
Unidirectional Chosen-Ciphertext Secure Proxy
Re-Encryption

Benôıt Libert1 and Damien Vergnaud2

1 UCL Crypto Group
Place du Levant, 3

1348 Louvain-la-Neuve
Belgium

2 École Normale Supérieure – C.N.R.S. – I.N.R.I.A.
Département d’informatique, 45 rue d’Ulm

75230 Paris CEDEX 05
France

Abstract. In 1998, Blaze, Bleumer, and Strauss proposed a crypto-
graphic primitive called proxy re-encryption, in which a proxy trans-
forms – without seeing the corresponding plaintext – a ciphertext com-
puted under Alice’s public key into one that can be opened using Bob’s
secret key. Recently, an appropriate definition of chosen-ciphertext se-
curity and a construction fitting this model were put forth by Canetti
and Hohenberger. Their system is bidirectional : the information released
to divert ciphertexts from Alice to Bob can also be used to translate
ciphertexts in the opposite direction. In this paper, we present the first
construction of unidirectional proxy re-encryption scheme with chosen-
ciphertext security in the standard model (i.e. without relying on the
random oracle idealization), which solves a problem left open at CCS’07.
Our construction is efficient and requires a reasonable complexity as-
sumption in bilinear map groups. Like the Canetti-Hohenberger scheme,
it ensures security according to a relaxed definition of chosen-ciphertext
introduced by Canetti, Krawczyk and Nielsen.

Keywords. proxy re-encryption, unidirectionality, chosen-ciphertext
security, standard model.

1 Introduction

The concept of proxy re-encryption (PRE) dates back to the work of Blaze,
Bleumer, and Strauss in 1998 [5]. The goal of such systems is to securely enable
the re-encryption of ciphertexts from one key to another, without relying on
trusted parties. Recently, Canetti and Hohenberger [12] described a construc-
tion of proxy re-encryption providing chosen-ciphertext security according to an
appropriate definition of the latter notion for PRE systems. Their construction is
bidirectional : the information to translate ciphertexts from Alice to Bob can also
be used to translate from Bob to Alice. This paper answers the question of how
to secure unidirectional proxy re-encryption schemes against chosen-ciphertext

attacks – at least in the sense of a natural extension of the Canetti-Hohenberger
definition to the unidirectional case – while keeping them efficient.

Background. In a PRE scheme, a proxy is given some information which al-
lows turning a ciphertext encrypted under a given public key into one that is
encrypted under a different key. A naive way for Alice to have a proxy imple-
menting such a mechanism is to simply store her private key at the proxy: when
a ciphertext arrives for Alice, the proxy decrypts it using the stored secret key
and re-encrypts the plaintext using Bob’s public key. The obvious problem with
this strategy is that the proxy learns the plaintext and Alice’s secret key.

In 1998, Blaze, Bleumer and Strauss [5] (whose work is sometimes dubbed
BBS) proposed the first proxy re-encryption scheme, where the plaintext and
secret keys are kept hidden from the proxy. It is based on a simple modification
of the ElGamal encryption scheme [17]: let (G, ·) be a group of prime order p
and let g be a generator of G; Alice and Bob publish the public keys X = gx

and Y = gy (respectively) and keeps secret their discrete logarithms x and y.
To send a message m ∈ G to Alice, a user picks uniformly at random an integer
r ∈ Zp and transmits the pair (C1, C2) where C1 = Xr and C2 = m · gr. The
proxy is given the re-encryption key y/x mod p to divert ciphertexts from Alice
to Bob via computing (Cy/x1 , C2) = (Y r,m · gr).

This scheme is efficient and semantically secure under the Decision Diffie-
Hellman assumption in G. It solves the above mentioned problem since the
proxy is unable to learn the plaintext or secret keys x or y. Unfortunately, Blaze
et al. pointed out an inherent limitation: the proxy key y/x also allows translat-
ing ciphertexts from Bob to Alice, which may be undesirable in some situations.
They left open the problem to design a proxy re-encryption method without
this restriction. Another shortcoming of their scheme is that the proxy and the
delegatee can collude to expose the delegator’s private key x given y/x and y.

In 2005, Ateniese, Fu, Green and Hohenberger [2, 3] showed the first examples
of unidirectional proxy re-encryption schemes based on bilinear maps. Moreover,
they obtained the master key security property in that the proxy is unable to
collude with delegatees in order to expose the delegator’s secret. The construc-
tions [2, 3] are also efficient, semantically secure assuming the intractability of
decisional variants of the Bilinear Diffie-Hellman problem [7].

These PRE schemes only ensure chosen-plaintext security, which seems def-
initely insufficient for many practical applications. Very recently, Canetti and
Hohenberger [12] gave a definition of security against chosen ciphertext attacks
for PRE schemes and described an efficient construction satisfying this defi-
nition. In their model, ciphertexts should remain indistinguishable even if the
adversary has access to a re-encryption oracle (translating adversarially-chosen
ciphertexts) and a decryption oracle (that “undoes” ciphertexts under certain
rules). Their security analysis takes place in the standard model (without the
random oracle heuristic [4]). Like the BBS scheme [5], their construction is bidi-
rectional and they left as an open problem to come up with a chosen-ciphertext
secure unidirectional scheme.

Related Work. Many papers in the literature – the first one of which being
[26] – consider applications where data encrypted under a public key pkA should
eventually be encrypted under a different key pkB . In proxy encryption schemes
[22, 15], a receiver Alice allows a delegatee Bob to decrypt ciphertexts intended
to her with the help of a proxy by providing them with shares of her private key.
This requires delegatees to store an additional secret for each new delegation.
Dodis and Ivan [15] notably present efficient proxy encryption schemes based on
RSA, the Decision Diffie-Hellman problem as well as in an identity-based setting
[28, 7] under bilinear-map-related assumptions.

Proxy re-encryption schemes are a special kind of proxy encryption schemes
where delegatees only need to store their own decryption key. They are generally
implemented in a very specific mathematical setting and find practical applica-
tions in secure e-mail forwarding or distributed storage systems (e.g. [2, 3]).

From a theoretical point of view, the first positive obfuscation result for
a complex cryptographic functionality was recently presented by Hohenberger,
Rothblum, shelat and Vaikuntanathan [21]: they proved the existence of an ef-
ficient program obfuscator for a family of circuits implementing re-encryption.

In [19], Green and Ateniese studied the problem of identity-based PRE
and proposed a unidirectional scheme that can reach chosen-ciphertext security.
Their security results are presented only in the random oracle model. Besides,
the recipient of a re-encrypted ciphertext needs to know who the original receiver
was in order to decrypt a re-encryption.

