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Abstract. We give a generic construction for universal designated-ve-
rifier signature schemes from a large class, C, of signature schemes. The
resulting schemes are efficient and have two important properties. Firstly,
they are provably DV-unforgeable, non-transferable and also non-delega-
table. Secondly, the signer and the designated verifier can independently
choose their cryptographic settings. We also propose a generic construc-
tion for identity-based signature schemes from any signature scheme in C
and prove that the construction is secure against adaptive chosen mes-
sage and identity attacks. We discuss possible extensions of our con-
structions to universal multi-designated-verifier signatures, hierarchical
identity-based signatures, identity-based universal designated verifier sig-
natures, and identity-based ring signatures from any signature in C.

1 Introduction

Universal Designated-Verifier Signatures (UDVS). UDVS schemes were
first proposed by Steinfeld et al. [1], based on ideas of Jakobsson et al. [2], with
the goal of protecting users’ privacy when using certificates. In such a scheme,
a user Alice has a certificate that is signed by a certificate issuer. If Alice wants
to present her certificate to a verifier Bob, she will use Bob’s public key to
transform the issuer’s signature into a designated signature for Bob. Bob can
verify the issuer’s signature by verifying the validity of the designated signature.
However, he cannot convince a third party that the certificate was signed by
the issuer because he can use his secret key to construct the same designated
signature.

Steinfeld et al. proposed security definitions for UDVS schemes and gave
a concrete scheme based on bilinear group pairs [1]. In [3] Lipmaa et al. ar-
gued that the original security definition in [1] did not sufficiently capture the
verifier-designation property and introduced a new security notion, called non-
delegability. Authors showed that in some UDVS schemes including Steinfeld
et al’s [1], the issuer can delegate his signing ability - with respect to a fixed
designated verifier - to a third party, without revealing his secret key or even



enabling the third party to sign with respect to other designated verifiers. They
argue that, in many scenarios, such delegation property is undesirable and must
be prevented.

As an example, consider the following scenario. A university uses a digital
signature scheme to issue student cards. Alice, a student, wants to prove her-
self a student in a gym to get a discount. To protect her privacy, she converts
the university’s signature on her card to a designated signature first and then
presents the designated signature as a proof of studentship. Now if the UDVS
in use is delegatable, the university, without having to issue a card for Alex, a
non-student, will be able to publish a value that enables him (and anybody) to
compute a designated signature for himself get the discount at the gym. This
value does not enable Alex to compute university’s private key, sign other docu-
ments on behalf of the university, or even compute a designated signature of the
university to use other services. Besides, since the university has not actually
issued any fraudulent student cards, it cannot be held responsible for any mali-
cious activity. These two facts provide enough safety margin for the university
to abuse such delegation ability.

None of the UDVS schemes proposed to date, except a recent scheme of
Huang et al. [4], has treated non-delegatability as a security requirement. Fur-
thermore, the results of Lipmaa et al. [3] and later results of Li et al. [5] show
that many of the proposed UDVS schemes are delegatable, including the scheme
from [1] and one of the schemes from [6].

Our Contributions on UDVS. We give a generic construction for secure
UDVS schemes from a large class of signature schemes. The class is defined by
requiring certain properties from signature schemes. We use a definition of secu-
rity that includes the original security notions of Steinfled et al, i.e. unforgeability
and non-transferability privacy, and also the notion of non-delegatability inspired
by the work of Lipmaa et al. [3] and adapted to UDVS.

To construct non-delegatable UDVS schemes, we will use Jakobsson et al’s
approach to providing verifier designation [2]: “Instead of proving Θ, Alice will
prove the statement: Either Θ is true, or I am Bob.” In UDVS schemes, Alice
wants to prove validity of her certificate to Bob. A natural construction of UDVS
is a non-interactive version of a proof of the following statement by Alice: “Ei-
ther my certificate is valid, or I am Bob.” Such a signature can be constructed
as follows: first pick a protocol for proof of knowledge of Alice’s certificate and
another for the proof of knowledge of Bob’s secret key; then construct a protocol
for proof of knowledge of Alice’s certificate or Bob’s secret key by combining the
two protocols via e.g. techniques of Cramer et al. [7]; finally make the resulting
protocol non-interactive via e.g. Fiat-Shamir transform [8]. It is intuitively clear
that such a construction yields a secure UDVS scheme, assuming both the under-
lying protocols are honest-verifier zero-knowledge (HVZK) proofs of knowledge.
However, efficient protocols for HVZK proof of knowledge of a signature on a
message are only known for a small group of signature schemes.



