized by demanding that each mi and m∗ differ in at least one inadmissible
block (or that pk∗san 6= pksan,i).

Definition 3 (Immutability). A sanitizable signature scheme SanSig is im-
mutable if for any efficient algorithm A the probability that the following exper-
iment returns 1 is negligible (as a function of n):

Experiment Immutability
SanSig
A (n)

(pksig, sksig)← KGensig(1
n)

(pk∗san, m∗, σ∗)← ASign(·,sksig,·),Proof(sksig,...,pksig,·)(pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign.
return 1 if

Verify(m∗, σ∗, pksig, pk
∗
san) = true and

for all i = 1, 2, . . . , q we have
pk∗san 6= pksan,i, or

m∗[ji] 6= mi[ji] for some ji /∈ admi

//where shorter messages are padded with blocks of the special symbol ⊥ /∈ {0, 1}∗

Thwarting Additional Sanitizing Attacks. Testifying to the fact that our defi-
nition is quite robust in the multi-party setting we discuss that our notion of
immutability implies the “additional sanitizing attack” of Miyazaki et al. [9].
Suppose we have three parties in a department, the signer and two sanitiz-
ers. Both sanitizers are authorized in principle to modify messages, but for a
specific message m only the first sanitizer is permitted to do so (say that this
message contains information affecting the second sanitizer). Assume now that a
requesting party asks for the non-sensitive parts of message m, and that the first
sanitizer with public key pksan is honest and changes the message m to derive
a new signature σ′ for m′. But now the second sanitizer with public key pk∗san
intercepts this reply, maliciously deletes the information about him in message
m′ and produces a signature σ∗ for this bowdlerized message m∗. Only this pair
m∗, σ∗ is sent to the requesting party, looking like an authorized reply to the
requesting party.

Our notion of immutability is strong enough to capture “additional sanitiz-
ing attacks” (assuming unique public keys of parties). Namely, in our definition
we declare the adversary successful if it manages to find a new public key pk∗san
different from the sanitizer’s public key pksan such that the final output verifies
correctly under this new key pk∗san. An adversary can now mount the additional

sanitizing attack by generating the keys of the honest sanitizer internally (in a
sense, giving even more control to the adversary), calling the signer to create the
document for the key pksan of the honest sanitizer and then outputting the fur-
ther censored message m∗ with σ∗ under a public key pk∗san. Hence, immutability
guarantees that such a case cannot succeed and, in particular, that the scheme
is secure against “additional sanitizing attacks”.

3.3 Privacy

Privacy roughly means that it should be infeasible to recover information about
the sanitized parts of the message. As information leakage through the modi-
fied message itself can never be prevented, we only refer to information which
is available through the sanitized signature. There are two possible flavors in
formalizing privacy for sanitizable signatures. One approach follows semantic se-
curity of encryption schemes and is called semantic privacy. It says that for any
adversary A seeing sanitized signatures there is a simulator S which is denied
the signatures, but which is still as successful in predicting some information
about the original message as A. This notion is discussed comprehensively in
the full version of the paper.

The other approach is based on the indistinguishability notion for encryption.
In this case, an adversary can choose pairs (m0,mod0), (m1,mod1) of messages
and modifications together with a description adm and has access to a “left-or-
right” box. This oracle either returns a sanitized signature for the left tuple (b =
0) or for the right tuple (b = 1). The task of the attacker is to predict the random
bit b significantly better than by guessing. Here we need the additional constraint
that for each call to the left-or-right box the resulting modified messages are
identical for both tuples and the modifications both match adm, else the task
would be trivial. We write (m0,mod0,adm) ≡ (m1,mod1,adm) for this.

Below we formalize the more handy indistinguishability notion and discuss
in the full paper that the simulation-based approach is equivalent (as in case of
encryption). In our definition of privacy we grant the adversary also access to
a signature and a sanitizer oracle, enabling the adversary to create signatures
which can be sanitized afterwards. We note that the adversary does not get to
choose the signature σj,b for inputs to the left-or-right box. Instead, this signa-
ture is first computed from scratch. This corresponds to the “hospital setting”
mentioned in the introduction, where the medical data and, in particular, their
signatures are kept confidentially and only the sanitized document is released.
One may define a stronger version where the adversary gets to choose σj,0, σj,1,
but it seems much harder to realize this requirement efficiently.