Our contribution. In spite of the recent advances, the “holy grail for proxy
re-encryption schemes – a unidirectional, key optimal, and CCA2 secure scheme
– is not yet realized” [20]. This paper aims at investigating this open issue.

We generalize Canetti and Hohenberger’s work [12] and present the first con-
struction of chosen-ciphertext secure unidirectional proxy re-encryption scheme
in the standard model. Our system is efficient and requires a reasonable bilin-
ear complexity assumption. It builds on the unidirectional scheme from [2, 3]
briefly recalled at the beginning of section 3. The technique used by Canetti-
Hohenberger to acquire CCA-security does not directly apply to the latter scheme
because, in a straightforward adaptation of [12] to [2], the validity of translated
ciphertexts cannot be publicly checked. To overcome this difficulty, we need to
modify (and actually randomize) the re-encryption algorithm of Ateniese et al.
so as to render the validity of re-encrypted ciphertexts publicly verifiable.

Whenever Alice delegates some of her rights to another party, there is always
the chance that she will either need or want to revoke those rights later on. In
[2, 3], Ateniese et al. designed another unidirectional PRE scheme that allows
for temporary delegations: that is, a scheme where re-encryption keys can only
be used during a restricted time interval. We construct such a scheme with tem-
porary delegation and chosen-ciphertext security.

The paper is organized as follows: we recall the concept of unidirectional
proxy re-encryption and its security model in section 2.1. We review the prop-
erties of bilinear maps and the intractability assumption that our scheme relies
on in section 2.2. Section 3 describes the new scheme, gives the intuition behind

its construction and a security proof. Section 4 finally shows an adaptation with
temporary delegation.

2 Preliminaries

2.1 Model and security notions

This section first recalls the syntactic definition of unidirectional proxy re-encry-
ption suggested by Ateniese et al. [2, 3]. We then consider an appropriate def-
inition of chosen-ciphertext security for unidirectional PRE schemes which is
directly inferred from the one given by Canetti and Hohenberger [12] in the
bidirectional case. Like [12], we consider security in the replayable CCA sense
[13] where a harmless mauling of the challenge ciphertext is tolerated.

Definition 1. A (single hop) unidirectional PRE scheme consists of a tuple of
algorithms (Global-setup,Keygen,ReKeygen,Enc1,Enc2,ReEnc,Dec1,Dec2):

- Global-setup(λ)→ par: this algorithm is run by a trusted party that, on input
of a security parameter λ, produces a set par of common public parameters
to be used by all parties in the scheme.

- Keygen(λ, par)→ (sk, pk): on input of common public parameters par and a
security parameter λ, all parties use this randomized algorithm to generate
a private/public key pair (sk, pk).

- ReKeygen(par, ski, pkj) → Rij: given public parameters par, user i’s private
key ski and user j’s public key pkj, this (possibly randomized) algorithm
outputs a key Rij that allows re-encrypting second level ciphertexts intended
to i into first level ciphertexts encrypted for j.

- Enc1(par, pk,m)→ C: on input of public parameters par, a receiver’s public
key pk and a plaintext m, this probabilistic algorithm outputs a first level
ciphertext that cannot be re-encrypted for another party.

- Enc2(par, pk,m) → C: given public parameters par, a receiver’s public key
pk and a plaintext m, this randomized algorithm outputs a second level ci-
phertext that can be re-encrypted into a first level ciphertext (intended to a
possibly different receiver) using the appropriate re-encryption key.

- ReEnc(par, Rij , C)→ C ′: this (possibly randomized) algorithm takes as input
public parameters par, a re-encryption key Rij and a second level ciphertext
C encrypted under user i’s public key. The output is a first level ciphertext
C ′ re-encrypted for user j. In a single hop scheme, C ′ cannot be re-encrypted
any further. If the well-formedness of C is publicly verifiable, the algorithm
should output ‘invalid’ whenever C is ill-formed w.r.t. Xi.

- Dec1(par, sk, C) → m: on input of a private key sk, a first level ciphertext
C and system-wide parameters par, this algorithm outputs a message m ∈
{0, 1}∗ or a distinguished message ‘invalid’.

- Dec2(par, sk, C) → m: given a private key sk, a second level ciphertext C
and common public parameters par, this algorithm returns either a plaintext
m ∈ {0, 1}∗ or ‘invalid’.

Moreover, for any common public parameters par, for any message m ∈ {0, 1}∗
and any couple of private/public key pair (ski, pki), (skj , pkj) these algorithms
should satisfy the following conditions of correctness:

Dec1(par, ski,Enc1(par, pki,m)) = m; Dec2(par, ski,Enc2(par, pki,m)) = m;
Dec1(par, skj ,ReEnc(par,ReKeygen(par, ski, pkj),Enc2(par, pki,m))) = m.

To lighten notations, we will sometimes omit to explicitly write the set of com-
mon public parameters par, taken as input by all but one of the above algorithms.

Chosen-ciphertext security. The definition of chosen-ciphertext security
that we consider is naturally inspired from the bidirectional case [12] which in
turn extends ideas from Canetti, Krawczyk and Nielsen [13] to the proxy re-
encryption setting. For traditional public key cryptosystems, in this relaxation
of Rackoff and Simon’s definition [27], an adversary who can simply turn a given
ciphertext into another encryption of the same plaintext is not deemed successful.
In the game-based security definition, the attacker is notably disallowed to ask
for a decryption of a re-randomized version of the challenge ciphertext. This
relaxed notion was argued in [13] to suffice for most practical applications.

Our definition considers a challenger that produces a number of public keys.
As in [12], we do not allow the adversary to adaptively determine which parties
will be compromised. On the other hand, we also allow her to adaptively query
a re-encryption oracle and decryption oracles. A difference with [12] is that the
adversary is directly provided with re-encryption keys that she is entitled to
know (instead of leaving her adaptively request them as she likes). We also
depart from [12], and rather follow [2, 3], in that we let the target public key be
determined by the challenger at the beginning of the game. Unlike [2, 3], we allow
the challenger to reveal re-encryption keys Rij when j is corrupt for honest users
i that differ from the target receiver. We insist that such an enhancement only
makes sense for single-hop schemes like ours (as the adversary would trivially
win the game if the scheme were multi-hop).