We propose a construction for UDVS schemes that works for any combination
of a signature in class C of signature schemes and all verifier key pairs that
belong to a class K, and prove its security in the above sense, in the Random
Oracle Model (ROM) [9]. The class C of signatures that can be used in our
construction includes signature schemes such as RSA-FDH [10], Schnorr [11],
modified ElGamal [12], BLS [13], BB [14], Cramer-Shoup [15], and both schemes
proposed by Camenisch and Lysyanskaya [16, 17]. Class K is the set of all key
pairs for which there exist protocols for HVZK proofs of knowledge of the secret
key corresponding to a public key and includes public and private key pairs of
RSA cryptosystem, GQ identification scheme [18], and discrete-log based public
and private key pairs.

Our construction are generic and security proofs guarantee security of a large
class of UDVS schemes that are obtained from standard signature schemes that
are members of the class C. We note that the only other known non-delegatable
UDVS due to Huang et al. [4] is in fact an instance of our construction. Secondly,
the construction does not limit the signer and the verifier to have ‘compatible’
settings: the construction works for any choice of signer and verifier settings as
long as the signature scheme is a member of class C and the verifier key belongs
to the class K. All previous constructions only work for a specific combination
of signature schemes and verifier key pairs.

Identity-Based Signatures. Identity-based cryptography was proposed by
Shamir in [19], where he also proposed an identity-based signature (IBS) scheme.
There are two known generic constructions of IBS. The first is due to Bellare et
al. [20], which generalizes an earlier construction of Dodis et al. [21]. They show
that a large number of previously proposed schemes are in fact instances of
their generic construction. However, as noted by the authors, there are some
IBS schemes, including Okamoto’s discrete logarithm based IBS [22] (called
OkDL-IBS by Bellare et al.) and a new IBS scheme proposed in [20] (called
BNN-IBS), that are not instances of their generic construction.

The other generic construction is the one of Kurosawa and Heng [23]. Their
construction requires an efficient zero-knowledge protocol for proof of knowledge
of a signature, which makes their construction applicable to only a few schemes
such as RSA-FDH and BLS.

Our Contributions on IBS. We propose a construction of IBS schemes from
any signature in the aforementioned class C and prove the construction secure
against adaptive chosen message and identity attacks. In our construction, a
user’s secret key is basically a signature of the authority on the user’s identity.
An identity-based signature is generated as follows: the user constructs a proof
of knowledge of her secret key (i.e. the authority’s signature on her identity) and
then transforms it into a signature on a message using the Fiat-Shamir trans-
form. For signature schemes with efficient zero-knowledge protocols for proof
of knowledge of a signature, our constructions will become the same as those of



Kurosawa and Heng [23]. Thus, our constructions can be seen as a generalization
of theirs.

Many previous IBS schemes can be seen as instances of our generic construc-
tion; this includes the schemes of Fiat and Shamir [8], Guillou and Quisquater
[18], Shamir [19], pairing-based schemes from [24–29] and basically all the con-
vertible IBS schemes constructed in [20]. Both OkDL-IBS and BNN-IBS, which
are not captured by generic constructions of Bellare et al, fit as instances of our
generic construction as well. However, all the IBS schemes that we construct
are proved secure in ROM. Thus, ROM-free constructions such as the folklore
certificate-based IBS schemes formalized in [20] and the scheme of Paterson and
Schuldt [30] are not captured by our framework.

