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Abstract. Traitor tracing schemes are cryptographically secure broad-
cast methods that allow identification of conspirators: if a pirate key is
generated by k traitors out of a static set of ℓ legitimate users, then
all traitors can be identified given the pirate key. In this paper we ad-
dress three practicality and security issues of the Boneh-Franklin traitor-
tracing scheme. In the first place, without changing the original scheme,
we modify its tracing procedure in the non-black-box model such that
it allows identification of k traitors in time Õ(k2), as opposed to the
original tracing complexity Õ(ℓ). This new tracing procedure works in-
dependently of the nature of the Reed-Solomon code used to watermark
private keys. As a consequence, in applications with billions of users it
takes just a few minutes on a common desktop computer to identify
large collusions. Secondly, we exhibit the lack of practical value of list-
decoding algorithms to identify more than k traitors. Finally, we show
that 2k traitors can derive the keys of all legitimate users and we propose
a fix to this security issue.
Key words: Boneh-Franklin traitor tracing, Reed-Solomon codes, Ber-
lekamp-Massey algorithm, Guruswami-Sudan algorithm

1 Introduction

Consider the following scenario: a center broadcasts data to ℓ receivers where
only authorized users (typically, those who have paid a fee) should have access to
the data. A way to realize this, widely deployed in commercial Pay-TV systems,
is to encrypt the data using a symmetric key and to securely transmit to each
authorized receiver this key which will be stored in a tamper-proof piece of
hardware, like a smart card.

Unfortunately, tamper-resistant hardware is very difficult and costly to de-
sign, since it is vulnerable to a wide variety of attacks (see [1, 27] as two good
starting points). As a result, a malicious user (hereafter called a traitor) can
attempt to retrieve the decryption key from his receiver and, if successful, dis-
tribute it (sell or give away) to unauthorized users (the pirates). Depending on
the nature of the encryption schemes in use, we can even imagine situations



where a dishonest user will try to mix several legitimate keys in order to build
a new one and embed it in a pirate receiver.

The problem of identifying which receivers were compromised or which secret
keys have leaked is called traitor tracing. Usually, two modes of traitor tracing
are considered: in the black-box model, the tracing algorithm sends crafty ci-
phertexts to the pirate receiver and aims at determining which keys it uses while
observing its behavior; in the non-black-box model, we assume that the keys can
be extracted from the pirate receiver and are known to the tracing algorithm.
The black-box model is widely considered by the cryptographic community as
being a standard security model for evaluating traitor-tracing schemes security.
However, based on our practical experience, we know that it is reasonable to as-
sume that a tracing authority has at least the same technological and financial
resources to reverse-engineer a pirate receiver as a traitor had, to perform the
same operation on a legitimate receiver.

1.1 Related Work

Fiat and Naor introduced the concept of broadcast encryption in [17]. In their
model5, there exists a set of ℓ authorized users and the broadcasting center can
dynamically specify a privileged subset of authorized users that can decrypt
selected ciphertexts (like high-value content, for instance). Later, Chor, Fiat,
and Naor [12] introduced the concept of traitor-tracing to overcome decryption
key piracy in broadcast encryption schemes. Their scheme (which was improved
by Naor and Pinkas in [13, 33]) is k-collusion resistant (or k-resilient) in the
sense that at least one traitor can be identified with high probability given a
pirate key generated by up to k traitors. Naor, Naor and Lotspiech presented
more efficient broadcast encryption schemes [32] with tracing capabilities; it was
however demonstrated by Kiayias and Pehlivanoglu [21] that the iterative nature
of the tracing procedure allows a pirate to significantly leverage the compromise
of a few keys. Although broadcast encryption and traitor-tracing are orthogonal
problems in nature, and thus frequently studied separately, they are in practice
indivisible: some trace-and-revoke schemes have been proposed accordingly [15,
16], culminating in [9]. The latter scheme, though resistant to any collusion size,
is geared towards small-scale systems and impractical for the systems of tens of
millions of users that we are dealing with and that inspired this paper; this is
mainly due to the O(

√
ℓ) complexity of [9] in terms of key storage and bandwidth

requirements. Additionally, the tracing costs are O(ℓ2), which also severely limits
its applicability.

Kurosawa and Desmedt [24] proposed a public-key traitor tracing scheme,
which was later broken by Stinson and Wei [40]. Boneh and Shaw [8] dis-
cussed collusion-resistant schemes for fingerprinting digital data based on error-

5 Note that in this paper, we will only consider stateless receivers, i.e., receivers for
which it is not possible to guarantee synchronism with the broadcast center and
which are resettable. Broadcast encryption schemes for stateful receivers have been
proposed in [41,44].



correcting codes. Boneh and Franklin [5] proposed a new public-key traitor-
tracing scheme also based on error-correcting codes, more precisely on Reed-
Solomon codes. Actually, the traitor-tracing problem can be interpreted as an
application of watermarking to secret keys that are distributed among users.
The Boneh-Franklin non-black-box traitor tracing scheme is k-collusion resis-
tant and deterministic in the sense that all of the traitors are identified with
probability 1 if at most k of them collude to derive new pirate keys. The fastest
claimed running time of the non-black-box tracing algorithm is O(ℓ log ℓ log log ℓ)
while the best known black-box tracing method has an exponential complexity
O(
(

ℓ
k

)

k2). Kurosawa and Yoshida [25] have generalized the Kurosawa-Desmedt
and Boneh-Franklin schemes. The technique used by Boneh and Franklin to wa-
termark private keys has since been re-used by Kiayias and Yung [23] to design an
asymmetric6 public-key traitor tracing scheme; other examples of Reed-Solomon
codes use include schemes designed by Dodis et al. [15, 16]. Recently, Boneh
et al. [7] have presented a fully-collusion resistant traitor tracing scheme which
has private keys of constant size and ciphertexts of size O(

√
ℓ). Finally, the low

efficiency of tracing procedures in traitor tracing schemes has been addressed by
Silverberg et al. in [37, 38]. The authors present several schemes based on alge-
braic codes which enable traitors to be traced in time polynomial in k2 log ℓ. Re-
cently, Billet and Phan [2] and Boneh and Naor [6] have independently proposed
traitor-tracing schemes with constant size ciphertexts and having a black-box
tracing complexity of O(t2ℓ log ℓ) and O(t4 log ℓ), respectively.

