
Signing a Linear Subspace:
Signature Schemes for Network Coding

Dan Boneh1?, David Freeman2??, Jonathan Katz3? ? ?, and Brent Waters4†

1 Stanford University, dabo@cs.stanford.edu
2 CWI and Universiteit Leiden, freeman@cwi.nl

3 University of Maryland, jkatz@cs.umd.edu
4 University of Texas at Austin, bwaters@cs.utexas.edu

Abstract. Network coding offers increased throughput and improved
robustness to random faults in completely decentralized networks. In con-
trast to traditional routing schemes, however, network coding requires
intermediate nodes to modify data packets en route; for this reason, stan-
dard signature schemes are inapplicable and it is a challenge to provide
resilience to tampering by malicious nodes.

We propose two signature schemes that can be used in conjunction with
network coding to prevent malicious modification of data. Our schemes
can be viewed as signing linear subspaces in the sense that a signature
σ on a subspace V authenticates exactly those vectors in V . Our first
scheme is (suitably) homomorphic and has constant public-key size and
per-packet overhead. Our second scheme does not rely on random oracles
and is based on weaker assumptions.

We also prove a lower bound on the length of signatures for linear sub-
spaces showing that our schemes are essentially optimal in this regard.

1 Introduction

Network coding [1, 23] refers to a general class of routing mechanisms where, in
contrast to traditional “store-and-forward” routing, intermediate nodes modify
data packets in transit. Network coding has been shown to offer a number of
advantages with respect to traditional routing, the most well-known of which is
the possibility of increased throughput in certain network topologies. It has also
been suggested as a means of improving robustness against random network
? Supported by DARPA IAMANET, NSF, and the Packard Foundation.

?? Research conducted at Stanford University. Supported by an NSF Mathematical
Sciences Postdoctoral Research Fellowship.

? ? ? Supported by NSF CNS-0447075, NSF CNS-0627306, the U.S. DoD/ARO MURI
program, and the US Army Research Laboratory and the UK Ministry of Defence
under agreement number W911NF-06-3-0001.

† Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199, the U.S. Army Re-
search Office under the CyberTA Grant No. W911NF-06-1-0316, and the U.S. De-
partment of Homeland Security under Grant Award Number 2006-CS-001-000001.
Portions of this research were conducted while the author was at SRI International.

failures since, as with erasure codes [6], the destination can recover the origi-
nal data (with high probability) once it has received sufficiently many correct
packets, even if a large fraction of packets are lost.

Because of these advantages, network coding has been proposed for applica-
tions in wireless and/or ad-hoc networks, where communication is at a premium
and centralized control may be unavailable; it has also been suggested as an
efficient means for content distribution in peer-to-peer networks [22], and for im-
proving the performance of large-scale data dissemination over the Internet [11].

A major concern in systems that use network coding is protecting against
malicious modification of packets (i.e., “pollution attacks”) by Byzantine nodes;
see [13, 21] for two recent surveys and Section 2.2 for a discussion of previous
work. The problem is particularly acute because errors introduced into even a
single packet can propagate and pollute multiple packets making their way to
the destination. This propagation is a consequence of the processing that honest
nodes, downstream of any corrupted packets, apply to all incoming packets.

We propose two signature schemes that can be used to provide cryptographic
protection against pollution attacks even when the adversary can corrupt an ar-
bitrary number of nodes, eavesdrop on all network traffic, and insert or modify
an arbitrary number of packets. Of course, the destination cannot possibly re-
cover the file unless it receives a minimum number of uncorrupted packets; once
this is the case, however, our schemes ensure that the destination can filter out
any corrupted packets and recover the correct file. As our signatures are publicly
verifiable, intermediate nodes could discard corrupted packets as well (though
whether this is actually done will depend on the computational resources of the
intermediate nodes). Our first scheme is particularly efficient, with both public-
key size and per-packet overhead being constant. A detailed discussion of our
schemes, and their advantages relative to prior work, is given in Section 2.3.

Our schemes can be viewed as signing linear subspaces in the sense that a
signature σ on the subspace V authenticates exactly those vectors in V . We
prove a lower bound on the signature length for any scheme for signing linear
subspaces (under some mild restrictions), showing that our constructions are
essentially optimal in this regard.

Outline of the paper. We provide a quick overview of network coding in
Section 2.1. In Section 2.2 we discuss prior work addressing adversarial behavior
in the context of network coding, and we describe the advantages of our schemes
in Section 2.3. In Section 3 we introduce appropriate definitions of security for
our setting and give relevant mathematical background. Sections 4 and 5 describe
our constructions, and in Section 6 we prove our lower bound.

2 Background

2.1 Linear Network Coding

In a linear network coding scheme [23] (the only type with which we will be
concerned), a file to be transmitted is viewed as an ordered sequence of n-
dimensional vectors v̄1, . . . , v̄m ∈ Fn

p , where p is prime. We will sometimes refer

to individual vectors as blocks or packeets. Before transmission, the source node
creates the m augmented vectors v1, . . . ,vm given by:

vi = (—v̄i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
p ;

that is, each original vector v̄i is appended with the vector of length m contain-
ing a single ‘1’ in the ith position. These augmented vectors are then sent by
the source as packets in the network. Since this step introduces Θ(m2) commu-
nication overhead per file, one typically chooses m ¿ n.

Each node in the network processes packets as follows. Upon receiving packets
(i.e., vectors) w1, . . . ,w` ∈ Fn+m

p on its ` incoming communication edges, node i

computes the packet (vector) w =
∑`

j=1 αi,jwj , where αi,j ∈ Fp. The resulting
vector w is then transmitted on the node’s outgoing edges. That is, each node
transmits a linear combination of the packets it receives. Thus, in a fault-free
execution of the scheme, all packets transmitted on any link in the network are
linear combinations of the original (augmented) file vectors v1, . . . ,vm.

The weights αi,j used by the ith node in the network can be established by a
central authority. More usefully (and more interestingly), however, these values
can also be chosen randomly and independently by each node in a completely
decentralized fashion. (In this case the scheme is sometimes referred to as “ran-
dom network coding”.) Although carefully designed codes can potentially have
better performance, it has been shown that random network coding does almost
as well with high probability [8, 14, 16].

There may be multiple destination nodes (i.e., receivers) who wish to obtain
the original file from the source. When any such node receives m linearly in-
dependent vectors w1, . . . ,wm, it can recover the original file as follows: For a
received vector wi, let wL

i denote the left-most n positions of the vector, and let
wR

i denote the right-most m positions. The receiver first computes an m × m
matrix G such that

G =




—wR
1 —
...