Further Contributions. Our constructions of UDVS schemes can be nat-
urally extended to (non-delegatable) universal multi-designated-verifier signa-
tures. Furthermore, we observe that our identity-based constructions support a
nesting-like property in the sense that a user can act as a new key generation
authority and issue keys for other users. This fact enables extensions of our
IBS constructions to hierarchical identity-based signatures out of any signature
scheme in the class C. We will also point out the possibility of generic construc-
tion of (non-delegatable) identity-based universal designated verifier signatures
and identity-based ring signatures from any signature in C using our techniques.

1.1 Related Work

UDVS schemes were first proposed by Steinfeld et al. in [1]. The proposed se-
curity definitions and a concrete scheme based on bilinear group pairs. In [6]
authors proposed extensions of Schnorr and RSA signatures to UDVS schemes.
Other pairing-based schemes were proposed in [31] and [32], and Laguillaumie
et al. introduced ‘Random Oracle free’ constructions [33].

Our constructions are very close to Goldwasser and Waisbard’s generic con-
structions of designated confirmer signatures in [34]. They also use protocols for
proof of knowledge of a signature as a tool for their constructions. They also
present such protocols for a number of signature schemes including Goldwasser-
Micali-Rivest [35], Gennaro-Halevi-Rabin [36], and Cramer-Shoup [15]. This
shows that the above signatures are in class C.

A closely related area is that of ring signatures. Generic constructions of ring
signatures as Fiat-Shamir transformed proofs of knowledge of one-out-of-n se-
cret keys were previously known. Our techniques deal with a similar but different
concept of proofs of knowledge of signatures on known messages. Although pro-
tocols for proof of knowledge of a secret key corresponding to a public key are
more studied and well-known, proof of knowledge of a signature on a message
with respect to a known public key has been less studied.

It is worth noting that the previous constructions of identity-based universal
deignated verifier signatures by Zhang et al. [37] and universal multi-designated-
verifier signatures by Ng et al. [38] are both delegatable. Our generic construc-
tions of the above schemes, as mentioned before, guarantee non-delegatability.



2 Preliminaries

2.1 Notation

We use different fonts to denote Algorithms, security notions, and Oracles,
respectively. By ‘x ← a’ we denote that a is assigned to x and by ‘x ← X (a)’
we denote that X with input a is run and the output is assigned to x. ‖ and 4
denote concatenation and definition, respectively.

2.2 Proofs of Knowledge

Let P be ab NP problem and Rel be the corresponding NP relation. Let Rel be the
corresponding (poly-time) membership deciding algorithm, i.e. (Pub, Sec) ∈ Rel
iff Rel (Pub, Sec). Following the works of Camenisch and Stadler [39], we will
use the notation PoK {Sec : Rel (Pub, Sec)} for showing a protocol for proof of
knowledge where the prover proves knowledge of her secret Sec corresponding
to a publicly known Pub, s.t. (Pub, Sec) ∈ Rel.

A public-coin protocol is a protocol in which the verifier chooses all its mes-
sages during the protocol run randomly from publicly known sets. A three-move
public-coin protocol can be written in a canonical form in which the messages
sent in the three moves are often called commitment, challenge, and response,
denoted here by Cmt, Chl, and Rsp, respectively. The challenge Chl is drawn
randomly from a set, called the challenge space. The protocol is said to have
the honest-verifier zero-knowledge property (HVZK) [40], if there exists an al-
gorithm that is able to simulate transcripts that are indistinguishable from the
ones of the real protocol runs without the knowledge of the secret. The protocol
is said to have the special soundness property (SpS from now on) as described
in [7], if there also exists an algorithm that is able to extract the secret from two
transcripts of the protocol with the same commitment and different challenges.
A three-move public-coin protocol with both the HVZK and SpS properties is
usually called a Σ protocol.

2.3 Proofs of Disjunctive Knowledge

Cramer et al. showed how to extend Σ protocols to witness indistinguishable
(WI) Σ protocols for proving knowledge of (at least) t out of n values using
secret sharing schemes [7]. They called such protocols proofs of partial knowledge.
Witness indistinguishability guarantees that even a cheating verifier will not be
able to tell which t-subset of the n values is known by the prover. Thus, the
transcripts of different runs of the protocol with different t-subsets as prover
input will be indistinguishable from one another.