1.2 Our Contributions

While we agree that improving the exponential complexity of black-box tracing
as cited above would be a very worthwhile cause to pursue, we choose to focus in
this paper, in the light of the negative results obtained by Kiayias and Yung [22],
on some security and efficiency issues that we encountered in practical applica-
tions of the Boneh-Franklin traitor-tracing scheme [5] in the non-black-box model.
Although Boneh-Franklin traitor-tracing is one of the most elegant and efficient
public-key traitor tracing schemes, it suffers from certain issues that limit its
practical applicability in large-scale systems. We point out what the problems
are and how they can be addressed. As usual, ℓ denotes the number of legitimate
users and k the collusion threshold.

Complexity of Non-Black-Box Tracing One of the issues is the complexity
of the non-black-box traitor tracing procedure which depends on ℓ. This is a
major drawback when applied to systems of many millions of users, since tracing
would require large computational power, or could even be infeasible in practice.
We dissect the way Reed-Solomon codes are used to watermark private keys,
and we show that, contrary to what is suggested in [5], it is possible to trace

6 Asymmetric traitor tracing is a variant introduced by Pfitzmann [35] where the
broadcasting center is not necessarily trusted, thus the tracing procedure must pro-
duce undeniable evidence of the implication of the traitor subscribers.



in time7 Õ(k2), i.e., with a complexity independent of ℓ, using the Berlekamp-
Massey algorithm instead of the Berlekamp-Welch algorithm. Although both
algorithms require the same complexity to fully recover a noisy Reed-Solomon
codeword, the complexity of the Berlekamp-Massey algorithm can be reduced
if used for tracing only. The resulting new tracing procedure does not require
any modification of the original Boneh-Franklin scheme. In practice, it takes
us just a few minutes on a common desktop PC to trace large coalitions in
systems having hundreds of millions of users. Our result improves the results
obtained by Silverberg et al. [37, 38]. Our finding also applies to schemes using
the same watermarking technique, such as the ones described in [15, 16, 23].
Another immediate benefit we identify is the possibility to use Reed-Solomon
codes optimized specifically to allow faster decryption. In practice, for large
systems and coalitions of medium size, we speed up the decryption by almost an
order of magnitude.

Above-Threshold Tracing Secondly, we raise an issue concerning the above-
threshold security of the Boneh-Franklin scheme and its variants. We show that
the list-decoding techniques, such as the Guruswami-Sudan algorithm, as ad-
vocated by Boneh-Franklin to trace more than k traitors, detect only a few
additional traitors, and this at a high cost.

Beyond-Threshold Tracing Finally, we show that if an adversary is able to
recover 2k secret keys, then she is able to compute any other secret key, including
the uncompromised ones. Thus, in this case the security of the system completely
collapses. This somewhat embarrassing property is primarily due to the fact that
the linear tracing code is public. We show how this issue can be addressed at
the cost of keeping more than a single secret value in the receivers.

This paper is organized as follows. In §2 we review the Boneh-Franklin scheme
[5]. Then, in §3, we speed up both its codeword generation and tracing proce-
dures. In §4 we discuss the above-threshold tracing based on the Guruswami-
Sudan list-decoding algorithm, while in §5 we study the security of the Boneh-
Franklin scheme when the number of recovered secret keys is at least twice the
allowed threshold.

2 Boneh-Franklin Scheme

This section describes the Boneh-Franklin traitor tracing scheme [5] by first
defining its encryption and decryption procedures, then by explaining the code-
word generation mechanism and finally by describing the underlying non-black-
box tracing mechanism. We adopt the notation used in [5] denoting by ℓ the
number of users in the system and by k the maximal coalition size. Hence, the
described scheme is supposed to be secure against any collusion of at most k
users.

7 Here, the Õ(n) notation hides the terms which are poly-logarithmic in n.



2.1 Encryption/Decryption

Let Gq denote a group of prime order q in which the Decision Diffie-Hellman
problem [4] is hard. Typically, Gq is a subgroup of order q of Z∗

p, where p is
prime and q|p− 1; alternatively, Gq can be a group of points of an elliptic curve
over a finite field.

The key generation process proceeds as follows. Let g be a generator of Gq.
For 1 ≤ j ≤ 2k, let rj ∈R Z/qZ and compute hj = grj . The public key is defined

as 〈y, h1, . . . , h2k〉 ∈ G2k+1
q where y =

∏2k
j=1 h

αj

j ∈ Gq for random αj ∈R Z/qZ.
Here, we say that the vector α = 〈α1, . . . , α2k〉 is a representation of y with
respect to the base 〈h1, . . . , h2k〉. Note that if ρ(1), . . . , ρ(n) are n representations
of the same element of Gq with respect to the same base, then so is any convex
combination

∑n
i=1 ηiρ

(i) of the representations, where ηi ∈ Z/qZ are scalars such
that

∑n
i=1 ηi = 1.

Let Γ = {γ(1), . . . , γ(ℓ)} be a linear space tracing code, i.e., a collection of

ℓ codewords γ(i), for 1 ≤ i ≤ ℓ, where each γ(i) = 〈γ(1)
j , . . . , γ

(2k)
j 〉 is a 2k-

dimensional vector over Z/qZ. The set Γ is fixed in advance and not secret, and
can thus be considered as being a public parameter of the Boneh-Franklin traitor
tracing scheme. We detail in §2.2 the codeword generation process from [5].
In §3.2 we propose a slightly different way to define Γ that has interesting prac-
tical consequences.