—wR
m—




−1

. (1)

(The matrix on the right-hand side is invertible as long as all the received vectors
are correct.) The original file v̄1, . . . , v̄m is then given by




—v̄1—
...

—v̄m—


 = G ·




—wL
1 —
...

—wL
m—


 .

We stress that the receiver need not be aware of the weights {αi,j} used by
any intermediate node in the network in order to recover the file. On the other
hand, if the weights used by the intermediate nodes are all known to the receiver

(and the receiver is aware of the network topology) then the matrix G can be
computed in advance and, in fact, the scheme can be run on the original file
vectors v̄1, . . . , v̄m rather than on the augmented vectors v1, . . . ,vm. In our
work, however, we will assume that augmented vectors are used.

2.2 Dealing with Adversarial Behavior

Network coding can offer resilience to random packet loss since the receiver
can reconstruct the original file from any set of m correctly formed, linearly
independent vectors. (Notice the similarity with linear erasure codes introduced
in other contexts, e.g., [6].) However, the in-network processing done by the nodes
makes the basic network coding scheme extremely susceptible to malicious errors
introduced by even a single intermediate node in the network. For starters, this
is because the basic network coding scheme offers no means of isolating the fault:
if one of the vectors wi received at the destination is incorrect, then that error
will be “spread” across (potentially) every block v̄1, . . . , v̄m of the reconstructed
file (cf. Equation 1). Furthermore, a single error introduced by one malicious
node will be propagated by every node further downstream. Thus, even a faulty
transmission on a single edge (say, due to a single corrupted node) will eventually
cause almost all vectors being forwarded in the network to be incorrect, and will
thus prevent reconstruction of even a portion of the file.

It is worth mentioning two trivial approaches that do not solve the problem.
The source cannot simply sign the packets it releases into the network using
a standard signature scheme, since the packets received at the destination will
almost surely be different from those issued by the sender. Signing the entire file
does not work either: although this would ensure that the receiver never accepts
an incorrect file, there is no efficient way for the receiver to recover the correct
file. (Since the receiver cannot distinguish correct packets from corrupt packets
a priori, it is forced to apply the reconstruction procedure from Section 2.1 to
all subsets of received vectors of size m.)

We now survey other techniques for combatting data pollution when network
coding is used (see [21] for further discussion).

Information-theoretic approaches. Information-theoretic methods for en-
abling recovery from malicious faults work by introducing redundancy into the
original packets transmitted by the sender [15, 17, 18]. Such techniques have the
advantage of not relying on any computational assumptions, but are limited
to offering security only against a relatively limited class of adversaries: these
constructions all (inherently) assume limitations on the number of nodes the
adversary can corrupt, the number of packets that can be modified, and/or the
number of links on which the adversary can eavesdrop. Moreover, the communi-
cation overhead introduced by these schemes is significant.

Cryptographic approaches. Existing cryptographic schemes (i.e., those that
protect only against a computationally bounded adversary) all work by provid-
ing a way for honest nodes to verify authenticity of individual packets. (Once

again we stress that this cannot be achieved in our setting using standard signa-
tures, since packets are modified in transit.) Cryptographic schemes can poten-
tially offer resilience against an adversary who eavesdrops on the entire network
and controls arbitrarily many malicious nodes, as long as the destination node
receives m correctly formed and linearly independent vectors. Existing schemes
also allow the receiver to recover gracefully when fewer than m legitimate vectors
are received; for example, if the destination receives k correctly formed vectors
spanning the subspace defined by the first k file blocks, then the receiver can at
least recover a portion of the original file. Cryptographic schemes have the addi-
tional advantage that intermediate nodes in the network can verify correctness
of individual packets, and hence reject ill-formed ones.

Although one could imagine using a symmetric-key approach, all existing
work focuses on the public-key setting where the sender’s public key is known to
all other nodes in the network. A public-key scheme makes the most sense when
the sender is multi-casting files to many receivers (as is typically the situation
when network coding is used), and furthermore enables all intermediate nodes
in the network to potentially verify authenticity of received packets.

Krohn et al. [22] (see also [11, 12]) suggest homomorphic hashing for prevent-
ing pollution attacks. In their scheme, the sender computes a hash hi = H(v̄i) of
each block of the file; given x = (h1, . . . , hm), anyone can check whether a packet
w is a correctly formed linear combination of the augmented vectors {vi}. Krohn
et al. assume a reliable channel for distributing the hash values for a given file,
but it is not hard to show (see Section 5) that signing x using a standard signa-
ture scheme also results in a secure solution. The drawback of this approach is
that both the authentication information x and the public keys are large: x has
size Θ(km) and the public key has size Θ(kn), where k is a cryptographic secu-
rity parameter. (Thus, either the public key or x has size at least the square root
of the file size.) Sending all of x with each packet introduces a large overhead;
on the other hand, if x is partitioned among multiple packets then intermediate
nodes cannot verify authenticity of the packets they receive.

Zhao et al. [25] propose a scheme where the sender computes some authen-
tication information x derived from a vector orthogonal to the space V =
span({v1, . . . ,vm}); this authentication information x is then signed by the
sender (using a standard signature scheme). Unfortunately, this scheme also has
relatively poor performance: both x and the public keys have size Θ(k(n + m)).
Furthermore, the scheme can only be used for distributing a single file, after
which the public key must be refreshed. (Zhao et al. suggest some approaches
for handling multiple files, but do not prove security of any of these suggestions.)
An additional drawback of both this scheme and the one of Krohn et al. is that
they both require the sender to know the entire file before the authentication
information can be computed.

Charles et al. [7] present a homomorphic signature scheme [19] based on the
aggregate signature scheme of Boneh et al. [4]. This scheme has the property that
valid signatures σ1, . . . , σk on vectors w1, . . . ,wk, respectively, can be combined,
without knowledge of the signer’s secret key, to produce a valid signature σ on

any linear combination
∑

i αiwi. The scheme can only be used to sign a single
file, after which the public key must be refreshed; this restriction clearly limits
the scheme’s applicability. Public keys in this scheme have size Θ(k(m + n)),
meaning that it will be impractical to redistribute public keys over the network
even if network coding is used for key distribution. Charles et al. also do not
formally prove security of their scheme.