Definition 2. A (single-hop) unidirectional PRE scheme is replayable chosen-
ciphertext secure (RCCA) at level 2 if the probability

Pr[(pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)}, {(pkh, skh)← Keygen(λ)},
{Rx? ← ReKeygen(skx, pk?)},

{R?h ← ReKeygen(sk?, pkh)}, {Rh? ← ReKeygen(skh, pk?)},
{Rhx ← ReKeygen(skh, pkx)}, {Rxh ← ReKeygen(skx, pkh)},

{Rhh′ ← ReKeygen(skh, pkh′)}, {Rxx′ ← ReKeygen(skx, pkx′)},
(m0,m1, St)← AO1-dec,Orenc

(
pk?, {(pkx, skx)}, {pkh}, {Rx?}, {Rh?},
{R?h}, {Rxh}, {Rhx}, {Rhh′}, {Rxx′}

)
,

d? R← {0, 1}, C? = Enc2(md? , pk
?), d′ ← AO1-dec,Orenc(C?, St) :

d′ = d?]

is negligibly (as a function of the security parameter λ) close to 1/2 for any
PPT adversary A. In our notation, St is a state information maintained by A

while (pk?, sk?) is the target user’s key pair generated by the challenger that also
chooses other keys for corrupt and honest parties. For other honest parties, keys
are subscripted by h or h′ and we subscript corrupt keys by x or x′. The adversary
is given access to all re-encryption keys but those that would allow re-encrypting
from the target user to a corrupt one. In the game, A is said to have advantage
ε if this probability, taken over random choices of A and all oracles, is at least
1/2 + ε. Oracles O1-dec,Orenc proceed as follows:

Re-encryption Orenc: on input (pki, pkj , C), where C is a second level ci-
phertext and pki, pkj were produced by Keygen, this oracle responds with
‘invalid’ if C is not properly shaped w.r.t. pki. It returns a special symbol
⊥ if pkj is corrupt and (pki, C) = (pk?, C?). Otherwise, the re-encrypted
first level ciphertext C ′ = ReEnc(ReKeygen(ski, pkj), C) is returned to A.

First level decryption oracle O1-dec: given a pair (pk, C), where C is a first
level ciphertext and pk was produced by Keygen, this oracle returns ‘invalid’
if C is ill-formed w.r.t. pk. If the query occurs in the post-challenge phase
(a.k.a. “guess” stage as opposed to the “find” stage), it outputs a special
symbol ⊥ if (pk,C) is a Derivative of the challenge pair (pk?, C?). Otherwise,
the plaintext m = Dec1(sk, C) is revealed to A. Derivatives of (pk?, C?) are
defined as follows.

If C is a first level ciphertext and pk = pk? or pk is another honest user,
(pk,C) is a Derivative of (pk?, C?) if Dec1(sk, C) ∈ {m0,m1}.

Explicitly providing the adversary with a second level decryption oracle is use-
less. Indeed, ciphertexts encrypted under public keys from {pkh} can be re-
encrypted for corrupt users given the set {Rhx}. Besides, second level encryptions
under pk? can be translated for other honest users using {R?h}. The resulting
first level ciphertext can then be queried for decryption at the first level.

Security of first level ciphertexts. The above definition provides adversaries with
a second level ciphertext in the challenge phase. An orthogonal definition of se-
curity captures their inability to distinguish first level ciphertexts as well. For
single-hop schemes, the adversary is granted access to all re-encryption keys in
this definition. Since first level ciphertexts cannot be re-encrypted, there is indeed
no reason to keep attackers from obtaining all honest-to-corrupt re-encryption
keys. The re-encryption oracle thus becomes useless since all re-encryption keys
are available to A. For the same reason, a second level decryption oracle is also
unnecessary. Finally, Derivatives of the challenge ciphertext are simply defined
as encryptions of either m0 or m1 for the same target public key pk?. A unidi-
rectional PRE scheme is said RCCA-secure at level 1 if it satisfies this notion.

Remark 1. As in [12], we assume a static corruption model. Proving security
against adaptive corruptions turns out to be more challenging. In our model and
the one of [12], the challenger generates public keys for all parties and allows
the adversary to obtain private keys for some of them. This does not capture a

scenario where adversaries generate public keys on behalf of corrupt parties (pos-
sibly non-uniformly or as a function of honest parties’ public keys) themselves.
We also leave open the problem of achieving security in such a setting.

Remark 2. A possible enhancement of definition 2 is to allow adversaries to
adaptively choose the target user at the challenge phase within the set of honest
players. After having selected a set of corrupt parties among n players at the
beginning, the adversary receives a set of n public keys, private keys of corrupt
users as well as corrupt-to-corrupt, corrupt-to-honest and honest-to-honest re-
encryption keys. When she outputs messages (m0,m1) and the index i? of a
honest user in the challenge step, she obtains an encryption of md? under pki?
together with all honest-to-corrupt re-encryption keys Rij with i 6= i?.

In this setting, a second level decryption oracle is also superfluous for schemes
(like ours) where second level ciphertexts can be publicly turned into first level
encryptions of the same plaintext for the same receiver. The scheme that we
describe remains secure in this model at the expense of a probability of failure
for the simulator that has to foresee which honest user will be attacked with
probability O(1/n).

Master secret security. In [2], Ateniese et al. define another important
security requirement for unidirectional PRE schemes. This notion, termed master
secret security, demands that no coalition of dishonest delegatees be able to pool
their re-encryption keys in order to expose the private key of their common
delegator. More formally, the following probability should be negligible as a
function of the security parameter λ.

Pr[(pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)},
{R?x ← ReKeygen(sk?, pkx)},
{Rx? ← ReKeygen(skx, pk?)},
γ ← A(pk?, {(pkx, skx)}, {R?x}, {Rx?})
: γ = sk?]

At first glance, this notion might seem too weak in that it does not consider col-
luding delegatees who would rather undertake to produce a new re-encryption
key R?x′ that was not originally given and allows re-encrypting from the tar-
get user to another malicious party x′. As stressed in [2] however, all known
unidirectional PRE schemes fail to satisfy such a stronger notion of security. It
indeed remains an open problem to construct a scheme withstanding this kind
of transfer of delegation attack.

The notion of RCCA security at the first level is easily seen to imply the
master secret security and we will only discuss the former.

2.2 Bilinear Maps and Complexity Assumptions

Groups (G,GT) of prime order p are called bilinear map groups if there is a
mapping e : G×G→ GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 6= 1GT whenever g, h 6= 1G.

We shall assume the intractability of a variant of the Decision Bilinear Diffie-
Hellman problem.

Definition 3. The 3-Quotient Decision Bilinear Diffie-Hellman assump-
tion (3-QDBDH) posits the hardness of distinguishing e(g, g)b/a from random
given (g, ga, g(a2), g(a3), gb). A distinguisher B (t, ε)-breaks the assumption if it
runs in time t and∣∣Pr[B(g, ga, g(a2), g(a3), gb, e(g, g)b/a) = 1|a, b R← Z∗p]

− Pr[B(g, ga, g(a2), g(a3), gb, e(g, g)z) = 1|a, b, z R← Z∗p]
∣∣ ≥ ε.