A private key is an element θi ∈ Z/qZ such that θi · γ(i) is a representation
of y with respect to the base 〈h1, . . . , h2k〉. Thus, the i-th private key θi can be
derived from the i-th codeword γ(i) as

θi =

∑2k
j=1 rjαj

∑2k
j=1 rjγ

(i)
j

, (1)

where, obviously, the calculation takes place in Z/qZ. To encrypt a message
m ∈ Gq, one picks a random a ∈R Z/qZ and calculates the ciphertext as 〈m ·
ya, ha

1 , . . . , h
a
2k〉. Given a ciphertext 〈s, p1, . . . , p2k〉, and the i-th secret key θi,

the message m can be recovered as:

m =
s

(

∏2k
j=1 p

γ
(i)
j

j

)θi
. (2)

The correctness follows in a straightforward way from the fact that θi · γ(i) is
a representation of y with respect to the base 〈h1, . . . , h2k〉. It follows that it
is possible to decrypt a ciphertext given any representation 〈δ1, . . . , δ2k〉 of y

with respect to the base 〈h1, . . . , h2k〉, since
∏2k

j=1(h
a
j )δj = ya; in other words,

to decrypt it suffices to have a representation of y with respect to the base
〈h1, . . . , h2k〉. Interestingly, Boneh and Franklin show in [5, Lemma 1] that if it
is infeasible to compute discrete logarithms in Gq, then convex combinations of
n < 2k given representations ρ(1), . . . , ρ(n) of y are the only representations of
y that can efficiently be constructed.



2.2 Codewords Generation

We describe the codewords γ(i) generation process from [5] which is based on
the use of Reed-Solomon codes [36]. Given the (ℓ − 2k) × ℓ matrix

A =















1 1 1 . . . 1
1 2 3 . . . ℓ
12 22 32 . . . ℓ2

...
...

...
...

1ℓ−2k−1 2ℓ−2k−1 3ℓ−2k−1 . . . ℓℓ−2k−1















mod q (3)

over Z/qZ, let b1, . . . , b2k be a basis of the nullspace of A. Boneh and Franklin
define Γ as the rows of the ℓ × 2k matrix

B =





| | | |
b1 b2 b3 . . . b2k

| | | |



 , (4)

also over Z/qZ. Thus, Γ contains ℓ codewords each of length 2k. By observing
that any vector in the span of the rows of A corresponds to a polynomial of
degree at most ℓ − 2k − 1 evaluated at the points 1, . . . , ℓ, one can construct a
basis of the nullspace of A using Lagrange interpolation. Using this construction
the i-th codeword becomes 〈ui, iui, i

2ui, . . . , i
2k−1ui〉 where u−1

i =
∏

j 6=i(i − j)
and all computations are in Z/qZ. Naive computation of the ℓ codewords requires
Ω(ℓ2) operations in Z/qZ. This can easily be turned into O(ℓ) operations using
the following recursive formula:

u−1
1 =

ℓ−1
∏

j=1

(−j) and u−1
i+1 =

ui(i − 1)

i − ℓ
for 1 ≤ i ≤ ℓ − 1. (5)

2.3 Tracing Procedure

We briefly recall the non-black-box tracing procedure [5]. Let d ∈ (Z/qZ)2k be
a vector formed by taking a linear combination of at most k vectors in Γ . In
practice d will be a convex combination, but we do not need that here. Since
the vectors in Γ form the rows of the matrix B, we know there exists a vector
w ∈ (Z/qZ)ℓ (having Hamming weight at most k) such that wB = d. The
tracing procedure then works as follows. First, we determine a vector8 v ∈
(Z/qZ)ℓ such that vB = d. Since (v − w)B = 0, we know that v − w lies
in the linear span of the rows of A (recall that the rows of A span the vector
space orthogonal to the one spanned by the columns of B). In other words,
there exists a unique polynomial f of degree at most ℓ − 2k − 1 over Z/qZ

such that v − w = 〈f(1), . . . , f(ℓ)〉. Taking into account that w has Hamming
weight of at most k, we know that 〈f(1), . . . , f(ℓ)〉 equals v in all but at most

8 Note that several such vectors exist.



k components. Hence, it is possible to use Berlekamp-Welch algorithm [42] to
find f from v, after which f gives us v − w, from which we recover w. The
Berlekamp-Welch algorithm, published in a patent [42] granted in 1986, runs in
O(ℓ2). Asymptotically faster variants exist (see [3]), the fastest known being the
one described by Pan [34] which runs in O(ℓ log ℓ log log ℓ).

As mentioned in §1.1, the best known black-box tracing procedure for the
Boneh-Franklin scheme is not efficient since it has a O(

(

ℓ
k

)

k2) complexity. We
refer the reader to [5] for its description since it is out of the scope of this paper.
Furthermore, we note that the black-box tracing procedure is vulnerable to the
attacks described by Kiayias and Yung [22] which demonstrate that the Boneh-
Franklin scheme is essentially incapable of black-box tracing super-logarithmic
self-protecting traitor collusions unless the ciphertext size is linear in the number
of users. Those two facts considerably limit the application of black-box tracing
with the Boneh-Franklin scheme.

3 Revisiting the Tracing Mechanism

We recall several notions from coding theory. A linear code C over the vector
space (Z/qZ)ℓ is a subspace of (Z/qZ)ℓ. For our purposes we may assume that
C has dimension 2k with 0 ≤ 2k ≤ ℓ. It follows that C contains q2k codewords.
The minimal distance d of C is the minimum Hamming weight of its non-zero
codewords. A code C is called maximum-distance separable (MDS ) if its minimal
distance reaches the Singleton bound, i.e., if d = ℓ − 2k + 1. A 2k × ℓ matrix G

over Z/qZ is called a generator matrix or encoding matrix for C if its rows form
a linearly independent basis for C. Thus, C = {x ∈ (Z/qZ)ℓ : x = zG where z ∈
(Z/qZ)2k} and C is the code associated to G. The dual code C⊥ of a linear code C
is the linear code C⊥ =

{

x ∈ (Z/qZ)ℓ : xcT = 0 for all c ∈ C
}

. A reduced parity-

check matrix for the code C is an (ℓ − 2k) × ℓ matrix H over Z/qZ such that
C =

{

x ∈ (Z/qZ)ℓ : xHT = 0
}

. Receiving a noisy version x̃ of a codeword x,
the vector s = x̃HT is called the syndrome. Writing x̃ = x+e, where e is called
the error pattern, we see that the syndrome s = (x+e)HT = 0+eHT = eHT

depends only on the error pattern, and not on the codeword itself. Finally, the
following lemma makes clear the link between a reduced parity-check matrix of
a linear code and its dual code.