An instance of such partial proofs of knowledge that we find useful here is
a WI proof of knowledge of one out of two, which we call a proof of disjunctive
knowledge. These proofs were also observed by Camenisch and Stadler [41] for
discrete logarithms. In line with the above, we will use the following notation
to show such proofs: to show a protocol for proof of knowledge of a value Sec1



such that Rel1 (Pub1, Sec1) or a value Sec2 such that Rel2 (Pub2, Sec2), we use
the notation PoK {(Sec1 ∨ Sec2) : Rel1 (Pub1, Sec1) , Rel2 (Pub2, Sec2) }. The
Σ protocol for proof of knowledge of Sec1 or Sec2 corresponding to Pub =
(Pub1, Pub2) can be constructed in the canonical form using simple techniques.
Both HVZK and SpS properties are also inherited by the constructed proof of
disjunctive knowledge.

2.4 The Fiat-Shamir Transform

Fiat and Shamir proposed a method for transforming (interactive) three-move
public-coin protocols into non-interactive schemes [8]. The idea is to replace the
verifier with a hash function. The rationale is that in such a protocols, all the
verifier does is providing an unpredictable challenge that can be replaced by
a Random Oracle hash function. This idea has been applied in two different
ways depending on what is included in the hash function argument. Firstly, the
challenge can be set to the hash of the concatenation of the public inputs and the
commitment, i.e. Chl ← H (Pub ‖ Cmt). This will result in a non-interactive
proof of knowledge. We will denote the resulting algorithms for non-interactive
proof and verification of knowledge by NIPoK and NIVoK, respectively. Note
that the output of the former, denoted by π, is a non-interactive proof that
can be publicly verified. HVZK and SpS properties for non-interactive proofs
are defined similar to their counterparts in interactive proofs. Pointcheval and
Stern’s Forking Lemma [12] can be used to easily prove in the Random Oracle
Model that if the original interactive proof has HVZK and SpS properties then
the Fiat-Shamir construction will have these properties too.

A second way of applying the Fiat-Shamir method is to set the challenge
as the hash of the concatenation of the public inputs, the commitment, and
an arbitrary message m, i.e. Chl ← H (Pub ‖ Cmt ‖ m). This will give us a
signature scheme. Let Sign and Verify denote the resulting algorithms for signing
and verification, respectively. Similarly, a signature, denoted by σ, can be verified
publicly. The resulting signature scheme will be existentially unforgeable under
chosen message attack if the original protocol is a Σ protocol [12, 42, 43].

We use the phrase signature of knowledge (SoK) for both the NIPoK and Sign
algorithms, and the phrase verification of knowledge (VoK) for both the NIVoK
and Verify algorithms resulting from applying Fiat-Shamir transform to a Σ
protocol as above. Assuming the original protocol is PoK {Sec : Rel (Pub, Sec)},
we denote the corresponding SoK and VoK by,

SoK {Sec : Rel (Pub, Sec)} 4= NIPoK (Pub, Sec)

VoK {Sec : Rel (Pub, Sec)} (π)
4
= NIVoK (Pub, π)

SoK {Sec : Rel (Pub, Sec)} (m)
4
= Sign (Pub, Sec,m)

VoK {Sec : Rel (Pub, Sec)} (m,σ)
4
= Verify (Pub,m, σ) .



2.5 On Public-Private Key Pairs

Key pairs are generated by a key generation algorithm KeyGen that takes a
security parameter as input and outputs the key pair. In public key systems
it must be hard to compute the secret key corresponding to a given public
key. We call the hard problem of computing the secret key from a given public
key for a key pair, the underlying problem of that key pair. A public key thus
gives an instance of the underlying problem and the corresponding secret key
is the solution to that problem. If key pairs are poly-time verifiable, i.e. one
can efficiently verify if a given secret key corresponds to a given public key, the
key generation algorithm KeyGen defines an NP relation Pair consisting of all
the possible key pairs. We are interested in key pairs for which there exists a Σ
protocol to prove knowledge of a secret key corresponding to a given public key.
Let us call the set of these key pairs K. A Σ protocol for a key pair in K can
be shown as PoK {sk : Pair (pk, sk)}. Some key pairs that have Σ protocols as
above are listed in [44]. These include key pairs such as GQ identification scheme,
discrete-log-like key pairs, and key pairs of the RSA cryptosystem. We will use
the phrase key type to refer to the types of the keys. For instance, we denote the
keys for the GQ identification scheme by the term ‘GQ-type key pairs’.