As in case of unforgeability and immutability we also grant the adversary
access to Proof. Hence, since we let the adversary also determine the input to this
box the adversary may input the data received from the Sign box here, but cannot
use any of the initially computed and secret signatures in the calls to the left-
or-right box (unless the adversary accidently guesses one). The reason is again
that proofs usually leak information about the signatures but the signatures in
the left-or-right box should remain secret (as in the hospital example).

Definition 4 (Privacy). A sanitizable signature scheme SanSig is private if for
any efficient algorithm A the probability that the following experiment returns 1
is negligibly close to 1

2 :

Experiment Privacy
SanSig
A (n)

(pksig, sksig)← KGensig(1
n)

(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,sksan,·),Proof(sksig,···),LoRSanit(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, ·, sksig, sksan, b)
on input (mj,0,modj,0,(mj,1,modj,1) and admj

first computes σj,b ← Sign(mj,b, sksig, pksan,admj) and then
returns (m′

j , σ
′
j)← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., are mapped to the same modified message.

return 1 if a = b.

3.4 Transparency

For transparency the original work of Ateniese et al. [1] distinguishes between two
notions, called weak and strong transparency. In the case of weak transparency
an adversary, given a signed message m with a valid signature σ, should not be
able to correctly guess whether m has been sanitized or was simply signed. In
the case of strong transparency, the adversary should not even be able to tell
which parts of the message are potentially mutable. Since the latter seems an
overly strong requirement —observe that this implies that the information adm

must be hidden and must not be recoverable from σ, for example— we call weak
transparency simply transparency here and formalize only this notion.

We define transparency by the following adversarial game. We consider an
adversaryA with access to Sign, Sanit and Proof oracles with which the adversary
can create signatures for (sanitized) messages and learn proofs. In addition, A
gets access to a Sanit/Sign box which contains a secret random bit b ∈ {0, 1} and
which, on input a message m, a modification information mod and a description
adm

– for b = 0 runs the signer to create σ ← Sign(m, sksig, pksig,adm), then runs
the sanitizer and returns the sanitized message m′ with the new signature
σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now said to be transparent if for all efficient algorithms A the prob-
ability for a right guess a = b in the above game is negligibly close to 1

2 .

Definition 5 (Transparency). A sanitizable signature scheme SanSig is trans-
parent if for any efficient algorithm A the probability that the following experi-
ment returns 1 is negligibly close to 1

2 :

Experiment Transparency
SanSig
A (n)

(pksig, sksig)← KGensig(1
n)

(pksan, sksan)← KGensan(1n)
b← {0, 1}

a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)

with input (pksig, pksan)
where oracle Sanit/Sign for input mk,modk,admk

computes σk ← Sign(mk, sksig, pksan,admk)
then (m′

k, σ′
k)← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ′

k).
return 1 if a = b

We note that, analogously to the case of privacy, we have σk be created by
the signer locally in the Sanit/Sign box. A stronger requirement would enable the
adversary to determine this signature as part of the input. Yet, this notion again
does not reflect the “hospital scenario” nor does it seem to be easy to realize
efficiently. Similarly, the adversary cannot use these signatures in the Proof box.

Also note that, with the definition above, schemes with deterministic signa-
ture or sanitizing algorithms cannot be transparent, because an adversary could
then easily compare answers from the Sanit/Sign box with outputs of the signa-
ture sanitizing oracle. Yet, since some applications may need transparency even
if a message has been signed or sanitized before, we provide the stronger re-
quirement. The weaker guarantee would then also demand from the adversary’s
queries to the signing and sanitizing boxes that for all k we have m′

k 6= mi for
all i and m′

k 6= m′
j for all j.