Lemma 1. H is a parity-check matrix for the linear code C if and only if C
spans the subspace orthogonal to the row space of H.

Therefore, a reduced parity-check matrix for C is an encoding matrix for the
dual code C⊥ and conversely.

3.1 Generalized Reed-Solomon Codes

Given vectors π = (πi)
ℓ
i=1, c = (ci)

ℓ
i=1 ∈ (Z/qZ)ℓ, a Generalized Reed-Solomon

code GRSℓ,2k(π, c) is defined as follows:

GRSℓ,2k(π, c) =
{

(cif(πi))
ℓ
i=1 : f(x) ∈ (Z/qZ)[x] and deg(f) < 2k

}

. (6)



Thus, a codeword in GRSℓ,2k(π, c) is a vector consisting of a polynomial of
degree less than 2k over Z/qZ evaluated at the ℓ points π1, . . . , πℓ scaled by
c1, . . . , cℓ. It is well-known that GRS codes are MDS codes, i.e., d = ℓ − 2k + 1.
When c = (1, 1, . . . , 1), we speak of Reed-Solomon codes. The following theorem
states that the dual of a GRS code is a GRS code (see [20, page 66] for a proof).

Theorem 1. The dual of a GRSℓ,2k(π, c) code is

GRSℓ,2k(π, c)⊥ = GRSℓ,ℓ−2k(π, d) (7)

where d = (d1, . . . , dℓ) with d−1
i = ci

∏

j 6=i(πi − πj).

The above allows us to rephrase the Boneh-Franklin codeword generation mecha-
nism described in §2.2 as follows: the matrix A defined in (3) is the generator ma-
trix of a GRSℓ,ℓ−2k(π, c) code over Z/qZ with π = (1, . . . , ℓ) and c = (1, 1, . . . , 1)
(this fact was already recognized by [23], for instance), while the matrix B de-
fined in (4) is a (transposed) reduced parity-check matrix for the same code.
Conversely, in the light of Lemma 1 and Theorem 1, the matrix BT can be seen
as a generator matrix of the dual GRSℓ,2k(π, d) of GRSℓ,ℓ−2k(π, c), where d is as
in Theorem 1. Thus, Γ consists of vectors forming a basis of the 2k-dimensional
vector space which contains the syndromes of GRSℓ,ℓ−2k(π, c).

3.2 More Efficient Codewords

The above more general framework allows us to define the code Γ in such a
way that both the codeword generation and decryption become faster without
affecting the security of the Boneh-Franklin scheme.

Using Theorem 1, we observe that in order to compute the codewords we can
avoid Lagrange interpolation and recursive formula (5): let B be the generator
matrix of a GRSℓ,2k(π, d) code with π = (1, 2, . . . , ℓ) and d = (1, 1, . . . , 1),
then the i-th codeword can simply be defined as γ(i) = 〈1, i, i2, . . . , i2k−1〉, for
i = 1, 2, . . . , ℓ. This in turn allows us to rewrite the decryption operation (2) as

m =
s

(

∏2k
j=1 pij−1

j

)θi
=

s
(

(

(

(

pi
2kp2k−1

)i
. . .
)i

p2

)i

p1

)θi
. (8)

Compared to (2), this replaces 2k of the 2k+1 log2 q-bit modular exponentiation
exponents by log2 ℓ-bit ones. With ℓ ≈ 220 and assuming 80-bit security with 160-
bit q, this results in a speedup by a factor of 7, which is much more effective than
using multi-exponentiations (cf. [30, page 617]) as suggested in [5]. In practice,
the efficiency of our decryption is comparable to [29]. Furthermore, provided
each receiver knows its identity number i, it can directly compute codeword γ(i)

without requiring knowledge of the Lagrange coefficients attached to the receiver
with identity i − 1.

We note that the semantic security of the Boneh-Franklin scheme is not
impacted by the nature of the code, while its tracing capabilities only depend on
the minimal distance of the code. In our case, we use Generalized Reed-Solomon
codes with the same minimal distance as the one used by Boneh and Franklin.



3.3 An Efficient Tracing Procedure

In this section, we present in two steps a new and efficient non-black-box trac-
ing procedure for the Boneh-Franklin scheme. We stress that this new tracing
procedure can be used for any type of Reed-Solomon and generalized Reed-
Solomon codes, being the original code described in [5], the faster code discussed
in §3.2 or the variant we will discuss in §5. First, we reduce the complexity from
O(ℓ log ℓ log log ℓ) to O(ℓ), using a technique based on the Berlekamp-Massey
algorithm [28] and Chien search [11]. Then, we improve it to expected com-
plexity Õ(k2) by replacing Chien search by the Cantor-Zassenhaus factorization
algorithm [10]

As outlined in §2.3, the Boneh-Franklin tracing procedure based on Ber-
lekamp-Welch algorithm consists in finding a noisy codeword which results in
the syndrome discovered in the pirate receiver, and in decoding this codeword.
More precisely, let x and x̃ denote a codeword belonging to GRSℓ,ℓ−2k(π, c)
with c = (1, 1, . . . , 1) and its noisy version, respectively. We can interpret both
x and x̃ as polynomials f(x) and f̃(x) in (Z/qZ)[x]. If no error is introduced in

the codeword, then dif(πi) = f̃i for 1 ≤ i ≤ ℓ, where f̃(x) =
∑ℓ

i=1 f̃ix
i−1. Let

g(x) ∈ (Z/qZ)[x] be a polynomial (hereafter called an error-locator polynomial)
of degree at most k with g(πi) = 0 for those πi’s for which dif(πi) 6= f̃i. This
leads to the following system of ℓ linear equations in ℓ unknowns: dif(πi)g(π) =
g(π)f̃i. Solving the system, one obtains the polynomial g(x), from which the
error locations can be derived. Along with g(x), one also gets dif(x)g(x) and
thus f(x). Straightforward implementation using Gaussian reduction would lead
to O(ℓ3) complexity. Faster approaches would be to use the Berlekamp-Welch
algorithm in O(ℓ2) or others of complexity Õ(ℓ) (see [3, 34, 42]).