2.3 Our Contributions

We start with clean definitions of the problem at hand and formally define
what it means for a signature scheme to be secure in our context. Roughly
speaking, we consider signature schemes that can be viewed as authenticating
linear subspaces in the sense that a signature on the subspace V authenticates all
vectors in V . Our security definition requires that no adversary given a signature
on a vector subspace V can forge a valid signature for any vector not in V .
The application to network coding is clear: to distribute a file, simply sign the
subspace V = span{v1, . . . ,vm}. (Actually, both our security definition and our
constructions directly take into account the distribution of multiple files using a
single public key — in contrast to [7, 25] — and so the formal definition and the
application to network coding is a bit more involved.)

We show two constructions meeting our definition. Our first scheme, called
NCS1, is a homomorphic signature scheme and has the advantage that signatures
can be associated with individual vectors rather than an entire subspace. (The
signature on a linear subspace V can then be taken as the collection of signatures
on a set of basis vectors for V .) Both the public key and per-vector signatures
in this scheme have constant size, making the scheme ideally suited for network
coding. This scheme also supports the transmission of streaming data, in the
sense that the sender need not be aware of the entire file before computing
the signature on the first packet. Security of this scheme is proved based on
the computational Diffie-Hellman assumption in bilinear groups, in the random
oracle model.

Our second construction, called NCS2, provides an instantiation of the scheme
of Krohn et al. [22] that is secure according to our definition. The primary ad-
vantage of this scheme is that it can be proven secure based on a potentially
weaker assumption (namely, the discrete logarithm assumption) without ran-
dom oracles. We also show how our scheme can be viewed as a more efficient
version of the scheme of Zhao et al. [25].

Finally, we prove a lower bound on the length of secure signatures for linear
subspaces, under some mild assumptions on the signature scheme. Specifically,
we show (roughly speaking) that the signature on any subspace V must have
length proportional to dim(V). This shows that our two constructions are essen-
tially optimal in this regard. (Note that although our first scheme offers constant
size per-vector signatures, the signature on a subspace V consists of dim(V) per-
vector signatures and thus matches the lower bound.)

3 Definitions and Preliminaries

3.1 Signing a Linear Subspace

We abstract our problem, and seek to design a signature scheme that signs a
subspace V ⊂ FN

p so that only vectors y ∈ V are accepted as valid. We start by
defining the interface provided by such a system and then define security.

As discussed previously, we want our scheme to be useful for the distribution
of multiple files using the same public key. As such, every file will be associated
with an identifier id that is chosen by the sender at the time the first packet
associated with the file is transmitted.1 We then require that every packet for-
warded in the system is labeled with the appropriate identifier. (Adversarial
nodes, of course, can change the identifier any way they like.) The identifier pro-
vides a mechanism for honest nodes, and the receiver in particular, to distinguish
packets associated with different files.

Definition 1. A network coding signature scheme is a triple of probabilistic,
polynomial-time algorithms (Setup, Sign, Verify) with the following functionality:

– Setup(1k, N). On input a security parameter 1k and an integer N , this algo-
rithm outputs a prime p, a public key PK, and a secret key SK.

– Sign(SK, id, V). On input a secret key SK, a file identifier id ∈ {0, 1}k, and
an m-dimensional subspace V ⊂ FN

p (with 0 < m < N) described as a set of
basis vectors v1, . . . ,vm, this algorithm outputs a signature σ.

– Verify(PK, id,y, σ). On input a public key PK, an identifier id ∈ {0, 1}k, a
vector y ∈ FN

p , and a signature σ, this algorithm outputs either 0 (reject) or
1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following
holds: for all m-dimensional subspaces V ⊂ FN

p with 0 < m < N , and for all
id ∈ {0, 1}k, if σ ← Sign(SK, id, V) then Verify(PK, id,y, σ) = 1 for all y ∈ V .

The signature σ output by Sign can be viewed a signature on the vector
space V . “Homomorphic signatures” (cf. [19]) are a special case that is more
precisely modeled by a definition in which the Sign algorithm produces signatures
σ1, . . . , σm on the basis vectors v1, . . . ,vm, and the collection of these signatures
constitutes a signature on V . This is encapsulated in the following definition.

Definition 2. A homomorphic network coding signature scheme is a tuple of
probabilistic, polynomial-time algorithms (Setup, Sign,Combine,Verify) with the
following functionality:

– Setup(1k, N). On input a security parameter 1k and an integer N , this algo-
rithm outputs a prime p, a public key PK, and a secret key SK.

1 One can think of this identifier as being equivalent to a filename, though for our
first scheme we require that identifiers be unpredictable (they need not be random).
Unpredictability is easily achieved by concatenating an arbitrary filename with a
random string.

– Sign(SK, id,v). On input a secret key SK, a file identifier id ∈ {0, 1}k, and
a vector v ∈ FN

p , this algorithm outputs a signature σ.

– Combine(PK, id, {(βi, σi)}`
i=1). On input a public key PK, a file identifier

id, and a set of tuples {(βi, σi)}`
i=1 with βi ∈ Fp, this algorithm outputs a

signature σ.
(The intuition is that if each σi is a valid signature on the vector vi, then σ

is a signature on
∑`

i=1 βivi.)

– Verify(PK, id,y, σ). On input a public key PK, an identifier id ∈ {0, 1}k, a
vector y ∈ FN

p , and a signature σ, this algorithm outputs either 0 (reject)
or 1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following hold:

– For all id and all y ∈ FN
p , if σ ← Sign(SK, id,y) then Verify(PK, id,y, σ) = 1.

– For all id ∈ {0, 1}k and all sets of triples {(βi, σi,vi)}`
i=1, if it holds that

Verify(PK, id,vi, σi) = 1 for all i, then

Verify
(
PK, id,

∑
i βivi, Combine

(
PK, id, {(βi, σi)}`

i=1

))
= 1.

The following lemma, a proof of which is trivial, shows that homomorphic
network coding signatures are indeed a special case of network coding signatures.

Lemma 3. Let S2 = (Setup2, Sign2, Combine2, Verify2) be a homomorphic net-
work coding signature scheme. Then S1 = (Setup1, Sign1, Verify1) defined as fol-
lows is a network coding signature scheme.

– Setup1(1k, N) runs Setup2(1k, N) and outputs the result.

– Sign1(SK, id, V) runs Sign2(SK, id,v1), . . . , Sign2(SK, id,vm), where v1,
. . ., vm is any basis of V . It then outputs σ = ((v1, σ1), . . . , (vm, σm)).

– Verify1(PK, id,y, σ) parses σ as ((v1, σ1), . . . , (vm, σm)), and computes coef-
ficients {βi} such that y =

∑
i βivi (if no solution exists, then it outputs 0).

Finally, it outputs Verify2

(
PK, id, y, Combine2

(
PK, id, {(βi, σi)}m

i=1

))
.