3.5 Accountability

Accountability says that the origin of a (sanitized) signature should be undeni-
able. There are two types of accountability:

Sanitizer-Accountability. If a message has not been signed by the signer,
then even a malicious sanitizer should not be able to make the judge accuse
the signer.

Signer Accountability. If a message and its signature have not been san-
itized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

Both notions are formalized below through two similar, yet slightly different
adversarial games.

In the sanitizer-accountability game let ASanit be an efficient adversary play-
ing the role of the malicious sanitizer. Adversary ASanit has access to a Sign

oracle and a Proof oracle. Its task is to output a valid message-signature pair
m∗, σ∗ together with a key pk∗san (with (pk∗san, m∗) being different from messages
previously signed by the Sign oracle) such that the proof produced by the signer
via Proof still leads Judge to decided “Sig”, i.e., that the signature has been
created by the signer.

Definition 6 (Sanitizer-Accountability). A sanitizable signature scheme
SanSig is sanitizer-accountable if for any efficient algorithm ASanit the proba-
bility that the following experiment returns 1 is negligible (as a function of n):

Experiment San-Accountability
SanSig
ASanit

(n)
(pksig, sksig)← KGensig(1

n)

(pk∗san, m∗, σ∗)← A
Sign(·,sksig,·,·),Proof(sksig,...)
Sanit (pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q

denote the queries and answers to and from oracle Sign

π ← Proof(sksig, m
∗, σ∗, (m1, σ1), . . . , (mq, σq), pksan)

return 1 if
(pk∗san, m∗) 6= (pksan,i, mi) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pksig, pk
∗
san) = true, and

Judge(m∗, σ∗, pksig, pk
∗
san, π) = Sig

In the signer-accountability game a malicious signer ASign gets a public san-
itizing key pksan as input. It is allowed to query a sanitizing oracle about tuples
(mi,modi, σi, pksig,i

) receiving answers (m′
i, σ

′
i). Adversary ASign finally outputs

a tuple (pk∗sig, π
∗, m∗, σ∗) and is considered to succeed if Judge accuses the sani-

tizer for the new key-message pair pk∗sig, m
∗ with a valid signature σ∗. Note that

our model allows the proof π to contain information about the original message.

Definition 7 (Signer-Accountability). A sanitizable signature scheme SanSig

is signer-accountable if for any efficient algorithm ASign the probability that the
following experiment returns 1 is negligible (as a function of n):

Experiment Sig-Accountability
SanSig
ASign

(n)

(pksan, sksan)← KGensan(1n)

(pk∗sig, π
∗, m∗, σ∗)← A

Sanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′
i, σ

′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 if

(pk∗sig, m
∗) 6= (pksig,i

, m′
i) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π∗) = San

4 Relationships of the Security Requirements

In this section we show that except for the privacy and the unforgeability require-
ment all other notions are independent (in the sense that none of them follows

from the other properties, even if they all hold at the same time). We first show
that privacy follows from transparency alone, and unforgeability holds if the two
versions of accountability hold simultaneously. We then show the independence
of the other requirements.

We stress again that our results are in contrast to the claim by Ateniese et
al. [1] that, for example, accountability follows from the unforgeability require-
ment. Our results show that unforgeability follows from accountability whereas
the other direction is not true. It is not clear if Ateniese et al. [1] consider signer-
accountability at all, or merely refer to sanitizer-accountability. However, as we
have argued both versions of accountability are desirable to avoid framing attacks
from either side, and in either case we also show that sanitizer-accountability
alone does not imply unforgeability.

Transparency

Accountability

Immutability

Sanitizer Signer

Unforgeability

Privacy

Fig. 1. Summary of the relations among the security properties of sanitizable signa-
tures. Arrows represent implications, frames represent the independence from other
requirements.

Implications. We show that privacy follows from transparency. The idea is that
for a transparent scheme one cannot distinguish between signatures created by
the signer and ones produced by the sanitizer. Hence, we can essentially replace
the left-or-right sanitizing oracle in the privacy experiment by the procedure
which creates the signatures for the sanitized message with the help of the signer
algorithm. But since the privacy experiment requires the sanitized messages
to be identical, the answer is always a fresh signature for the same message,
independent of the left-or-right question, and privacy follows.