The key observation to derive a faster tracing algorithm is to note that com-
puting a (noisy) codeword from the syndrome retrieved from a pirate receiver
and then decoding this codeword, as done above, is not necessary: actually, the
pirate syndrome itself suffices to trace the legitimate syndromes used to derive it.
Indeed, as pointed out by Massey [28], the Berlekamp-Massey algorithm allows
reconstruction of the error-locator polynomial from the syndrome only. This key
property permits us to stop the decoding process earlier for the purpose of trac-
ing and thus reduce the complexity, since we are interested in the error-locator
polynomial only and we do not need the amplitudes of the errors.

We now clarify the link between the error-locator polynomial and the syn-
drome, following [43, page 214]. Let f̃(x) = f(x) + e(x), where f̃(x), f(x) and
e(x) are the received codeword, the original codeword, and the error polynomial,
respectively. Let s(x) = s0 + s1x + · · ·+ s2k−1x

2k−1 denote the syndrome vector
interpreted as a polynomial. Let g(x) denote an error-locator polynomial whose
zeroes are the inverses of the error locations σj = πi with 1 ≤ j ≤ k and with
i ∈ I for a cardinality k subset I of {1, 2, . . . , ℓ}:

g(x) =
k
∏

j=1

(1 − σjx) = g0 + g1x + · · · + gkxk. (9)



Let t1, t2, . . . , tk be the indices of the non-zero coefficients of e(x). Because
g(σ−1

m ) = 0 for all error locations σm with 1 ≤ m ≤ k, it follows that

etm
σj

mg(σ−1
m ) = 0,

and thus

etm
(gkσ−k+j

m + gk−1σ
−k+j+1
m + · · · + g1σ

j−1
m + g0σ

j
m) = 0 (10)

for any j. Summing (10) over m = 1, 2, . . . k gives an expression from which
Newton’s identities can be constructed:

∑k
m=1 etm

(gkσ−k+j
m + gk−1σ

−k+j+1
m + · · · + g1σ

j−1
m + g0σ

j
m)

= gk

∑k
m=1 etm

σj−k
m + gk−1

∑k
m=1 etm

σj−k+1
m + · · · + g0

∑k
m=1 etm

σj
m

= gksj−k + gk−1sj−k+1 + · · · + g1sj−1 + g0sj = 0.

The last equality comes from the fact that the following system of equations can
be written using the parity-check matrix:

s0 = et1 + et2 + · · · + etk

s1 = et1σ1 + et2σ2 + · · · + etk
σk

s2 = et1σ
2
1 + et2σ

2
2 + · · · + etk

σ2
k

. . .

s2k−1 = et1σ
2k−1
1 + et2σ

2k−1
2 + · · · + etk

σ2k−1
k .

From (9) it follows that g0 = 1, which leads to the order k linear recurrence
relation

gksj−k + · · · + g1sj−1 = −sj. (11)

Given 2k consecutive terms of an order k linear recurrence, the Berlekamp-
Massey algorithm computes the coefficients of the recurrence in time O(k2).
Because the si for i = 0, 1, . . . , 2k − 1 are known, the gi can thus be computed
directly in time O(k2).

After the error-locator polynomial g(x) has been computed, the remaining
task consists in finding its roots, which are the inverses of identities of the
traitors. Traditionally, Reed-Solomon decoders rely on the Chien search algo-
rithm [11] which searches over the possible roots. In our case, this results in
a complexity of O(ℓ). The roots can, however, be located faster by factoriz-

ing g(1/x) using the Cantor-Zassenhaus algorithm [10] within expected time
O(k2 log k log log k(log q + log k)) = Õ(k2). This algorithm works recursively on
the squarefree polynomial g(x) whose irreducible factors9 are all of degree 1. It

is based on the fact10 that g(x) = gcd(g(x), r(x)) · gcd(g(x), r(x)(p
d−1)/2 + 1) ·

gcd(g(x), r(x)(p
d+1)/2 − 1) for any polynomial r(x) ∈ (Z/qZ)[x].

9 g(x) in fact fulfills these conditions if g(x) has at most k roots.
10 The interested reader will find more details about the Cantor-Zassenhaus algorithm

in [14, page 128].



Then, the obtained roots directly reveal the identities of the traitors. The
overall complexity of our tracing procedures is Õ(k2) which is independent of ℓ.
The latter is not the case for the schemes based on algebraic codes described by
Silverberg et al. in [37, 38].

Our method makes it possible to trace large coalitions in Boneh-Franklin
systems with a virtually unlimited number of users, and this without requiring
any modification of the encryption scheme. Our implementation, based on the
GMP [31] and LiDIA [26] software libraries and working over the group of points
of an elliptic curve over a finite field of cardinality approximately 2160, allows
tracing of a coalition of k = 1024 traitors in a system of ℓ = 200′000′000 users in
less than two minutes on a common desktop PC. These parameter values cannot
realistically be handled using the Berlekamp-Welch algorithm as described in [5].

4 Above-Threshold Tracing

In [5] Boneh and Franklin emphasize an interesting property of their scheme,
namely the possibility to trace a collusion of more than k traitors using list-
decoding techniques like the Guruswami-Sudan algorithm [18, 19]. This would
correspond to finding more than k errors in a codeword. In such cases, the
Berlekamp-Welch algorithm fails to find the polynomial f(x). The Berlekamp-
Massey approach fails as well, since it outputs a polynomial of degree k that does
not have k roots over Z/qZ. The algorithm of Guruswami and Sudan allows,
under certain circumstances, to find a candidate for the polynomial f(x). In this
section we investigate under which circumstances tracing is possible and how it
will influence system parameters. We finally show that the Guruswami-Sudan
algorithm can detect only a few additional traitors, and this at high cost.