We say a basis {vi}m
i=1 of a subspace V ⊆ FN

p is properly augmented (cf.
Section 2.1) if the last m coordinates of each vi form a unit vector with a 1 in the
ith position. Abusing notation, we say V is properly augmented if it is described
using a properly augmented basis. Let n = N −m. If v1, . . . ,vm is a properly
augmented basis of V , then for any y ∈ FN

p with y = (y1, . . . , yn, yn+1, . . . yn+m)
we have

y ∈ V ⇐⇒ y =
m∑

i=1

yn+ivi. (2)

This observation allows us to simplify the construction of Lemma 3 when we
only use (Setup1,Sign1, Verify1) to sign properly augmented vector spaces. (This
suffices for our application to network coding.) Namely, Sign1(SK, id, V) simply

outputs σ = (σ1, . . . , σm) (where the σi are computed as in Lemma 3), and
Verify1(PK, id,y, σ) outputs

Verify2

(
PK, id, y, Combine2

(
PK, id, {(yN−m+i, σi)}m

i=1

))
.

Security. We define security of a network coding signature scheme, and say that
a homomorphic network coding signature scheme S2 is secure if the network
coding signature scheme S1 constructed from S2 as in Lemma 3 is secure.

Definition 4. A network coding signature scheme S = (Setup, Sign, Verify) is
secure if the advantage of any probabilistic, polynomial-time adversary A in the
following security game is negligible in the security parameter k:

Setup: The adversary A sends a positive integer N to the challenger. The chal-
lenger runs Setup(1k, N) to obtain (p, PK, SK), and gives p and PK to A.

Queries: Proceeding adaptively, A specifies a sequence of vector subspaces
Vi ⊂ FN

p . For each i, the challenger chooses idi uniformly from {0, 1}k, and gives
idi and σi ← Sign(SK, idi, Vi) to A.

Output:A outputs id∗ ∈ {0, 1}k, a non-zero vector y∗ ∈ FN
p , and a signature σ∗.

The adversary wins if Verify(PK, id∗,y∗, σ∗) = 1, and either (1) id∗ 6= idi for
all i (a type 1 forgery), or (2) id∗ = idi for some i but y∗ 6∈ Vi (a type 2 forgery).
The advantage NC-Adv[A,S] of A is defined to be the probability that A wins
the security game.

We require the adversary to output a non-zero vector y∗ since the zero vector
lies in every linear subspace. (Furthermore, by adding a dimension it is possible
to rule out type-1 forgeries on the zero vector if desired.) Note also that it is not
counted as a forgery if A obtains a signature σ on a vector space V and outputs
a valid signature σ′ on a vector space V ′ ⊂ V . Indeed, in the context of network
coding this would not be problematic.

3.2 Bilinear Groups and Complexity Assumptions

We briefly review the framework of groups with bilinear maps.

Definition 5. A bilinear group tuple is a tuple (G1,G2,GT , p, e, ϕ) with the
following properties:

1. G1,G2,GT are cyclic groups of prime order p, in which random sampling
and group operations are efficiently computable.

2. e : G1 ×G2 → GT is an efficiently computable map satisfying the following:
(a) Bilinearity: for any g ∈ G1, h ∈ G2, and a, b ∈ Z, e(ga, hb) = e(g, h)ab.
(b) Non-degeneracy: if g generates G1 and h generates G2, then e(g, h) gen-

erates GT .

3. ϕ : G2 → G1 is an efficiently computable isomorphism.2

For cryptographic applications, we require that the discrete logarithm prob-
lem — i.e., computing x given g and gx — be infeasible in the groups G1,G2,GT .
Given an algorithm A that takes as input two elements g, h in a group G and
outputs an integer x in {0, . . . , |G|−1}, we define DL-Adv[A,G] to be the prob-
ability that h = gx, taken over inputs (g, h) and the random coins of A.

Currently the only known bilinear group tuples in which the discrete log-
arithm problems are believed to be infeasible are those for which G1,G2 are
(subgroups of) groups of rational points on elliptic curves or abelian varieties
over finite fields; GT is (a subgroup of) a multiplicative group of a finite field;
and e is (a variant of) the Weil pairing or Tate pairing [9]. Elliptic curves and
abelian varieties with the desired properties are called “pairing-friendly.” Bilin-
ear group tuples as described in Definition 5 exist on all pairing-friendly elliptic
curves and abelian varieties with embedding degree k > 1.

The proof of security of our first signature scheme (Section 4) relies on
the assumption that the co-computational Diffie Hellman (co-CDH) problem
in (G1,G2) — i.e., computing gx ∈ G1 given g ∈ G1 \ {1} and h, hx ∈ G2 \ {1}
— is infeasible. Given A that takes as input g ∈ G1, h ∈ G2, and z = hx ∈ G2,
and outputs an element ω ∈ G1, we define co-CDH-Adv[A, (G1,G2)] to be the
probability that ω = gx, taken over inputs (g, h, z) and the random coins of A.
Note that if in addition to ϕ : G2 → G1 there is an efficiently computable iso-
morphism ψ : G1 → G2 then the co-CDH problem in (G1,G2) is equivalent to
the standard computational Diffie-Hellman problem in either G1 or G2.

4 A Homomorphic Network Coding Signature Scheme

In this section we construct a homomorphic network coding signature scheme
with constant-size public key and constant-size per-vector signatures. Our sig-
natures are similar to the aggregate signatures of Boneh et al. [4].

Signature Scheme NCS0.

Setup(1k, N). Given a security parameter 1k and a positive integer N , do:
1. Generate a bilinear group tuple G = (G1,G2,GT , p, e, ϕ) such that p > 2k.

Choose a generator h ← G2 \ {1}.
2. Choose α ← F∗p, and set u := hα.

3. Let H : {0, 1}∗×{0, 1}∗ → G1 be a hash function, viewed as a random oracle.

4. Output p, the public key PK := (G,H, h, u) and the private key SK := α.

2 Existence of ϕ is not needed if we use a different cryptographic assumption to prove
security of our first scheme. We omit further discussion.

Sign(SK, id,v). Given a secret key SK = α, an identifier id ∈ {0, 1}k, and a
vector v = (v1, . . . , vN) ∈ FN

p , this algorithm outputs the signature

σ :=

(
N∏

i=1

H(id, i)vi

)α

.

Combine(PK, id, {(βi, σi)}`
i=1). Given a public key PK, an identifier id, and

{(βi, σi)}`
i=1 with βi ∈ Fp, this algorithm outputs σ :=

∏`
i=1 σβi

i .