As mentioned above, unforgeability is implied by the two versions of account-
ability. The idea behind the result is that, given a successful forgery, the judge
cannot really decide if this forgery has been produced by the signer or the san-
itizer. Else the judge was biased towards outputting Sig or San for indecisive
cases too often, contradicting either the sanitizer- or signer-accountability.

Seperations. We further show that all the other security requirements are inde-
pendent, i.e., no property follows from a combination of the other properties.
Our results all assume that there exist secure sanitizable signature scheme obey-
ing all properties (which, according to the next section, exist under common

cryptographic assumptions) and then show that there is a scheme inheriting all
properties except for the one in question.

The proofs of the stated implications and separations appear in the full version.
We note that this gives a full characterization of the security requirements.

5 Sanitizable Signatures based on Chameleon Hashes

In this section we show that our security requirements can be met. Our con-
struction is a modification of the scheme by Ateniese et al. [1] and also uses
chameleon hashes. The idea is as follows: Instead of signing the full message
in clear we first replace modifiable message blocks m[i] by (randomized) hash
values h[i] = CHash(pksan, m[i]; r[i]) of the blocks. Then we sign this sequence of
message blocks and hash values with a regular signature scheme.

The hash values have the special “chameleon” property that, if one has the
sanitizer’s trapdoor information sksan and r[i], one can easily find collisions, i.e.,
for given m′[i] one is able to determine r′[i] with h[i] = CHash(pksan, m′[i]; r′[i]),
leaving the hash value invariant. This allows the sanitizer to modify message
blocks for which the signer includes the r[i]’s in the signature (and only those),
and such that the actual signature on the hash values does not need to be
modified. We note that implementing the idea is more complicated due to the
accountability problem, requiring something related to (but not exactly like)
key-exposure freeness [14] from the chameleon hash. The latter also necessitates
the usage of tags entering the hash computations.

5.1 Construction

A chameleon hash scheme CH = (CHKGen, CHash, CHAdapt) (with tags) con-
sists of three efficient algorithms such that algorithm CHKGen on input 1n re-
turns a key pair (sk, pk), algorithm CHash on input pk, a tag Tag ∈ {0, 1}n, a
message m and randomness r (which is efficiently samplable from some range
Rpk) returns a hash value h = CHash(pk,Tag, m; r) and algorithm CHAdapt

on input sk,Tag, m, r and Tag
′, m′ returns r′ such that CHash(pk,Tag, m; r) =

CHash(pk,Tag
′, m′; r′). It also holds that for any pk,Tag, m,Tag

′, m′ the distri-
bution of CHAdapt(sk,Tag, m, r,Tag

′, m′) (over the choice of r) is the same as
the distribution of r itself, also implying that a hash value CHash(pk,Tag, m; r)
(over the choice of r) is distributed independently of Tag, m.

Key-exposure freeness [14] now says that it is infeasible to find collisions, even
if one gets to see collisions for other values. To be more precise, the security
requirement demands that, after having learned collisions for some tags, one
cannot create a collision for a new tag. This is a strong and useful notion and, yet,
it would not be sufficient to provide security in our setting. Suppose we attach
tags to the documents such that the signer modifies messages by finding collisions
for the hash value for the corresponding tags. Then a malicious signer could
still try to escape accountability by finding further collisions for the same tag.

We therefore introduce the notion of collision-resistance under random-tagging
attacks, i.e., where collisions for different tags are created but where one of the
two tags is chosen at random (and the other one is provided by the adversary).
In the full version we show that such chameleon hashes exist under the RSA
assumption in the random oracle model:

Definition 8 (Collision-Resistance under Random-Tagging Attacks).
A chameleon hash scheme CH = (CHKGen, CHash, CHAdapt) is collision-resistant
under random-tagging attacks if for any efficient adversary A the following ex-
periment returns 1 with negligible probability only:

Experiment RndTagCHA (n)
(pk, sk)← CHKGen(1n)

(Tag, m, r,Tag
′, m′, r′)← AOAdapt(sk,·,·,·,·)(pk)

where oracle OAdapt for the i-th query (Tagi, mi, ri, m
′
i)

with Tagi ∈ {0, 1}n samples Tag
′
i ← {0, 1}n and

computes r′i ← CHAdapt(sk,Tag, m, r,Tag
′, m′).