4.1 Guruswami-Sudan Algorithm for Reed-Solomon Codes

This algorithm attempts to find the message polynomial f(x) given a received
codeword when more than k errors occurred. It can be thought of as a gener-
alization of the Berlekamp-Welch algorithm. Let ℓ and k be as above. Given
ℓ pairs (πi, ci) ∈ (Z/qZ)2 for 1 ≤ i ≤ ℓ, message length ℓ − 2k, and an error
parameter k′ ≤ ℓ − 1 −

√

ℓ(ℓ − 2k − 1), the Guruswami-Sudan algorithm finds
all univariate polynomials f of degree at most ℓ − 2k − 1 such that f(πi) = ci

for at least ℓ− k′ values of i. Thus, the algorithm allows correction of at most k′

errors. It consists of two steps. In the first step a parameter r is selected and a
system of O(ℓr2) linear equations is solved to find a non-zero bivariate polyno-
mial Q(x, y) of a certain weighted degree11 such that Q(πi, ci) = 0 for 1 ≤ i ≤ ℓ.
The parameter r, which is the multiplicity of the singularity of Q(x, y), is chosen
in such a way that as many errors as possible can be handled while keeping the
system of equations tractable. In the second step, factors (y − f(x)) of Q(x, y)
are determined such that deg(f(x)) ≤ ℓ − 2k − 1. For a complete description of

11 deg
x
(Q(x, y))m + deg

y
(Q(x, y))n is called the (m, n)-weighted degree of Q(x, y).



the method see [18, 19]. Below we are interested in its practical feasibility (in
particular of the first step) in the context of the traitor tracing problem.

4.2 List Decoding and Traitor Tracing

In this section we have a closer look at the various parameters of of the Guruswa-
mi-Sudan algorithm. We will see that this leads to the unavoidable conclusion
that it is of little practical significance for our type of applications.

Since the traditional algorithms (such as Berlekamp-Welch) can trace up to
k traitors, the only case of interest is k′ > k. Let δ = k′ − k be the number of
additional traitors we wish to be able to trace, and let φ = ℓ − 2k − 1. Because
at most ℓ − 1 −

√
ℓφ traitors can be traced, only k’s need to be considered for

which
k + δ ≤ ℓ − 1 −

√

ℓφ (12)

for a δ ≥ 1.
With ω = r(ℓ−k−δ)−1, in the first step of the Guruswami-Sudan algorithm

a system needs to be solved over Z/qZ involving ℓr(r + 1)/2 constraints and

(

ω + 1 − φ

2

⌊

ω

φ

⌋)(⌊

ω

φ

⌋

+ 1

)

unknowns [18, 19]. It follows that

(

ω + 1 − φ

2

⌊

ω

φ

⌋)(⌊

ω

φ

⌋

+ 1

)

≥ ℓr(r + 1)

2
. (13)

Furthermore, since in practice q will have at least 160 bits, it is reasonable to
limit the number of constraints to 10000 if we want to be able to store the matrix
in 2GB of memory. This leads to

ℓ(r + 1)r

2
< 10000. (14)

Note that this immediately limits the practical applicability of the Guru-
swami-Sudan algorithm to tracing in systems of at most a few thousand users.
This is in sharp contrast with our syndrome-only tracing which allows millions
of users.

Define the minimal coalition size as the smallest k such that (12), (13),
and (14) are satisfied. For any ℓ and δ, this k follows from a simple search,
as illustrated in Fig. 1 for several (small) numbers of users. For example, in a
system with ℓ = 512 users the minimal initial coalition size is 69 in order to be
able to trace a single additional key if 70 pirates collude. In many applications,
this results in an overkill, because the ciphertext and private key, which are
dependent on the coalition size, become too large. As illustration, let us consider
the following case: for ℓ = 1024 and k = 500, we get k + δ = 855, which may
seem fairly good. However, the required bandwidth to transmit the ciphertext
is equal to 1001 group elements. This is only 2.24% less than a trivial scheme



involving an individual encryption based on El-Gamal which additionally would
bring natural revocation capabilities. Besides that, a system of size ℓ = 1024
is not far from the limit capacity of the original Berlekamp-Welch algorithm.
Hence this method is not applicable for systems with large number of users,
constrained bandwidth and key-space storage capability.
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Fig. 1. Minimal coalition with respect to a given above-threshold tracing capacity

5 Beyond-Threshold Security

In practical scenarios, there are three distinct cases for the number of compro-
mised keys in a coalition, namely: at most k, between k+1 and 2k−1, and 2k keys
or more. The first case corresponds to the situation for which the Boneh-Franklin
scheme has been designed and security guarantees have been derived, while the
second case corresponds to the above-threshold tracing scenario described in §4.
In this section we discuss the third case.

Suppose that an adversary has managed to get 2k private elements θis
, for

1 ≤ s ≤ 2k and assume, as before, that the vectors in Γ are public. Because
Eq. (1) over Z/qZ can be rewritten as

θ−1
is

=

∑2k
j=1 rjγ

(is)
j

∑2k
j=1 rjαj

=
2k
∑

j=1

ωjγ
(is)
j (15)

with ωj = rj/
∑2k

j=1 rjαj , knowledge of the 2k private keys θis
leads to a system

of 2k linear equations in the 2k unknowns ωj , for 1 ≤ j ≤ 2k. After determining



the ωj ’s using for instance Gaussian reduction, the adversary can compute any

other private key θi in the system:

θi =





2k
∑

j=1

ωjγ
(i)
j





−1

.

Not only will the adversary be able to create any number of untraceable combi-
nations of keys, but he will also be able to distribute newly derived keys so that
innocent users (whose keys were a priori never compromised) may be accused of
treachery. We note that this observation applies not only to the Boneh-Franklin
scheme, but to many tracing schemes that are based on a publicly-known linear
code such as the generalizations described by Kurosawa and Yoshida [25].