The 3-QDBDH problem is obviously not easier than the (q-DBDHI) problem [6]
for q ≥ 3, which is to recognize e(g, g)1/a given (g, ga, . . . , g(aq)) ∈ Gq+1. Dodis
and Yampolskiy showed that this problem was indeed hard in generic groups
[16]. Their result thus implies the hardness of 3-QDBDH in generic groups.

Moreover, its intractability for any polynomial time algorithm can be classi-
fied among mild decisional assumptions (according to [11]) as its strength does
not depend on the number of queries allowed to adversaries whatsoever.

2.3 One-time signatures

As an underlying tool for applying the Canetti-Halevi-Katz methodology [14],
we need one-time signatures. Such a primitive consists of a triple of algorithms
Sig = (G,S,V) such that, on input of a security parameter λ, G generates a
one-time key pair (ssk, svk) while, for any message M , V(σ, svk,M) outputs 1
whenever σ = S(ssk,M) and 0 otherwise.

As in [14], we need strongly unforgeable one-time signatures, which means
that no PPT adversary can create a new signature for a previously signed mes-
sage (according to [1]).

Definition 4. Sig = (G,S,V) is a strong one-time signature if the probability

AdvOTS = Pr
[

(ssk, svk)← G(λ); (M,St)← F(svk);
σ ← S(ssk,M); (M ′, σ′)← F(M,σ, svk, St) :
V(σ′, svk,M ′) = 1 ∧ (M ′, σ′) 6= (M,σ)

]
,

where St denotes the state information maintained by F between stages, is neg-
ligible for any PPT forger F .

3 The Scheme

Our construction is inspired from the first unidirectional scheme suggested in [2,
3] where second level ciphertexts (C1, C2) = (Xr,m·e(g, g)r), that are encrypted

under the public key X = gx, can be re-encrypted into first level ciphertexts
(e(C1, Rxy), C2) = (e(g, g)ry,m·e(g, g)r) using the re-encryption key Rxy = gy/x.
Using his private key y s.t. Y = gy, the receiver can then obtain the message.

The Canetti-Hohenberger method for achieving CCA-security borrows from
[14, 10, 23] in that it appends to the ciphertext a checksum value consisting of
an element of G raised to the random encryption exponent r. In the security
proof, the simulator uses the publicly verifiable validity of ciphertexts in groups
equipped with bilinear maps. Unfortunately, the same technique does not directly
apply to secure the unidirectional PRE scheme of [2] against chosen-ciphertext
attacks. The difficulty is that, after re-encryption, level 1 ciphertexts have one
component in the target group GT and pairings cannot be used any longer to
check the equality of two discrete logarithms in groups G and GT . Therefore,
the simulator cannot tell apart well-shaped level 1 ciphertexts from invalid ones.

The above technical issue is addressed by having the proxy replace C1 with
a pair (C ′1, C

′′
1) = (R1/t

xy , Ct1) = (gy/(tx), Xrt), for a randomly chosen “blinding
exponent” t R← Z∗p that hides the re-encryption key in C ′1, in such a way that all
ciphertext components but C2 remain in G. This still allows the second receiver
holding y s.t. Y = gy to compute m = C2/e(C ′1, C

′′
1)1/y. To retain the publicly

verifiable well-formedness of re-encrypted ciphertexts however, the proxy needs
to include Xt in the ciphertext so as to prove the consistency of the encryption
exponent r w.r.t. the checksum value.

Of course, since the re-encryption algorithm is probabilistic, many first level
ciphertexts may correspond to the same second level one. For this reason, we need
to tolerate a harmless form of malleability (akin to those accepted as reasonable
in [1, 13, 29]) of ciphertexts at level 1.

3.1 Description

Our system is reminiscent of the public key cryptosystem obtained by applying
the Canetti-Halevi-Katz transform [14] to the second selective-ID secure identity-
based encryption scheme described in [6]1.

Like the Canetti-Hohenberger construction [12], the present scheme uses a
strongly unforgeable one-time signature to tie several ciphertext components
altogether and offer a safeguard against chosen-ciphertext attacks in the fashion
of Canetti, Halevi and Katz [14]. For simplicity, the description below assumes
that verification keys of the one-time signature are encoded as elements from
Z∗p. In practice, such verification keys are typically much longer than |p| and a
collision-resistant hash function should be applied to map them onto Z∗p.

Global-setup(λ): given a security parameter λ, choose bilinear map groups (G,GT)
of prime order p > 2λ, generators g, u, v R← G and a strongly unforgeable
one-time signature scheme Sig = (G,S,V). The global parameters are

par := {G,GT , g, u, v,Sig}.
1 It was actually shown in [24] that, although the security of the underlying IBE scheme

relies on a rather strong assumption, a weaker assumption such as the one considered
here was sufficient to prove the security of the resulting public key encryption scheme.

Keygen(λ): user i sets his public key as Xi = gxi for a random xi
R← Z∗p.

ReKeygen(xi, Xj): given user i’s private key xi and user j’s public key Xj ,
generate the unidirectional re-encryption key Rij = X

1/xi
j = gxj/xi .

Enc1(m,Xi, par): to encrypt a message m ∈ GT under the public key Xi at the
first level, the sender proceeds as follows.

1. Select a one-time signature key pair (ssk, svk) R← G(λ) and set C1 = svk.
2. Pick r, t R← Z∗p and compute

C ′2 = Xt
i C ′′2 = g1/t C ′′′2 = Xrt

i C3 = e(g, g)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (C3, C4)) on (C3, C4).

The ciphertext is Ci =
(
C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

Enc2(m,Xi, par): to encrypt a message m ∈ GT under the public key Xi at level
2, the sender conducts the following steps.

1. Select a one-time signature key pair (ssk, svk) R← G(λ) and set C1 = svk.
2. Choose r R← Z∗p and compute

C2 = Xr
i C3 = e(g, g)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (C3, C4)) on the pair (C3, C4).

The ciphertext is Ci =
(
C1, C2, C3, C4, σ

)
.