Return (Tag
′
i, r

′
i).

return 1 if
(Tag, m) 6= (Tag

′, m′) and
CHash(pk,Tag, m; r) = CHash(pk,Tag

′, m′; r′) and
{(Tag, m), (Tag

′, m′)} 6= {(Tagi, mi), (Tag
′
i, m

′
i)} for i = 1, 2, . . . and

{(Tag, m), (Tag
′, m′)} 6= {(Tag

′
i, m

′
i), (Tag

′
j , m

′
j)} for i, j = 1, 2,

The condition {(Tag, m), (Tag
′, m′)} 6= {(Tagi, mi), (Tag

′
i, m

′
i)} rules out

trivial duplication attacks in which the adversary simply copies the data from
the interaction with the oracle. The other condition {(Tag, m), (Tag

′, m′)} 6=
{(Tag

′
i, m

′
i), (Tag

′
j , m

′
j)} prevents trivial “transitivity” attacks where the ad-

versary calls the oracle about the same (Tagi, mi, ri) twice, but with differ-
ent m′

i, m
′
j. Then the oracle’s answers collide, as they yield the same value

CHash(pk,Tagi, mi; ri) individually.
In our construction we also need that the tags generated by the signer and

the ones by the sanitizer look identical (from the outside) but are generated
differently (and that this is provable to a judge). Otherwise a malicious signer
would be able to claim that a sanitized message has been the original. We resolve
this by letting the tags of the sanitizer be truly random, whereas the tags of
the signer need to be created pseudorandomly (with a pseudorandom generator
PRG mapping n-bit inputs to 2n-bit outputs). In addition, the seed for the
pseudorandomly generated labels should be recoverable for the signer from the
signature and the secret key, such that we use a pseudorandom function PRF

(mapping n-bit inputs to n-bit outputs for n-bit keys) to derive the seed for PRG

from a nonce Nonce, included in the signature.
Finally, we also need a regular signature scheme S = (SKGen, SSign, SVf)

being existentially unforgeable under adaptive chosen-message attacks. Below
we let (a1, a2, . . .) be some encoding of bit strings a1, a2, . . . into {0, 1}∗ such
that (in contrast to concatenation a1||a2|| . . .) all individual components are
recoverable:

Construction 1 (Sanitizable Signature Scheme). Define the following san-
itizable signature scheme SanSig = (KGensig, KGensan, Sign, Sanit, Verify, Proof,
Judge):

Key Generation. Algorithm KGensig on input 1n generates a key pair (pk, sk)
← SKGen(1n) of the underlying signature scheme, picks a key κ ← {0, 1}n

for the pseudorandom function and returns (pksig, sksig) = (pk, (sk, κ)). Al-
gorithm KGensan for input 1n returns a pair (pksan, sksan) ← CHKGen(1n)
of the chameleon hash scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}tℓ, sksig, pksan,adm picks Nonce

← {0, 1}n at random, computes x = PRF(κ,Nonce) and Tag = PRG(x),
and picks r[j] for each j in adm at random. It computes

h[j] =

{

CHash(pksan,Tag, (j, m[j], pksig); r[j]) if j is in adm

m[j] else

for each block m[j] ∈ {0, 1}t and σ0 ← SSign(sksig, (h, pksan,adm)) for h =
(h[1], h[2], . . . , h[ℓ]). It returns σ = (σ0,Tag,Nonce,adm, r[j1], . . . , r[jk])
where each ji is in adm.