An obvious way to repair this annoying property of the Boneh-Franklin
scheme would require keeping the tracing code matrix secret, while making

sure that the vectors γ(i) = 〈γ(i)
1 , . . . , γ

(i)
2k 〉 are statistically decorrelated. In that

case acquiring 2k representations should give an adversary no information about
other representations. This idea was already used by Kiayias and Yung in [23] for
the different goal of obtaining an asymmetric traitor-tracing scheme. A way to
achieve this would be to choose the i-th codeword γ(i) as γ(i) = 〈1, ζi, . . . , ζ

2k−1
i 〉

where ζi ∈R Z/qZ with 1 ≤ i ≤ ℓ is drawn independently and uniformly12 at
random for each γ(i). Here, a GRSℓ,2k(π, d) code is used, with π = (ζ1, ζ2, . . . , ζℓ)
and d = (1, 1, . . . , 1). The ith receiver has to protect the entire representation

〈θiγ
(i)
1 , . . . , θiγ

(i)
2k 〉, and thus, to store at least θi and ζi in tamper-proof memory.

Furthermore, the fast codeword generation method from §3.2 can no longer be
used.

By applying the above codeword distribution method, an adversary who
acquires 2k or more keys will be unable to derive any information about the
tracing codewords that are used in the representations. She will only be capable
of creating combinations of the representations. If there are fewer than k + 1
keys in a combination, we are back to a standard tracing scenario. Otherwise,
combinations of k +1 or more keys will be detected, but not traceable, since our
tracing algorithm will be unable to factorize the error-locator polynomial nor
the original approaches will reveal the traitors.

6 Conclusion

In this paper, we have presented new insights as well as several improvements
to the Boneh-Franklin traitor tracing scheme [5]. First of all, we revisited the
private key watermarking scheme based on Reed-Solomon codes; based on this,
we describe a new non-black-box tracing algorithm whose complexity only de-
pends on the square of the maximal coalition size k and is independent of the
total number ℓ of users. Our new tracing algorithm does not require any change

12 Note that for practical values of ℓ, a collision between two codewords has a negligible
probability to occur.



in the encryption scheme and can be used with any generalized Reed-Solomon
codes.

This allows us to implement the scheme in a system with a virtually unlimited
number of users; in other words, the maximal coalition size is only constrained
by the channel bandwidth and the computational capacity of the receivers. This
new tracing algorithm can also be applied with any other scheme relying on
(generalized) Reed-Solomon codes to watermark the distributed private keys.

Additionally, we discussed the application of the Guruswami-Sudan list-de-
coding algorithm, whose use was proposed in [5], and showed that, in practice,
it brings only a marginal improvement in tracing capabilities, and this at high
cost.

As a final step, we studied the above-threshold security of the Boneh-Fran-
klin scheme, i.e., the malicious capabilities of an adversary having access to many
more than k keys. We showed that, given a coalition size of k, an adversary who
has recovered 2k private keys or more can derive any other private key, provided
the code Γ is publicly known, as advocated in [5]. To the best of our knowledge,
this ‘feature’ has not been reported in the literature. To deal with this problem,
we suggest to keep the tracing code matrix secret and to distribute statistically

independent codewords to the receivers.
Even though the Boneh-Franklin scheme can encrypt only small messages

(basically, one group element), and even though using it in a hybrid fashion by
encrypting a symmetric session key is prone to a trivial untraceable strategy13,
we believe based on our results that, in order to fight illegitimate clones of
tamper-proof modules, the Boneh-Franklin scheme is now really worth to be
considered in scenarios where trivial untraceable strategies are unavoidable14 by
design. Of course, this statement is based on the assumption that it is possible
to revoke a traced clone by some other mechanism.
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Stam as well as the anonymous reviewers of PKC’09 for interesting discussions
and comments about this paper.

References

1. R. Anderson. Security engineering – a guide to building dependable distributed
systems. Wiley, 2001.

2. O. Billet and D. Phan. Efficient traitor tracing from collusion secure codes. In
R. Safavi-Naini, editor, Information Theoretic Security, Third International Con-
ference, ICITS 2008, Calgary, Canada, August 10-13, 2008. Proceedings, volume
5155 of Lecture Notes in Computer Science, pages 171–182. Springer-Verlag, 2008.

13 This strategy is simply to share the session key.
14 Like in Pay-TV systems using the DVB-CSA [39] standard encryption, for instance.



3. D. Bini and V. Pan. Polynomial and matrix computations: fundamental algorithms,
volume 1 of Progress in Theoretical Computer Science Series. Birkhauser Verlag,
1994.

4. D. Boneh. The decision Diffie-Hellman problem. In J. Buhler, editor, Algorithmic
Number Theory, Third International Symposium (ANTS III), Portland, Oregon,
USA, June 21 - 25, 1998. Proceedings, volume 1423 of Lecture Notes in Computer
Science, pages 48–63. Springer-Verlag, 1998.

5. D. Boneh and M. Franklin. An efficient public key traitor tracing scheme. In
M. Wiener, editor, Advances in Cryptology – Crypto’99: 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999. Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 338–
353. Springer-Verlag, 1999.

6. D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. Manuscript
available on http://crypto.stanford.edu/~dabo/papers/const-tt.pdf, 2008.

7. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In S. Vaudenay, editor, Advances in Cryptology
– Eurocrypt 2006: 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006. Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
573–592. Springer-Verlag, 2006.

8. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

9. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace and revoke
system. In A. Juels, R. Wright, and S. De Capitani de Vimercati, editors, Pro-
ceedings of the 13th ACM Conference on Computer and Communication Security,
CCS 2006, Alexandria, USA, October 30 - November 3, 2006, pages 211–220. ACM
Press, 2006.

10. D. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, 36(154):587–592, April 1981.

11. R. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Transactions on Information Theory, 10(4):357–363, October 1964.

12. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor, Advances
in Cryptology – Crypto’94: 14th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1994. Proceedings, volume 839 of
Lecture Notes in Computer Science, pages 257–270. Springer-Verlag, 1994.