ReEnc(Rij , Ci): on input of the re-encryption key Rij = gxj/xi and a cipher-
text Ci = (C1, C2, C3, C4, σ), check the validity of the latter by testing the
following conditions

e(C2, u
C1 · v) = e(Xi, C4) (1)

V(C1, σ, (C3, C4)) = 1. (2)

If well-formed, Ci is re-encrypted by choosing t R← Z∗p and computing

C ′2 = Xt
i C ′′2 = R

1/t
ij = g(xj/xi)t

−1
C ′′′2 = Ct2 = Xrt

i

The re-encrypted ciphertext is

Cj =
(
C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

If ill-formed, Ci is declared ‘invalid’.
Dec1(Cj , skj): the validity of a level 1 ciphertext Cj is checked by testing if

e(C ′2, C
′′
2) = e(Xj , g) (3)

e(C ′′′2 , u
C1 · v) = e(C ′2, C4) (4)

V(C1, σ, (C3, C4)) = 1 (5)

If relations (3)-(5) hold, the plaintext m = C3/e(C ′′2 , C
′′′
2)1/xj is returned.

Otherwise, the algorithm outputs ‘invalid’.

Dec2(Ci, ski): if the level 2 ciphertext Ci = (C1, C2, C3, C4, σ) satisfies relations
(1)-(2), receiver i can obtain m = C3/e(C2, g)1/xi . The algorithm outputs
‘invalid’ otherwise.

Outputs of the re-encryption algorithm are perfectly indistinguishable from level
1 ciphertexts produced by the sender. Indeed, if t̃ = txi/xj , we can write

C ′2 = Xt
i = X t̃

j C ′′2 = g(xj/xi)t
−1

= gt̃
−1

C ′′′3 = Xrt
i = Xrt̃

j .

As in the original scheme described in [2], second level ciphertexts can be publicly
turned into first level ciphertexts encrypted for the same receiver if the identity
element of G is used as a re-encryption key.

In the first level decryption algorithm, relations (3)-(5) guarantee that re-
encrypted ciphertexts have the correct shape. Indeed, since C4 = (uC1 · v)r for
some unknown exponent r ∈ Zp, equality (4) implies that C ′′′2 = C ′r2 . From (3),
it comes that e(C ′′2 , C

′′′
2) = e(Xj , g)r.

We finally note that first level ciphertexts can be publicly re-randomized by
changing (C ′2, C

′′
2 , C

′′
3) into (C ′s2 , C

′′1/s
2 , C ′′′s3) for a random s ∈ Z∗p. However, the

pairing value e(C ′′2 , C
′′′
2) remains constant and, re-randomizations of a given first

level ciphertext are publicly detectable.

3.2 Security

For convenience, we will prove security under an equivalent formulation of the
3-QDBDH assumption.

Lemma 1. The 3-QDBDH problem is equivalent to decide whether T equals
e(g, g)b/a

2
or a random value given (g, g1/a, ga, g(a2), gb) as input.

Proof. Given (g, g1/a, ga, g(a2), gb), we can build a 3-QDBDH instance by setting
(y = g1/a, yA = g, y(A2) = ga, y(A3) = g(a2), yB = gb), which implicitly defines
A = a and B = ab. Then, we have e(y, y)B/A = e(g1/a, g1/a)(ab)/a = e(g, g)b/a

2
.

The converse implication is easily established and demonstrates the equivalence
between both problems. ut

Theorem 1. Assuming the strong unforgeability of the one-time signature, the
scheme is RCCA-secure at level 2 under the 3-QDBDH assumption.

Proof. Let (A−1 = g1/a, A1 = ga, A2 = g(a2), B = gb, T) be a modified 3-
QDBDH instance. We construct an algorithm B deciding whether T = e(g, g)b/a

2

out of a successful RCCA adversary A.
Before describing B, we first define an event FOTS and bound its proba-

bility to occur. Let C? = (svk?, C?2 , C
?
3 , C

?
4 , σ

?) denote the challenge cipher-
text given to A in the game. Let FOTS be the event that A issues a decryp-
tion query for a first level ciphertext C = (svk?, C ′2, C

′′
2 , C

′′′
2 , C3, C4, σ) or a

re-encryption query C = (svk?, C2, C3, C4, σ) where (C3, C4, σ) 6= (C?3 , C
?
4 , σ

?)

but V(σ, svk, (C3, C4)) = 1. In the “find” stage, A has simply no information
on svk?. Hence, the probability of a pre-challenge occurrence of FOTS does not
exceed qO · δ if qO is the overall number of oracle queries and δ denotes the max-
imal probability (which by assumption does not exceed 1/p) that any one-time
verification key svk is output by G. In the “guess” stage, FOTS clearly gives rise
to an algorithm breaking the strong unforgeability of the one-time signature.
Therefore, the probability Pr[FOTS] ≤ qO/p + AdvOTS, where the second term
accounts for the probability of definition 4, must be negligible by assumption.

We now proceed with the description of B that simply halts and outputs
a random bit if FOTS occurs. In a preparation phase, B generates a one-time
signature key pair (ssk?, svk?) ← G(λ) and provides A with public parameters
including u = Aα1

1 and v = A−α1svk
?

1 ·Aα2
2 for random α1, α2

R← Z∗p. Observe that

u and v define a “hash function” F (svk) = usvk · v = A
α1(svk−svk?)
1 ·Aα2

2 . In the
following, we call HU the set of honest parties, including user i? that is assigned
the target public key pk?, and CU the set of corrupt parties. Throughout the
game, A’s environment is simulated as follows.

• Key generation: public keys of honest users i ∈ HU\{i?} are defined as
Xi = Axi1 = gaxi for a randomly chosen xi

R← Z∗p. The target user’s public
key is set as Xi? = Axi?2 = g(xi?a

2) with xi?
R← Z∗p. The key pair of a corrupt

user i ∈ CU is set as (Xi = gxi , xi), for a random xi
R← Z∗p, so that (Xi, xi)

can be given to A. To generate re-encryption keys Rij from player i to player
j, B has to distinguish several situations:

- If i ∈ CU , B knows ski = xi. Given Xj , it simply outputs X1/xi
j .

- If i ∈ HU\{i?} and j = i?, B returns Rii? = A
xi?/xi
1 = gxi?a

2/(axi) which
is a valid re-encryption key.

- If i = i? and j ∈ HU\{i?}, B responds withRi?j = A
xi/xi?
−1 = g(axi/(xi?a

2))

that has also the correct distribution.
- If i, j ∈ HU\{i?}, B returns Rij = gxj/xi = g(axj)/(axi).
- If i ∈ HU\{i?} and j ∈ CU , B outputs Rij = A

xj/xi
−1 = gxj/(axi) which

is also computable.

• Re-encryption queries: when facing a re-encryption query from user i to user
j for a second level ciphertext Ci = (C1, C2, C3, C4, σ), B returns ‘invalid’
if relations (1)-(2) are not satisfied.

- If i 6= i? or if i = i? and j ∈ HU\{i?}, B simply re-encrypts using the
re-encryption key Rij which is available in either case.