Sanitizing. Algorithm Sanit on input a message m, information mod, a signa-
ture σ = (σ0,Tag,Nonce,adm, r[j1], . . . , r[jk]), pksig and sksan first checks
that each modification in mod is admissible according to adm and that
σ0 is a valid signature for (h, pksan,adm). If not, it stops with output ⊥.
Else, for each j in adm it lets m′[j] be the modified block of m[j] (possibly
m′[j] = m[j]), picks new values Nonce

′ ← {0, 1}n and Tag
′ ← {0, 1}2n

and replaces each r[j] in the signature by

r′[j]← CHAdapt(sksan,Tag, (j, m[j], pksig), r[j],Tag
′, (j, m′[j], pksig)).

It outputs m′ and σ′ = (σ0,Tag
′,Nonce

′,adm, r′[j1], . . . , r
′[jk]).

Verification. Algorithm Verify on input a message m ∈ {0, 1}tℓ and a signa-
ture σ = (σ0,Tag,Nonce,adm, r[i1], . . . , r[ik]), pksig and pksan computes

h[j] =

{

CHash(pksan,Tag, (j, m[j], pksig); r[j]) if j is in adm

m[j] else

and then outputs SVf(pksan, (h, pksan,adm), σ0) for h = (h[1], . . . , h[ℓ]).
Proof. Algorithm Proof on input sksig, m, σ and a sequence (mi, σi) as well as

pksan searches the sequence to find a tuple (Tagi, (j, mi[j], pksig), r[j]) such
that

CHash(pksan,Tagi, (j, mi[j], pksig), ri[j])

= CHash(pksan,Tag, (j, m[j], pksig), r[j])

for some distinct pair (Tag, (j, m[j], pksig)) in m, σ and where Tagi =
PRG(xi) for xi = PRF(κ,Noncei) for the value Noncei in σi. If it finds
such data it returns this colliding tuple together with xi, i.e.,

π = (Tagi, (j, mi[j], pksig), ri[j], xi),

else it outputs ⊥.

Judge. The judge on input m, σ, pksig, pksan and π = (Tagπ, (j, mπ [j], pksig,π),
rπ [j], xπ) checks that pksig = pksig,π, that π describes a non-trivial collision
under CHash(pksan, ·, ·, ·) for the pair (Tag, j, m[j], pksig), r[j]) in σ, i.e.,

CHash(pksan,Tagπ, (j, mπ [j], pksig,π); rπ [j])

= CHash(pksan,Tag, (j, m[j], pksig); r[j]),

that the block j is admissible, and that Tagπ = PRG(xπ) for the given value
xπ in the proof. If so, it outputs San, else it returns Sig.

Completeness of signatures generated by the signer follows easily from the
completeness of the underlying signature scheme, completeness of signatures
generated by the sanitizer follows from the fact that algorithm CHAdapt always
returns a collision, and completeness for proofs holds as one always finds con-
vincing data then.

5.2 Security

It remains to prove security:

Theorem 2. The sanitizable signature scheme in Construction 1 is secure, i.e.,
it is immutable, transparent, sanitizer- and signer-accountable (and thus pri-
vate and unforgeable), assuming that the chameleon hash function is collision-
resistant under random-tagging attacks, that PRG and PRF are pseudorandom
and that the signature scheme is existentially unforgeable under adaptive chosen-
message attacks.

Proof. We stepwise go through the properties. Most times we merely outline the
security proof because a formalization is straightforward.

Immutability. Assume that the scheme is not immutable according to our defi-
nition and that there exists a successful adversary A against this property. We
show that this contradicts the unforgeability of the underlying signature scheme.
There are two cases: Assume that A succeeds by outputting (pk∗san, m∗, σ∗) such
that (pk∗san,adm

∗, h∗) is different from all other data (pksan,i,admi, hi) appear-
ing in the attack. Then the valid signature σ∗

0 included in σ∗ is for a mes-
sage (h∗, pk∗san,adm∗) which has not been signed with the underlying signature
scheme before. This, however, contradicts the unforgeability of this signature
scheme (observing that we can simulate Proof perfectly without knowledge of
the secret key of the signature scheme).