Verify(PK, id,y, σ). Given a public key PK = (G,H, h, u), an identifier id, a
signature σ, and a vector y ∈ FN

p , define

γ1(PK, σ) def= e (σ, h) and γ2(PK, id,y) def= e

(
N∏

i=1

H(id, i)yi , u

)
.

If γ1(PK, σ) = γ2(PK, id,y) this algorithm outputs 1; otherwise it outputs 0.

Due to lack of space, we omit the (straightforward) proof of correctness.
A signature is just a single element of G1. Groups G1 whose elements can be

represented using log2 p bits can be obtained by using pairing-friendly elliptic
curves of prime or near-prime order; see [10] for further details.

A variant of the above scheme is more efficient when only properly augmented
vectors will be signed (as is the case for applications to network coding), and
the dimension m of the resulting vector space is known at the time any vector is
signed or verified. In this setting, the signer can choose random g1, . . . , gN ∈ G1

at the time of key generation and publish these as part of the public key. To sign
a vector v = (v1, . . . , vN) ∈ FN

p using the identifier id, the signer sets n := N−m
and computes

σ :=




m∏

i=1

H(id, i)vn+i

n∏

j=1

g
vj

j




α

.

(Verification is changed in the obvious way.) In this variant, signing the aug-
mented vector v is dominated by computing a single hash into G1 (taking time
similar to a full exponentiation) plus n additional exponentiations in G1. The
public key in this variant can be compressed to size linear in the security param-
eter k by generating g1, . . . , gN as the output of an independent hash function H ′

(also modeled as a random oracle).
We now prove the security of signature scheme NCS0. More precisely, we

consider the variant scheme (call it NCS1) suggested above, and prove security of
the network coding signature scheme NCS′1 constructed from NCS1 as described
in the optimization following Lemma 3. Our security proof assumes that only
properly augmented vector spaces are signed. (We stress that NCS0 itself is also
secure, even without this assumption.)

Theorem 6. Let NCS′1 be the network coding signature scheme constructed from
NCS1 via the (optimized) method of Lemma 3. Then NCS′1 is secure in the
random oracle model assuming that the co-CDH problem in (G1,G2) is infeasible.

In particular, let A be a polynomial-time adversary as in Definition 4. Then
there exists a polynomial-time algorithm B that computes co-CDH in (G1,G2),
and such that

co-CDH-Adv[B, (G1,G2)] ≥ NC-Adv[A, NCS′1]−
1
p
− qs(qs + qh)

2k
,

where qs and qh are the number of signature and hash queries made by A.

Proof. Let A be an adversary as in Definition 4, though recall we make the as-
sumption that A only requests signatures on properly augmented vector spaces.
We construct B that takes as input parameters G = (G1,G2,GT , p, e, ϕ) and
inputs g ∈ G1 and h, z ∈ G2, with z = hx, and outputs an element ω ∈ G1.
Algorithm B simulates the hash function H and the Setup and Sign algorithms
of NCS′1, and works as follows.

Setup. A chooses an integer N , and B does the following:
1. Choose random s1, t1, . . . , sN , tN ∈ Fp, and set gi := gsiϕ(h)ti for all i.

2. Output the public key PK := (G,H, g1, . . . , gN , h, z).

Hash query. When A requests the value of H(id, i), algorithm B does:
1. If (id, i) has already been queried, return H(id, i).

2. If (id, i) has not been queried, choose ςi, τi ← Fp and set H(id, i) := gςiϕ(h)τi .

Sign. When A requests a signature on a vector space V ⊂ FN
p , described by

properly augmented basis vectors v1, . . . ,vm ∈ FN
p (where vi = (vi1, . . . , viN)),

algorithm B does the following:
1. Choose a random id ← {0, 1}k. If H(id, i) has already been queried for some

i ∈ {1, . . . , N} then abort. (The simulation has failed.)

2. Set n := N −m and compute ςi := −∑n
j=1 sjvij for i = 1, . . . , m.

3. Choose τi ← Fp and set H(id, i) := gςiϕ(h)τi for i = 1, . . . , m. Set t :=
(t1, . . . , tn, τ1, . . . , τm).

4. Compute σi := ϕ(z)vi·t for i = 1, . . . , m.

5. Output id and σ := (σ1, . . . , σm).

Output. If B does not abort, then eventually A outputs a signature σ =
(σ1, . . . , σm), an identifier id, and a non-zero vector y.
1. If id is not one of the identifiers used to answer a previous signature query,

then compute H(id, i) as above for i = 1, . . . ,m. Thus, in any case, H(id, i) =
gςiϕ(h)τi for ςi, τi known to B.

2. Set s := (s1, . . . , sn, ς1, . . . , ςm) and t := (t1, . . . , tn, τ1, . . . , τm). If s · y = 0
then abort.

3. Set n := N −m and output ω :=
(∏m

i=1 σ
yn+i

i

ϕ(z)t·y

)1/(s·y)

.

We first observe that the responses to all hash queries are independent and
uniformly random in G1. We also observe that the g1, . . . , gN are random group
elements, and thus the public key PK output by B is distributed identically to
the public key produced by the real Setup algorithm.

Next we show that the signatures σ output by B are identical to the signatures
that would be produced by the real Sign algorithm given the public key PK and
the hash answers computed by B. Since the secret key corresponding to PK is
x, it suffices to show that for each vector v “signed” by B, we have




m∏

i=1

H(id, i)vn+i

n∏

j=1

g
vj

j




x

= ϕ(z)v·t, (3)

where the left-hand side is the “real” signature and the right-hand side is the
signature computed by B. The left-hand side is equal to




m∏

i=1

(gςiϕ(h)τi)vn+i

n∏

j=1

(
gsj ϕ(h)tj

)vj




x

=
(
gs·vϕ(h)t·v

)x
. (4)

Now observe that we constructed s so that s ∈ V ⊥ (i.e., s · v = 0 for all v ∈ V),
so the expression (4) is equal to ϕ(h)x(t·v). Equation (3) now follows from the
fact that ϕ(z) = ϕ(h)x.

We next analyze the probability that B aborts while interacting with A.
There are two scenarios in which this can happen: if B responds to two different
signature queries by choosing the same identifier id, or if B responds to a sig-
nature query by choosing an identifier id such that A has already requested the
value of H(id, i) for some i. The probability of the first event is at most q2

s/2k,
while the probability of the second event is at most qsqh/2k.