3 Defining the Class C of Signatures

Let SS = SS. (KeyGen,Sign,Verify) be a provably-secure (standard) signature
scheme. Security of the scheme, i.e. its existential unforgeability under chosen
message attack (euf-cma) [35], is based on the hardness of an underlying prob-
lem denoted here by PSS. We use PKSp and MSp to denote the public key space
(i.e. the set of all possible public keys) and the message space of a standard sig-
nature scheme, respectively. We define a class C of standard signature schemes
as follows.

Definition 1. C is the set of all signature schemes SS for which there exists a
pair of algorithms, Convert and Retrieve, where Convert gets the public key pk,
a message m, and a valid signature σ on the message as input and converts the
signature to a pair σ̃ = (σ̃aux, σ̃pre) called converted signature as follows:

σ̃ = (σ̃aux, σ̃pre)← Convert (pk, m, σ) , such that:

– there exists an algorithm AuxSim such that for every pk ∈ PKSp and
m ∈ MSp the output of AuxSim (pk, m) is (information-theoretically) in-
distinguishable from σ̃aux,

– there exists an algorithm Compute that on input pk, m, and σ̃aux computes
a description of a one-way function f (·) and an I in the range of f , such
that I is the image of σ̃pre under the one-way function f , i.e. for a converted
signature the output of the following algorithm is true.

Algorithm Valid (pk, m, σ̃)
(f, I)← Compute (pk, m, σ̃aux)
d← (f (σ̃pre) = I)
return d



– there exists a Σ protocol for proof of knowledge of a Sec = σ̃pre corresponding
to a Pub = (pk, m, σ̃aux) such that σ̃ is valid with respect to pk and m, i.e.
there exist a Σ protocol for the following proof of knowledge

PoK {σ̃pre : Valid (pk, m, (σ̃aux, σ̃pre))} ,

and for any candidate converted signature satisfying Valid (pk, m, (σ̃aux, σ̃pre)), a
valid signature on the message m can be retrieved via the Retrieve algorithm as
follows:

σ ← Retrieve (pk, m, σ̃) .

The properties required by the definition enables the holder of a signature on
a message, that is known to a verifier, to efficiently prove the knowledge of the
signature, by first converting the signature and then revealing the simulatable
part of the converted signature; this will enable the verifier to determine I and
f . Finally, the protocol for proof of knowledge of the pre-image of I under f is
carried out by the two parties. Note that since any NP relation has a Σ protocol
[45] ensures that for any signature scheme there is a protocol that proves the
knowledge of the signature although such protocols are not in general efficient.

Many of the signature schemes in use today fall into the class C. Examples are
RSA-FDH [10], Schnorr [11], Modified ElGamal [12], BLS [13], BB [14], Cramer-
Shoup [15], Camenisch-Lysyanskaya-02 [16], and Camenisch-Lysyanskaya-04 [17]
signatures. In the full version of this paper [44] we briefly show why each of these
schemes belongs to C.

4 Universal Designated Verifier Signatures

In this section, we first review the definitions of UDVS schemes and their security.
We then propose our generic construction of UDVS schemes from signature
schemes in C, and prove its security.

4.1 Definition

A UDVS is a signature scheme with an extra functionality: a holder of a signa-
ture can designate the signature to a particular verifier, using the verifier’s public
key. A UDVS can be described by adding extra algorithms to the ones needed for
the the underlying signature scheme. Here, we briefly recall the definitions from
Steinfeld et al. [1]. A UDVS has eight algorithms: a Common Parameter Gen-
eration algorithm CPGen that on input 1k, where k is the security parameter,
outputs a string consisting of common parameters cp publicly shared by all users;
a Signer (resp. Verifier) Key Generation algorithms SKeyGen (resp. VKeyGen)
that on input cp, output a secret/public key-pair (sks, pks) (resp. (skv, pkv)) for
the signer (resp. verifier); a Signing and a Public Verification algorithm Sign
and PVer, where the former takes as input sks and a message m and outputs
a signer’s publicly-verifiable (PV) signature σ and the latter takes as input pks