Next assume (pk∗san,adm∗, h∗) is identical to some (pksan,i,admi, hi). Then,

since pk∗san = pksan,i the messages m∗ and mi must differ in at least one inadmis-
sible block ji according to admi. But since adm∗ = admi this must also be an
inadmissible block according to adm∗ in m∗. Therefore h∗[ji] = m∗[ji] must be
different from hi[ji] = mi[ji], contradicting the fact h∗ = hi. Hence, the second
case cannot occur and the scheme is immutable.

Transparency. Transparency holds because with overwhelming probability all
values Nonce picked by the signer are distinct and thus all x-values are com-
putationally indistinguishable from independent and randomly chosen values.
In this case all the generator’s outputs, too, are indistinguishable from random
2n-bit strings (as chosen by the sanitizer). Given this the claim now follows from
the distributional property of CHAdapt, that the sanitizing process goes through
all admissible block and updates them, and the fact that the distribution of the
input (h, pksan,adm) to the signing step is independent of the message. Hence,
the distribution of the reply is computationally indistinguishable in the two cases
for the Sanit/Sign box, independently of further queries to the signature, sani-
tizing or proof oracles (using the fact that the guessing the Nonce values in the
signatures computed internally in the Sanit/Sign box is infeasible).

Sanitizer-Accountability. Assume that the scheme was not sanitizer-accountable
and there was a successful adversary A, i.e., such that Proof algorithm cannot
find a non-trivial collision in the chameleon hashes for (pk∗san, m∗, σ∗) and the
(pksan,i, mi, σi) queries. First note that if (h∗, pk∗san,adm∗) 6= (hi, pksan,i,admi)
for all i, the valid signature σ∗

0 in σ∗ for this tuple would constitute a successful
forgery against the signature scheme (using again the fact that Proof can be
easily simulated without the secret signing key).

Hence, there must be some i with (h∗, pk∗san,adm∗) = (hi, pksan,i,admi).

In particular, since a success requires (pk∗san, m∗) 6= (pksan,i, mi) we must have
m∗[j] 6= mi[j] for some block j. Furthermore, because adm∗ = admi and in-
admissible message blocks are output in clear and cannot be distinct, it holds
that

h∗[j] = CHash(pk∗san,Tag
∗, (j, m∗[j], pksig); r

∗[j])

= CHash(pk∗san,Tagi, (j, mi[j], pksig); ri[j]) = hi[j]

for some r∗[j] in σ∗ and ri[j] in σi. This, however, implies that Proof finds such
a non-trivial collision with overwhelming probability. Given this, it is clear that
Proof can also output xi from the genuine signature data.

Signer-Accountability. We finally show signer-accountability, this time using the
security under random-tagging attacks of of the chameleon hash function. As-
sume that there is a successful attacker making the Judge accuse the sanitizer
for a message which has not been sanitized by the legal sanitizer.

First note that for the adversary’s successful output pk∗sig, m
∗, σ∗ (with tag

Tag
∗) and π∗ = (Tagπ, (j, mπ[j], pksigπ), rπ [j], xπ) with overwhelming proba-

bility Tagπ 6= Tag
′
i for all i. This is so because with overwhelming probability

no Tag
′
i lies in the range of PRG and there cannot be a valid preimage xπ for

Tagπ = Tag
′
i. In particular, it follows that {Tag

∗,Tagπ} 6= {Tag
′
i,Tag

′
j} for

all i, j.
Assume that {Tag

∗,Tagπ} 6= {Tagi,Tag
′
i} for all i = 1, 2, . . . , q. Then, be-

cause we also have {Tag
∗,Tagπ} 6= {Tag

′
i,Tag

′
j} this would straightforwardly

contradict the security of the chameleon hash (noting that we can easily simulate

the sanitizer algorithm with the help of the OAdapt oracle). Hence, assume that
{Tag

∗,Tagπ} = {Tagi,Tag
′
i} for some i and, since the random tags picked by

the honest sanitizer are unique with overwhelming probability, we can assume
that i is unique.