Suppose B does not abort and A outputs a signature σ, an identifier id, and
a non-zero vector y. Let σ = (σ1, . . . , σm). If Verify(PK, id,y, σ) = 1 then

e

(
m∏

i=1

σ
yn+i

i , h

)
= e




m∏

i=1

H(id, i)yn+i

n∏

j=1

g
yj

j , z


 .

By the same reasoning as above the right-hand side is equal to

e
(
gs·yϕ(h)t·y, z

)
= e

(
gx(s·y)ϕ(z)t·y, h

)
,

where s and t are determined from id as in steps (1) and (2) of B’s output
procedure. The non-degeneracy of e then implies that

m∏

i=1

σ
yn+i

i = gx(s·y)ϕ(z)t·y.

It follows that if s · y 6= 0 then the element ω output by B is equal to gx.
To complete the proof, we show that s · y = 0 with probability 1/p. In

preparation, we first prove the following lemma:

Lemma 7. Assume B does not abort. Then the variables s1, . . . , sN are each
independently uniform in Fp even conditioned on the view of A.

Proof. In proving the lemma we can ignore any queries H(id, i) where id is not
an identifier used to respond to a signing query, since (a) the variables s1, . . . , sN

are not involved in these queries, and (b) the variables that are involved in these
queries are not involved in any other interaction between A and B.

We show that for any given view of A and any choice of values for s1, . . . , sN ,
there is a unique choice of values for all of the other variables in the system that is
consistent with the adversary’s view. The adversary’s view consists of the public
key PK and the signatures on subspaces Vk for k = 1, . . . , qs. Let mk = dim Vk.
Hence, the adversary’s view is derived from 2N +

∑
2mk random variables:

– The public key is derived from sj , tj for j = 1, . . . , N .
– The kth signature is derived from the sj , tj and ςi, τi for i = 1, . . . , mk. (Here

we use the fact that B did not abort, and so no two signing queries use the
same value of id.)

Moreover, the adversary has N +
∑

3mk linear relations on these variables:

– N relations derived from the public key,
– mk relations derived from the values of H(id, i) for the kth query,
– mk relations derived from the signature (σ1, . . . , σmk

) for the kth query,
– mk relations derived from the fact that s ∈ V ⊥ for the kth query.

We set the following notation:

sL = (s1, . . . , sN)
sR
k = (ς1, . . . , ςmk

) for the kth signature query
tL = (t1, . . . , tN)
tR
k = (τ1, . . . , τmk

) for the kth signature query.

Let V̄k be the mk ×N matrix whose ith row consists of the first N −mk entries
(i.e., the unaugmented part) of the basis vector vi for the kth query, followed
by mk zeroes. Let ϕ(h) = gα. The view of A imposes the following constraints:

sL + αtL = c1 (public key) (5)
sR
k + αtR

k = c2,k (values of H(id, i)) (6)
V̄ktL + tR

k = c3,k (signatures) (7)
V̄ksL + sR

k = 0 (s ∈ V ⊥) (8)

for some vectors c1 ∈ FN
p , c2,k ∈ Fmk

p , c3,k ∈ Fmk
p that are determined (in

an information-theoretic sense) from the view of A. We wish to show that the
system has a unique solution for any value of sL.

Observe that equation (8) is linearly dependent on equations (5), (6), and (7).
Specifically, for each k we have (8) = V̄k(5) + (6) − α(7). Since the system has

at least one solution by construction, any choice of variables satisfying equa-
tions (5)–(7) must also satisfy (8).

Suppose sL is fixed; then equation (5) determines a unique value for tL.
For each k, equation (7) and this value of tL determine a unique value for
tR
k , from which equation (6) determines a unique value of sR

k . Thus for any
value of sL there is a unique solution to equations (5)–(8). We conclude that
sL = (s1, . . . , sN) is uniform in FN

p even conditioned on the view of A. ut

To complete the proof of Theorem 6, we now show that s · y = 0 with
probability 1/p. If A outputs a type 1 forgery, then id was not used in response to
any previous signing query. In this case the {ςi} are independently uniform in Fp

even conditioned on the view of A. By Lemma 7 the {si} are also independently
uniform in Fp conditioned on A’s view. Since s = (s1, . . . , sn, ς1, . . . , ςm) and
y is non-zero, it follows that s · y is uniformly distributed in Fp, and thus the
probability that s · y = 0 is 1/p.

Now suppose that A outputs a type 2 forgery, so id was used in response
to the signing query for some vector subspace V , and y 6∈ V . (Note that id
was used to answer only one signing query, otherwise B aborts.) By Lemma 7
the variables {si} are independently uniform in Fp even conditioned on the
adversary’s view. This implies that, conditioned on the adversary’s view, the
vector s = (s1, . . . , sn, ς1, . . . , ςm) is uniformly random in V ⊥. So for any y 6∈
V we see that s · y is uniform in Fp, and we conclude that s · y = 0 with
probability 1/p. This completes the proof. ut

5 Network Coding Signatures without Random Oracles

Krohn et al. [22] propose authenticating network coding data using a homo-
morphic hash function (see below). As in Definition 2, their scheme produces a
signature σi on each basis vector of the subspace to be authenticated. Their sys-
tem is not secure according to our definition, however, as there is no mechanism
to ensure that basis vectors from different files cannot be combined. Our solu-
tion is to authenticate all the hash values (along with the file identifier) using a
standard signature scheme, which we denote by S0 = (Gen0,Sign0, Verify0). This
modification produces a secure network coding signature scheme (as in Defini-
tion 1) but eliminates the homomorphic property. The scheme can thus be used
to sign entire subspaces, but not individual vectors.

Signature Scheme NCS2.

Setup(1k, N). Given a security parameter 1k and a positive integer N do:
1. Choose a group G of prime order p > 2k.
2. Run Gen0(1k) and let the public/private keys be PK0, SK0.
3. Choose generators g1, . . . , gN ← G \ {1}.
4. Output the prime p, the public key PK := (G, g1, . . . , gN , PK0), and the

private key SK := SK0.

Sign(SK, id, V). Given a secret key SK, a file identifier id, and an m-dimensional
subspace V ⊂ FN

p described by a properly augmented basis v1, . . . ,vm, do:
1. Set n := N −m. Compute σi :=

∏n
j=1 g

−vij

j for i = 1, . . . , m.

2. Compute τ ← Sign0(SK, (id, σ1, . . . , σm)).

3. Output σ := (σ1, . . . , σm, τ).

Verify(PK, id,y, σ). Given a public key PK = (G, g1, . . . , gN , PK0), an identifier
id, a signature σ = (σ1, . . . , σm, τ), and a vector y ∈ FN

p , do:
1. Run Verify0(PK0, (id, σ1, . . . , σm), τ). If the answer is 0, output 0.