13. B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Transactions
on Information Theory, 46(3):893–910, 2000.

14. H. Cohen. A course in computational algebraic number theory. Springer-Verlag,
2000.

15. Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing and revok-
ing. In S. Rajsbaum, editor, PODC 2003, Proceedings of the Twenty-Second ACM
Symposium on Principles of Distributed Computing, July 13-16, 2003, Boston,
USA, pages 190–199. ACM Press, 2003.

16. Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable public-key tracing and
revoking. Distributed Computing, 17(4):323–347, 2005.

17. A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Advances in
Cryptology – Crypto’93: 13th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 22-26, 1993. Proceedings, volume 773 of Lecture
Notes in Computer Science, pages 480–491. Springer-Verlag, 1994.



18. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In 39th Annual Symposium on Foundations of Computer Science
(FOCS’98), November 8-11, 1998, Palo Alto, California, USA, pages 28–39. IEEE
Computer Society, 1998.

19. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

20. J. Hall. Notes on coding theory – Generalized Reed-Solomon codes. Available on
http://www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf, 2003.

21. A. Kiayias and S. Pehlivanoglu. Pirate evolution: how to make most of your traitor
keys. In A. Menezes, editor, Advances in Cryptology – Crypto 2007, 27th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19-
23, 2007. Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
448–465. Springer-Verlag, 2007.

22. A. Kiayias and M. Yung. Self protecting pirates and black-box traitor tracing.
In J. Kilian, editor, Advances in Cryptology – Crypto 2001: 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001. Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 63–79.
Springer-Verlag, 2001.

23. A. Kiayias and M. Yung. Breaking and repairing asymmetric public-key traitor
tracing. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Manage-
ment, ACM CCS-9 Workshop, DRM 2002, Washington DC, USA, November 18,
2002. Revised Papers, volume 3557 of Lecture Notes in Computer Science, pages
32–50. Springer-Verlag, 2003.

24. K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes
with arbiter. In K. Nyberg, editor, Advances in Cryptology – Eurocrypt’98: Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May/June 1998. Proceedings, volume 1403 of Lecture Notes in
Computer Science, pages 145–157. Springer-Verlag, 1998.

25. K. Kurosawa and T. Yoshida. Linear code implies public-key traitor tracing. In
D. Naccache and P. Paillier, editors, Public-Key Cryptography, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems, PKC’02, Paris,
France, February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in Com-
puter Science, pages 172–187. Springer-Verlag, 2002.

26. LiDIA A C++ Library for Computational Number Theory. Software available on
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/.

27. S. Mangard, E. Oswald, and T. Popp. Power analysis – revealing the secrets of
smart cards. Springer, 2007.

28. J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory, 15(1):122–127, 1969.

29. J. McGregor, Y. Yin, and R. Lee. A traitor tracing scheme based on RSA for
fast decryption. In J. Ioannidis, A. Keromytis, and M. Yung, editors, Applied
Cryptography and Network Security, Third International Conference, ACNS 2005,
New-York, USA, June 7–10, 2005. Proceedings, volume 3531 of Lecture Notes in
Computer Science, pages 56–74. Springer-Verlag, 2005.

30. A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of applied cryptography.
The CRC Press series on discrete mathematics and its applications. CRC-Press,
1997.

31. GNU Multiple Precision Arithmetic Library. Software available on http://

gmplib.org.



32. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In J. Kilian, editor, Advances in Cryptology – Crypto 2001: 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19-
23, 2001. Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
41–62. Springer-Verlag, 2001.

33. M. Naor and B. Pinkas. Threshold traitor tracing. In H. Krawczyk, editor, Ad-
vances in Cryptology – Crypto’98: 18th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 1998. Proceedings, volume 1462 of
Lecture Notes in Computer Science, pages 502–517. Springer-Verlag, 1998.

34. V. Pan. Faster solution of the key equation for decoding BCH error-correcting
codes. In F. Leighton and P. Shor, editors, Proceedings, 29th Annual ACM Sym-
posium on the Theory of Computing (STOC), pages 168–175. ACM Press, 1997.

35. B. Pfitzmann. Trials of traced traitors. In R. Anderson, editor, Information Hiding,
First International Workshop, Cambridge, UK, May 30 - June 1, 1996. Proceed-
ings, volume 1174 of Lecture Notes in Computer Science, pages 49–64. Springer-
Verlag, 1996.

36. I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics (SIAM), 8(2):300–304, 1960.

37. A. Silverberg, J. Staddon, and J. Walker. Efficient traitor tracing algorithms using
list decoding. In C. Boyd, editor, Advances in Cryptology – Asiacrypt 2001: 7th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Gold Coast, Australia, December 9-13, 2001. Proceedings, volume
2248 of Lecture Notes in Computer Science, pages 175–192. Springer-Verlag, 2001.

38. A. Silverberg, J. Staddon, and J. Walker. Applications of list decoding to traitor
tracing. IEEE Transactions on Information Theory, 49(5):1312–1318, 2003.

39. Digital Video Broadcasting (DVB) Conditional Access Standards. Available on
http://www.dvb.org/technology/standards/index.xml#conditional.

40. D. Stinson and R. Wei. Key preassigned traceability schemes for broadcast en-
cryption. In S. Tavares and H. Meijers, editors, Selected Areas in Cryptography:
5th Annual International Workshop, SAC’98, Kingston, Ontario, Canada, August
1998. Proceedings, volume 1556 of Lecture Notes in Computer Science, pages 144–
156. Springer-Verlag, 1999.

41. D. Wallner, E. Harder, and R. Agee. Key management for multicast: issues and
architectures. RFC 2627, 1999. Available on http://www.ietf.org.

42. L. Welch and E. Berlekamp. Error correction for algebraic block codes. US Patent
4’633’470, 1986.

43. S. Wicker. Error control systems for digital communications and storage. Prentice
Hall, 1995.

44. C. Wong, M. Gouda, and S. Lam. Secure group communications using key
graphs. In Proceedings of the ACM SIGCOMM’98 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, August
31 - September 4, 1998, Vancouver, British Columbia, Canada, pages 68–79. ACM
Press, 1998.