Because Tagπ 6= Tag
′
i we must have Tag

∗ = Tag
′
i and Tagπ = Tagi. Since

(pk∗sig, m
∗) 6= (pksig,i, m

′
i) for a success there must be some j with (Tag

∗, (j, m∗[j],

pk∗sig)) 6= (Tag
′
i, (j, m

′
i[j], pksig,i)). However, assuming that all sanitizer tags

are unique and observing that with overwhelming probability Tag
′
i 6= Tagi

and that for the same tag the prepended block numbers are distinct, it fol-
lows that the adversary has generated a new collision (Tag

∗, (j, m∗[j], pk∗sig)),

(Tag
′
i, (j, mπ [j], pk∗sig)) which has not been queried previously. This would again

contradict the security of the chameleon hash function and signer-accountability
follows. ⊓⊔

Acknowledgments

We thank the anonymous reviewers and the crypto group at Bristol for valuable
comments. Marc Fischlin, Anja Lehmann and Dominique Schröder are supported
by the Emmy Noether Programme Fi 940/2-1 of the German Research Founda-
tion (DFG).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
ESORICS. Volume 3679 of Lecture Notes in Computer Science., Springer (2005)
159–177

2. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: ICISC. Volume
2288 of Lecture Notes in Computer Science., Springer (2001) 285–304

3. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.:
Digital documents sanitizing problem. In: Technical Report ISEC2003-20, IEICE
(2003)

4. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature
schemes. In: CT-RSA. Volume 2271 of Lecture Notes in Computer Science.,
Springer (2002) 244–262

5. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.
IEICE Transactions 91-A(1) (2008) 392–402

6. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: ICISC. Volume
4296 of Lecture Notes in Computer Science., Springer (2006) 343–355

7. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and
their application to content protection. In: ACNS. Lecture Notes in Computer
Science, Springer-Verlag (2008) 258–276

8. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: Piats: A partially sanitizable
signature scheme. In: ICICS. Volume 3783 of Lecture Notes in Computer Science.,
Springer (2005) 72–83

9. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1) (2005) 239–246

10. Izu, T., Kunihiro, N., Ohta, K., Takenaka, M., Yoshioka, T.: A sanitizable signature
scheme with aggregation. In: ISPEC. Volume 4464 of Lecture Notes in Computer
Science., Springer (2007) 51–64

11. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku,
S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In: ASIACCS, ACM (2008) 353–362

12. Suzuki, M., Isshiki, T., Tanaka, K.: Sanitizable signature with secret information.
In: In Proceedings of the Symposium on Cryptography and Information Security.
(2006)

13. Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In:
CANS. Volume 5339 of Lecture Notes in Computer Science., Springer (2008) 80–
97

14. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: SCN. Volume 3352 of Lecture Notes in Computer Science., Springer (2004)
165–179

A General Message Modifications

In this section we outline how to adapt our security notions for more general mes-
sage modifications. To this end we assume that adm and mod are (descriptions
of) efficient algorithms such that adm(mod) ∈ {0, 1} indicates if the modifica-
tion is admissible and matches adm, i.e., adm(mod) = 1. The function mod

maps any message m to the modified message m′ = mod(m).
The notion of unforgeability remains unchanged. For immutability we de-

mand as before that the adversary’s output (pk∗san, m∗, σ∗) describes a valid
message-signature pair under keys pksig, pk

∗
san. With the general message mod-

ification we now require for all queries to the signing oracle for i = 1, 2, . . . , q
that pk∗san 6= pksan,i or m∗ /∈ {mod(mi) | mod with adm(mod) = 1}. Note that,
under this general definition, it may not be efficiently verifiable if the adversary
has succeeded.

The notion of privacy under general modifications demands that for each
pair (mj,0,modj,0,admj), (mj,1,modj,1,admj) submitted to the left-or-right
oracle the modifications are admissible and yield the same message, i.e., we sim-
ply adapt the notation (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj) accordingly.
Transparency and the accountability notions remain unchanged.

We note that both security implications (transparency implies privacy and
accountability implies unforgeability) are also valid under this more general no-
tion. The separations remain true as block-based descriptions of mod and adm

constitute a special case.