2. If
(∏n

j=1 g
yj

j

)(∏m
i=1 σ

yn+i

i

)
= 1 then output 1; otherwise output 0.

We omit the (straightforward) proof of correctness.
If elements of G are represented using log2 p bits and the signature scheme S0

produces signatures of size log2 p, then the size of the signature σ is (m+1) log2 p
bits. If one is willing to use the random oracle model, we can achieve a constant-
size public key by letting the values g1, . . . , gN be computed as the output of a
hash function H (viewed as a random oracle).

Theorem 8. Assume S0 is a secure signature scheme. Then NCS2 is secure
assuming hardness of the discrete logarithm problem in G.

In particular, let A be a polynomial-time adversary as in Definition 4. Then
there exists a polynomial-time adversary B1 that forges signatures for S0 and a
polynomial-time algorithm B2 that computes discrete logarithms, such that

Sig-Adv[B1,S0] + 2 ·DL-Adv[B2,G] ≥ NC-Adv[A, NCS2]− q2
s

2k
,

where qs denotes the number of signature queries made by A, and Sig-Adv[B1,S0]
is the probability that B1 wins the security game for the standard signature
scheme S0 (see [20, §12.2]).

Proof. Suppose algorithm A produces a signature σ = (σ1, . . . , σm, τ), an iden-
tifier id, and a vector y such that Verify(PK, id, σ,y) = 1. If id is not one of the
identifiers returned on a signature query (type 1 forgery), then A has forged a
signature relative to S0. In case of a type 2 forgery, say id was used in response
to a unique signature query on the vector space V , and that y 6∈ V . Define H via
H(v) =

∏n
j=1 g

vj

j . Since y 6∈ V we have y′ :=
∑m

i=1 yn+ivi 6= y. The fact that
the signature verifies implies that H(y) = H(y′), and thus we have produced a
collision for H(·). By standard arguments [5, 2], an algorithm A that produces
such a collision with probability ε can be used to compute discrete logarithms
in G with probability at least ε/2. ut

Relation with [25]. Signature Scheme NCS2 can also be viewed as a secure
instantiation of the signature scheme proposed by Zhao et al. [25]. Their scheme
computes a signature on V by choosing a random vector u ∈ V ⊥ and outputting

(h1, . . . , hN) = (gu1 , . . . , guN) along with a signature on this tuple. Verification
of y involves checking whether

∏N
j=1 h

yj

j = gu·y = 1. Correctness follows from
the fact that u ∈ V ⊥, and security follows from the fact that computing y 6∈ V
such that u · y = 0 permits computation of discrete logarithms in G (see [25,
Theorem 1] or [3, Lemma 3.2]).

To view the scheme NCS2 from this perspective, fix a generator g of G and
write the first n = N − m elements of the public key as gu1 , . . . , gun . Letting
un+i =

∑n
j=1−ujvij , we have σi = gun+i . Furthermore, if {vi}m

i=1 is a properly
augmented basis of V then the vector u = (u1, . . . , uN) is in V ⊥. The verification
step then computes gu·y just as in the scheme of Zhao et al.

The signatures produced by scheme NCS2 have length Θ(m) and are thus
much shorter than the signatures produced by the scheme of Zhao et al., which
have length Θ(N).

6 A Lower Bound on Signature Size

We now prove a lower bound on the length of signatures for linear subspaces.
Our lower bound applies to network coding signature schemes (Definition 1) that
have the following two properties:

Additivity: For any PK, id, σ, and vectors u,v ∈ FN
p , if Verify(PK, id,u, σ) =

Verify(PK, id,v, σ) = 1 then Verify(PK, id,u+v, σ) = 1. Both our constructions
are additive.

Fixed size: For a given m > 0 and a given SK, the size of the signature output
by Sign(SK, id, V) is the same for all identifiers id and m-dimensional spaces
V ⊂ FN

p . Again, this holds for both of the systems in this paper. We make this
assumption primarily to simplify the presentation; a version of our bound holds
even if this property is not satisfied.

For a secret key SK and integers N, m let `SK,N,m be the length in bits of
signatures Sign(SK, id, V) where V is an m-dimensional subspace of FN

p .

For signatures that have these two properties, we show that the signature size
must be at least (roughly) m log2 p bits. In particular, we construct an attack
algorithm that forges signatures whenever `SK,N,m is shorter than this bound.
Hence, if the scheme is to be secure then for almost all secret keys the signature
size must be greater than our bound.

The intuition behind our lower bound is that if signatures are short, then by
the pigeonhole principle there is a large set V of linear subspaces that all have
the same signature σ. If signatures are sufficiently short, then the direct sum
of the spaces in V spans all of FN

p . Since the signature scheme is additive this
implies that Verify(PK, id, σ,y) = 1 for any y ∈ FN

p ; we will call a signature σ
with this property (for a fixed identifier id) trivial. We conclude that there are
many subspaces V with trivial signatures; the system can then be easily attacked
by choosing a random subspace V , obtaining a signature on V , and producing
a vector y 6∈ V .

Theorem 9. Let m,N be integers with 0 < m < N , and let (Setup,Sign, Verify)
be a network coding signature scheme satisfying the two properties above. Then
there is a polynomial-time adversary A making a single signature query and such
that the following holds: when the secret key SK used in the security game of
Definition 4 satisfies

`SK,N,m ≤ m log2 p− 4m/p− 1, (9)

then A wins with probability at least 1/2.

Proof. Fix a public/private key pair PK, SK. When the adversary queries a vec-
tor space V to the challenger, the challenger produces an identifier id uniformly
at random from the space I of identifiers; in particular, id is independent of V .
We may thus fix the randomness of the challenger in advance and let id1 be
the identifier produced on the first query. Although the Sign algorithm may be
probabilistic, once we have fixed the randomness each m-dimensional subspace
V ⊂ FpN is mapped to a unique signature σ := Sign(SK, id1, V).

We now proceed with a combinatorial argument. Let n = N −m. The num-
ber of m-dimensional subspaces V ⊂ Fn+m

p is the p-binomial coefficient [24,
Proposition 1.3.18]

(
n + m

m

)

p

=
(pn+m − 1)(pn+m−1 − 1) · · · (pn+1 − 1)

(pm − 1)(pm−1 − 1) · · · (p− 1)
> pmn.