- If i = i? and j ∈ CU ,

· If C1 = svk?, B is faced with an occurrence of FOTS and halts. Indeed,
re-encryptions of the challenge ciphertext towards corrupt users are
disallowed in the “guess” stage. Therefore, (C3, C4, σ) 6= (C?3 , C

?
4 , σ

?)
since we would have C2 6= C?2 and i 6= i? if (C3, C4, σ) = (C?3 , C

?
4 , σ

?).

· We are thus left with the case C1 6= svk?, i = i? and j ∈ CU . Given
C

1/xi?
2 = Ar2, from C4 = F (svk)r = (Aα1(svk−svk?)

1 · Aα2
2)r, B can

compute

Ar1 = (ga)r =

(
C4

C
α2/xi?
2

) 1
α1(svk−svk?)

. (6)

Knowing gar and user j’s private key xj , B picks t R← Z∗p to compute

C ′2 = At1 = gat C ′′2 = A
xj/t
−1 = (g1/a)xj/t C ′′′2 = (Ar1)t = (gar)t

and return Cj = (C1, C
′
2, C

′′
2 , C

′′′
3 , C3, C4, σ) which has the proper

distribution. Indeed, if we set t̃ = at/xj , we have C ′2 = X t̃
j , C

′′
2 = g1/t̃

and C ′′′2 = Xrt̃
j .

• First level decryption queries: when the decryption of a first level ciphertext
Cj = (C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) is queried under a public key Xj , B returns

‘invalid’ if relations (3)-(5) do not hold. We assume that j ∈ HU since
B can decrypt using the known private key otherwise. Let us first assume
that C1 = C?1 = svk?. If (C3, C4, σ) 6= (C?3 , C

?
4 , σ

?), B is presented with
an occurrence of FOTS and halts. If (C3, C4, σ) = (C?3 , C

?
4 , σ

?), B outputs
⊥ which deems Cj as a Derivative of the challenge pair (C?, Xi?). Indeed,
it must be the case that e(C ′′2 , C

′′′
2) = e(g,Xj)r for the same underlying

exponent r as in the challenge phase. We now assume C1 6= svk?.

- If j ∈ HU\{i?}, Xj = gaxj for a known xj ∈ Z∗p. The validity of the
ciphertext ensures that e(C ′′2 , C

′′′
2) = e(Xj , g)r = e(g, g)arxj and C4 =

F (svk)r = gα1ar(svk−svk?) · ga2rα2 for some r ∈ Zp. Therefore,

e(C4, A−1) = e(C4, g
1/a) = e(g, g)α1r(svk−svk?) · e(g, g)arα2 (7)

and

e(g, g)r =
(

e(C4, A−1)
e(C ′′2 , C

′′′
2)α2/xj

) 1
α1(svk−svk?)

(8)

reveals the plaintext m since svk 6= svk?.

- If j = i?, we have Xj = g(xi?a
2) for a known exponent xi? ∈ Z∗p. Since

e(C ′′2 , C
′′′
2) = e(Xi? , g)r = e(g, g)a

2rxi? and

e(C4, g) = e(g, g)α1ar(svk−svk?) · e(g, g)a
2rα2 ,

B can first obtain

γ = e(g, g)ar =
(

e(C4, g)
e(C ′′2 , C

′′′
2)α2/xi?

) 1
α1(svk−svk?)

.

Together with relation (7), γ in turn uncovers

e(g, g)r =
(
e(C4, A−1)
γα2/xi?

) 1
α1(svk−svk?)

and the plaintext m = C3/e(g, g)r.

In the “guess” stage, B must check that m differs from messages m0,m1

involved in the challenge query. If m ∈ {m0,m1}, B returns ⊥ according to
the replayable CCA-security rules.

• Challenge: when she decides that the first phase is over, A chooses messages
(m0,m1). At this stage, B flips a coin d? R← {0, 1} and sets the challenge
ciphertext as

C?1 = svk? C?2 = Bxi? C?3 = md? · T C?4 = Bα2

and σ = S(ssk?, (C3, C4)).

Since Xi? = Axi?2 = gxi?a
2

and B = gb, C? is a valid encryption of md? with the
random exponent r = b/a2 if T = e(g, g)b/a

2
. In contrast, if T is random in GT ,

C? perfectly hides md? and A cannot guess d? with better probability than 1/2.
When A eventually outputs her result d′ ∈ {0, 1}, B decides that T = e(g, g)b/a

2

if d′ = d? and that T is random otherwise. ut

Theorem 2. Assuming the strong unforgeability of the one-time signature, the
scheme is RCCA-secure at level 1 under the 3-QDBDH assumption.

Proof. The proof is very similar to the one of theorem 1. Given a 3-QDBDH in-
stance (A−1 = g1/a, A1 = ga, A2 = g(a2), B = gb, T), we construct an algorithm
B that decides if T = e(g, g)b/a

2
.

Before describing B, we consider the same event FOTS as in the proof of the-
orem 1 except that it can only arise during a decryption query (since there is no
re-encryption oracle). Assuming the strong unforgeability of the one-time signa-
ture, such an event occurs with negligible probability as detailed in the proof of
theorem 1. We can now describe our simulator B that simply halts and outputs
a random bit if FOTS ever occurs. Let also C? = (C?1 , C

′
2
?
, C ′′2

?
, C ′′′2

?
, C?3 , C

?
4 , σ

?)
denote the challenge ciphertext at the first level.

Algorithm B generates a one-time signature key pair (ssk?, svk?)← G(λ) and
the same public parameters as in theorem 1. Namely, it sets u = Aα1

1 and v =
A−α1svk

?

1 ·Aα2
2 with α1, α2

R← Z∗p so that F (svk) = usvk ·v = A
α1(svk−svk?)
1 ·Aα2

2 .
As in the proof of theorem 1, i? identifies the target receiver. The attack envi-
ronment is simulated as follows.

• Key generation: for corrupt users i ∈ CU and almost all honest ones i ∈
HU\{i?}, B sets Xi = gxi for a random xi

R← Z∗p. The target user’s public
key is defined as Xi? = A1. For corrupt users i ∈ CU , Xi and xi are both
revealed. All re-encryption keys are computable and given to A. Namely,
Rij = gxj/xi if i, j 6= i?; Ri?j = A

xj
−1 and Rji? = A

1/xj
1 for j 6= i?.