Let U be the set of vector spaces V such that the signature on V is nontrivial,
and let β be the fraction of vector spaces V with nontrivial signatures; then the
cardinality of U is at least pmnβ. Let α be the number of distinct nontrivial
signatures produced by signing all vector spaces V ∈ U with identifier id1. Then
by the pigeonhole principle, there is a set of vector spaces V ⊆ U of cardinality
at least pmnβ/α such that the signatures Sign(SK, id1, V) are identical for all
V ∈ V. Call this signature σ.

Let W ⊆ Fn+m
p be the direct sum of all the spaces in V. Since the signature

system is additive, we know that Verify(PK, id1,w, σ) = 1 for all w ∈ W . If
W = Fn+m

p then σ is trivial, contradicting the assumption that V ⊆ U . Thus
W is a subspace of Fn+m

p of dimension at most n + m− 1. Then the number of
m-dimensional subspaces V contained in W is at most

(
n+m−1

m

)
p

< pm(n−1)(1+
2/p)m, and we have

pmn

(
β

α

)
≤ #V < pm(n−1)

(
1 +

2
p

)m

. (10)

Now suppose that for the key pair PK, SK the quantity `SK,N,m satisfies (9).
Then the number α of distinct nontrivial signatures satisfies

α ≤ pm · 2−4m/p

(
1
2

)
< pm

(
1 +

2
p

)−m (
1
2

)
. (11)

where the second inequality follows from 22x > 1 + x for x > 0. Combining
inequalities (10) and (11), we see that the fraction β of subspaces with nontrivial
signatures satisfies

β <
α

pm
·
(

1 +
2
p

)m

<
1
2
. (12)

Now adversary A works as follows: it chooses at random a vector space
V ⊂ Fn+m

p and obtains id1 and σ := Sign(SK, id1, V) from the signing oracle.
The adversary then computes a vector y 6∈ V and outputs (id1, σ,y) as the
forgery. By (12) the probability that σ is trivial is at least 1/2, and if this is the
case then Verify(PK, id1,y, σ) = 1. Hence, A has advantage (as in Definition 4)
at least 1/2 while making a single signature query. ut

7 Conclusion and Extensions

We studied the problem of signing a subspace V ⊂ FN
p in a manner that au-

thenticates all vectors in V . The question is motivated by the need to provide
integrity when using network coding. We defined the problem and described two
secure schemes. Our first scheme is homomorphic and has constant-size public
keys and per-vector signatures; its security is based on the co-CDH assumption in
the random oracle model. Our second scheme offers security based on the weaker
discrete logarithm assumption without random oracles. In both schemes, a single
public key can be used to sign many linear spaces (i.e., files). We also proved a
lower bound on the length of signatures for linear subspaces, and observe that
both our systems meet the lower bound.

In network coding applications, one may wish to vary the dimension of the
ambient space FN

p . Our definitions assume that the dimension of the ambient
space is fixed. However, our systems can easily be adapted to sign subspaces Vi

contained in varying ambient spaces FNi
p with a single public key by incorpo-

rating the dimension Ni into the hash function (for scheme NCS1) or the outer
signature with respect to S0 (for scheme NCS2).

Note: The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed or

implied, of the US Army Research Laboratory, the US Government, the UK Ministry

of Defense, or the UK Government. The US and UK Governments are authorized

to reproduce and distribute reprints for Government purposes, notwithstanding any

copyright notation herein.

References

1. R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE
Transactions on Information Theory, 46(4):1204–1216, 2000.

2. M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case
of hashing and signing. In Advances in Cryptology — Crypto ’94, volume 839 of
LNCS, pages 216–233. Springer, 1994.

3. D. Boneh and M. Franklin. An efficient public key traitor tracing scheme. In Adv.
in Cryptology — Crypto ’99, volume 1666 of LNCS, pages 338–353. Springer, 1999.

4. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Advances in Cryptology — Eurocrypt
2003, volume 2656 of LNCS, pages 416–432. Springer, 2003.

5. S. Brands. An efficient off-line electronic cash system based on the representation
problem, 1993. CWI Technical Report CS-R9323.

6. J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach
to reliable distribution of bulk data. In ACM SIGCOMM, 1998.

7. D. Charles, K. Jain, and K. Lauter. Signatures for network coding. In 40th Annual
Conference on Information Sciences and Systems (CISS ‘06), 2006.

8. P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In 41st Allerton
Conference on Communication, Control, and Computing, 2003.

9. S. Duquesne and G. Frey. Background on pairings. In Handbook of Elliptic and
Hyperelliptic Curve Cryptography. Chapman & Hall/CRC Press, 2006.

10. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372, 2006. http://eprint.iacr.org/.

11. C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribu-
tion. In IEEE INFOCOM, 2005.

12. C. Gkantsidis and P. Rodriguez. Cooperative security for network coding file dis-
tribution. In IEEE INFOCOM, 2006.

13. K. Han, T. Ho, R. Koetter, M. Médard, and F. Zhao. On network coding for
security. In IEEE MILCOM, 2007.

14. T. Ho, R. Koetter, M. Médard, D. Karger, and M. Effros. The benefits of cod-
ing over routing in a randomized setting. In Proc. International Symposium on
Information Theory (ISIT), 2003.

15. T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. Karger. Byzantine
modification detection in multicast networks using randomized network coding. In
Proc. Intl. Symposium on Information Theory (ISIT), pages 144–152, 2004.

16. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A
random linear network coding approach to multicast. IEEE Trans. Inform. Theory,
52(10):4413–4430, 2006.

17. S. Jaggi. Design and Analysis of Network Codes. PhD thesis, California Institute
of Technology, 2006.

18. S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and M. Effros.
Resilient network coding in the presence of Byzantine adversaries. IEEE Trans.
on Information Theory, 54(6):2596–2603, 2008.

19. R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes.
In Topics in Cryptology — CT-RSA, volume 2271 of LNCS, pages 244–262, 2002.

20. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Press, 2007.

21. M. Kim, M. Médard, and J. Barros. Counteracting Byzantine adversaries with
network coding: An overhead analysis, 2008. http://arxiv.org/abs/0806.4451.

22. M. Krohn, M. Freedman, and D. Mazieres. On the-fly verification of rateless erasure
codes for efficient content distribution. In Proc. of IEEE Symposium on Security
and Privacy, pages 226–240, 2004.

23. S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Trans. Info.
Theory, 49(2):371–381, 2003.

24. R. Stanley. Enumerative Combinatorics, vol. 1. Cambridge University Press, 1997.
25. F. Zhao, T. Kalker, M. Médard, and K. Han. Signatures for content distribution

with network coding. In Proc. Intl. Symp. Info. Theory (ISIT), 2007.