• First level decryption queries: when the decryption of a ciphertext Cj =
(C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) is queried for a public keyXj , B returns ‘invalid’

if relations (3)-(5) do not hold. We assume that j = i? since B can decrypt
using the known private key xj otherwise. We have C ′2 = At1, C ′′2 = g1/t,
C ′′′2 = Art1 for unknown exponents r, t ∈ Z∗p. Since e(C ′′2 , C

′′′
2) = e(g, g)ar and

e(C4, A−1) = e(g, g)α1r(svk−svk?) · e(g, g)arα2 ,

B can obtain
e(g, g)r =

(
e(C4, A−1)
e(C ′′2 , C

′′′
2)α2

) 1
α1(svk−svk?)

which reveals the plaintext m = C3/e(g, g)r as long as svk 6= svk?. In the
event that C1 = svk? in a post-challenge query,

- If e(C ′′2 , C
′′′
2) = e(C ′′2

?
, C ′′′2

?), B returns ⊥, meaning that Cj is simply a
re-randomization (and thus a Derivative) of the challenge ciphertext.

- Otherwise, we necessarily have (C?3 , C
?
4 , σ

?) 6= (C3, C4, σ), which is an
occurrence of FOTS and implies B’s termination.

In the “guess” stage, B must ensure that m differs from messages m0,m1 of
the challenge phase before answering the query.

• Challenge: when the first phase is over, A outputs messages (m0,m1) and B
flips a bit d? R← {0, 1}. Then, it chooses µ R← Z∗p and sets

C ′2
? = Aµ2 C ′′2

? = A
1/µ
−1 C ′′′2

? = Bµ

C?1 = svk? C?3 = md? · T C?4 = Bα2

and σ = S(ssk?, (C3, C4)).

Since Xi? = A1 and B = gb, C? is a valid encryption of md? with the random
exponents r = b/a2 and t = aµ whenever T = e(g, g)b/a

2
. When T is random,

C? perfectly hides md? and A cannot guess d? with better probability than 1/2.
Eventually, B bets that T = e(g, g)b/a

2
if A correctly guesses d? and that T is

random otherwise. ut

3.3 Efficiency

The first level decryption algorithm can be optimized using ideas from [23, 25].
Namely, verification tests (3)-(4) can be simultaneously achieved with high con-
fidence by the receiver who can choose a random α R← Z∗p and test whether

e(C ′2, C
′′
2 · Cα4)

e(C ′′′2 , usvk · v)α
= e(g, g)xj .

Hence, computing a quotient of two pairings (which is faster than evaluating
two independent pairings [18]) and two extra exponentiations suffice to check
the validity of the ciphertext.

It could also be desirable to shorten ciphertexts that are significantly length-
ened by one-time signatures and their public keys. To this end, ideas from Boneh
and Katz [9] can be used as well as those of Boyen, Mei and Waters [10]. In the
latter case, ciphertexts can be made fairly compact as components C1 and σ
become unnecessary if the checksum value C4 is computed using the Waters
“hashing” technique [30] applied to a collision-resistant hash of C3. This im-
provement in the ciphertext size unfortunately comes at the expense of a long
public key (made of about 160 elements of G as in [30]) and a loose reduction.

4 A Scheme with Temporary Delegation

This section describes a variant of our scheme supporting temporary delega-
tion. Like the temporary unidirectional PRE suggested in [2, 3], it only allows
the proxy to re-encrypt messages from A to B during a limited time period.
If the scheme must be set up for T periods, we assume that a trusted server
publishes randomly chosen elements (h1, . . . , hT) ∈ GT as global parameters.
Alternatively, the server could publish a new value hi that erases hi−1 at period
i so as to keep short public parameters.

Global-setup(λ, T): is as in section 3 with the difference that additional random
group elements h1, . . . , hT (where T is the number of time intervals that the
scheme must be prepared for) are chosen. Global parameters are

par := {G,GT , g, u, v, h1, . . . , hT ,Sig}.

Keygen(λ): user i’s public key is set as Xi = gxi for a random xi
R← Z∗p.

ReKeygen(xi, D(`,j)): when user j is willing to accept delegations during period
` ∈ {1, . . . , T}, he publishes a delegation acceptance value D(`,j) = h

xj
` .

Given his private key xi, user i then generates the temporary re-encryption
key is Rij` = D

1/xi
(`,j) = h

xj/xi
` .

Enc1(m,Xi, `, par): to encrypt m ∈ GT under the public key Xi at the first level
during period ` ∈ {1, . . . , T}, the sender conducts the following steps.

1. Choose a one-time signature key pair (ssk, svk) R← G(λ); set C1 = svk.
2. Pick r, t R← Z∗p and compute

C ′2 = Xt
i C ′′2 = h

1/t
` C ′′′2 = Xrt

i C3 = e(g, h`)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (`, C3, C4)) on (`, C3, C4).

The ciphertext is Ci =
(
`, C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

Enc2(m,Xi, `, par): to encrypt m ∈ GT under the public key Xi at level 2 during
period `, the sender does the following.

1. Pick a one-time signature key pair (ssk, svk) R← G(λ) and set C1 = svk.

2. Choose r R← Z∗p and compute

C2 = Xr
i C3 = e(g, h`)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (`, C3, C4)) on (`, C3, C4).
The ciphertext is Ci =

(
`, C1, C2, C3, C4, σ

)
.

ReEnc(Rij`, `, Ci): on input of the re-encryption key Rij` = h
xj/xi
` and a cipher-

text Ci = (C1, C2, C3, C4, σ), the validity of the latter can be checked exactly
as in section 3 (i.e. conditions (1)-(2) must be satisfied). If ill-formed, Ci is
declared ‘invalid’. Otherwise, it can be re-encrypted by choosing t R← Z∗p
and computing

C ′2 = Xt
i C ′′2 = R

1/t
ij` = h

(xj/xi)t
−1

` C ′′′2 = Ct2 = Xrt
i

The re-encrypted ciphertext is Cj =
(
`, C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

Dec1(Cj , skj): a first level ciphertext Cj is deemed valid if it satisfies similar
conditions to (3)-(5) in the scheme of section 3. Namely, we must have

e(C ′2, C
′′
2) = e(Xj , h`) (9)

e(C ′′′2 , u
C1 · v) = e(C ′2, C4) (10)

V(svk, σ, (`, C3, C4)) = 1 (11)

If Cj is valid, the plaintext m = C3/e(C ′′2 , C
′′′
2)1/xj is returned. Otherwise,

the message ‘invalid’ is returned.
Dec2(Ci, ski): receiver i outputs ‘invalid’ if the second level ciphertext Ci =

(`, C1, C2, C3, C4, σ) is ill-formed. Otherwise, it outputsm = C3/e(C2, h`)1/xi .

For such a scheme with temporary delegation, replayable chosen-ciphertext
security can be defined by naturally extending definition 2. At the beginning of
each time period, the attacker obtains all honest-to-honest, corrupt-to-corrupt
and corrupt-to-honest re-encryption keys. At the end of a time interval, she also
receives all honest-to-corrupt re-encryption keys if she did not choose to be chal-
lenged during that period. When she decides to enter the challenge phase at
some period `?, she obtains a challenge ciphertext as well as honest-to-corrupt
keys Rij`? for i 6= i?.

Throughout all periods, she can access a first level decryption oracle and
a re-encryption oracle that uses the current re-encryption keys. As she obtains
re-encryption keys in chronological order, it is reasonable to expect that queries
are made in chronological order as well. Here, a second level decryption oracle
is again useless since second level ciphertexts can be publicly “sent” to the first
level while keeping the plaintext and the receiver unchanged.

With this security definition, we can prove the security of this scheme under
a slightly stronger (but still reasonable) assumption than in section 3. This
assumption, that we call 4-QDBDH, states that it dwells hard to recognize
e(g, g)b/a given (ga, g(a2), g(a3), g(a4), gb). Again, this assumption is not stronger
than the q-DBDHI assumption [6] for q ≥ 4.

Theorem 3. Assuming the strong unforgeability of the one-time signature, the
scheme is RCCA-secure at both levels under the 4-QDBDH assumption.

Proof. Detailed in the full version of the paper. ut

5 Conclusions and Open Problems

We presented the first unidirectional proxy re-encryption scheme with chosen-
ciphertext security in the standard model (i.e. without using the random oracle
heuristic). Our construction is efficient and demands a reasonable intractability
assumption in bilinear groups. In addition, we applied the same ideas to con-
struct a chosen-ciphertext secure PRE scheme with temporary delegation.

Many open problems still remain. For instance, Canetti and Hohenberger
suggested [12] to investigate the construction of a multi-hop unidirectional PRE
system. They also mentioned the problem of securely obfuscating CCA-secure
re-encryption or other key translation schemes. It would also be interesting to ef-
ficiently implement such primitives outside bilinear groups (the recent technique
from [8] may be useful regarding this issue). Finally, as mentioned in the end of
section 2.1, the design a scheme withstanding transfer of delegation attacks is
another challenging task.

Acknowledgements

We are grateful to Jorge Villar for many useful comments and suggestions. We
also thank anonymous PKC referees for their comments and Susan Hohenberger
for helpful discussions on security models. The first author was supported by the
Belgian National Fund for Scientific Research (F.R.S.-F.N.R.S.).

References

1. J.-H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Eurocrypt’02, LNCS 2332, pages 83–107. Springer, 2002.

2. G. Ateniese, K. Fu, M. Green, S. Hohenberger. Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In NDSS, 2005.

3. G. Ateniese, K. Fu, M. Green, S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In ACM TISSEC , 9(1):
pp. 1–30, 2006.

4. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS’93, pages 62–73, ACM Press. 1993.

5. M. Blaze, G. Bleumer, M. Strauss. Divertible Protocols and Atomic Proxy Cryp-
tography. In Eurocrypt’98, LNCS 1403, pages 127–144, 1998.

6. D. Boneh, X. Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Eurocrypt’04, LNCS 3027, pp. 223–238. Springer, 2004.

7. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. In
Crypto’01, LNCS 2139, pp. 213–229. Springer, 2001.

8. D. Boneh, C. Gentry and M. Hamburg Space-Efficient Identity Based Encryption
Without Pairings. In FOCS’07, to appear.

9. D. Boneh, J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built Using
Identity-Based Encryption. In CT-RSA’05, LNCS 3376, pages 87–103. Springer,
2005.

10. X. Boyen, Q. Mei, B. Waters. Direct Chosen Ciphertext Security from Identity-
Based Techniques. In ACM CCS’05, ACM Press, pages 320–329, 2005.

11. X. Boyen, B. Waters. Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In Crypto’06, LNCS 4117, pages 290–307. Springer, 2006.

12. R. Canetti, S. Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. In
ACM CCS’07. pages 185–194. ACM Press, 2007.

13. R. Canetti, H. Krawczyk, J. B. Nielsen. Relaxing Chosen-Ciphertext Security. In
Crypto’03, LNCS 2729, pages 565–582. Springer, 2003.

14. R. Canetti, S. Halevi, J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt’04, LNCS 3027, pages 207–222. Springer, 2004.

15. Y. Dodis, A.-A. Ivan. Proxy Cryptography Revisited. In NDSS’03, 2003.
16. Y. Dodis, A. Yampolskiy. A Verifiable Random Function with Short Proofs and

Keys. In PKC’05, LNCS 3386, pages 416–431, Springer, 2005.
17. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Crypto’84, LNCS 196, pages 10–18. Springer, 1985.
18. R. Granger, N. P. Smart. On Computing Products of Pairings. Cryptology ePrint

Archive: Report 2006/172, 2006.
19. M. Green, G. Ateniese. Identity-Based Proxy Re-encryption. In ACNS’07, LNCS

4521, pages 288–306. Springer, 2007.
20. S. Hohenberger. Advances in Signatures, Encryption, and E-Cash from Bilinear

Groups. Ph.D. Thesis, MIT, May 2006.
21. S. Hohenberger, G. N. Rothblum, a. shelat, V. Vaikuntanathan. Securely Obfus-

cating Re-encryption. In TCC’07, LNCS 4392, pages 233–252. Springer, 2007.
22. M. Jakobsson. On Quorum Controlled Asymmetric Proxy Re-encryption. In

PKC’99, LNCS 1560, pages 112–121. Springer, 1999.
23. E. Kiltz. Chosen-Ciphertext Security from Tag-Based Encryption. In TCC’06,

LNCS 3876, pp. 581–600. Springer, 2006.
24. E. Kiltz. On the Limitations of the Spread of an IBE-to-PKE Transformation. In

PKC’06, LNCS 3958, pp. 274–289, Springer, 2006.
25. E. Kiltz, D. Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key En-

capsulation without Random Oracles. In ACISP’06, LNCS 4058, pages 336–347
Springer, 2006.

26. M. Mambo, E. Okamoto. Proxy Cryptosystems: Delegation of the Power to De-
crypt Ciphertexts. In IEICE Trans. Fund. Elect. Communications and CS, E80-
A/1, pages 54–63, 1997.

27. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Crypto’91, LNCS 576, pages 433–444. Springer, 1991.

28. A. Shamir. Identity based cryptosystems and signature schemes. In Crypto’84,
LNCS 196, pages 47–53. Springer, 1984.

29. V. Shoup. A proposal for the ISO standard for public-key encryption (version 2.1).
manuscript, 2001. http://shoup.net/.

30. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt’05, LNCS 3494, pages 114–127. Springer 2005.