and (m,σ) and outputs a boolean variable for versification result; a Designation



and a Designated Verification algorithm Desig and DVer, where the former on
input pks, pkv, and (m,σ), outputs a designated-verifier (DV) signature σ̂ and
the latter on input pks, skv, and (m, σ̂), outputs a boolean verification decision;
finally a Verifier Key-Registration VKeyReg algorithm, which is a protocol be-
tween a Key Registration Authority (KRA) and a verifier to register verifier’s
public key.

4.2 Security

Steinfeld et al. identified two security requirements for UDVS schemes: DV-
unforgeability and non-transferability privacy. We consider a third property pro-
posed by Lipmaa et al. called non-delegatability. Intuitively, DV-unforgeability
captures the inability of the adversary to forge designated signatures on new
messages even if it can have signatures on chosen messages and can verify cho-
sen pairs of messages and designated signatures, non-transferability privacy cap-
tures the inability of the designated verifier to produce evidence to convince a
third party that the message has actually been signed by the signer, and finally
non-delegatability captures the inability of everyone else (everyone except the
signature holder and the designated verifier) to generate designated signatures,
hence effectively preventing the signer, the signature holder and the designated
verifier to delegate their ability to generate designated signatures without re-
vealing their corresponding secrets.

DV-Unforgeability. We use Steinfeld et al’s definition of security of UDVS
schemes [20] against existential designated signature unforgeability under chosen
message attack, denoted by dv-euf-cma-attack. For the formal definition refer
to [20] or [44].

Non-Transferability Privacy. Steinfeld et al. have formalized this property in
detail and proposed a definition capturing the fact that possessing a designated
signature does not add to the computational ability of the designated verifier [1].
In their formalization, they require that whatever a designated verifier who has
been given a designated signature can leak to a third party (even at the expense
of disclosing his secret key), he would have been able to leak without the desig-
nated signature. One can easily see that if designated signatures are simulatable
by the verifier himself then a designated signature adds no computational ability
to the verifier and thus, without going into details of the formal definition for
non-transferability privacy, we will state and use the following lemma to prove
our schemes secure.

Lemma 1. A scheme UDVS achieves perfect non-transferability privacy if there
exists an efficient forgery algorithm Forge, such that for any two pairs of keys
(sks, pks) and (skv, pkv) generated by the key generation algorithms of UDVS,
and for any message m, the following two random variables have the same dis-
tribution:

Forge (pks, skv, pkv,m) and Desig (pks, pkv,m, Sign (sks,m)) .



Other flavors of non-transferability privacy, i.e. statistical and computational
non-transferability privacy can be analogously defined by requiring the two dis-
tributions to be statistically or computationally indistinguishable, respectively.

Non-Delegatability. Lipmaa et al. defined non-delegatability property of de-
signated-verifier signatures [3]. Their definition of κ-non-delegatability requires
the designated signature to be a non-interactive proof of knowledge with knowl-
edge error κ[46], of the signer’s or the designated verifier’s secret key. The reason
for such a definition is to guarantee that only the signer or the designated verifier
are able to produce a designated signature, thus preventing them from being able
to delegate their ability without revealing their secret key. In a UDVS scheme,
we want only the person who holds a signature or the designated verifier be able
to produce a designated signature. Lipmaa et al’s definition can be extended to
the UDVS case as follows. κ-non-delegatability for UDVS schemes requires the
designated signature to be a non-interactive proof of knowledge, with knowledge
error κ, of a signature or the designated verifier’s secret key.

We use an observation of Cramer et al. [47, p. 359] to simplify the non-
delegatability proofs of our constructions. Cramer et al. noted that is that a
three-move public-coin protocol with SpS property and challenge space ChSp
is a proof of knowledge with knowledge error κ = |ChSp|−1. Using Forking
Lemma, it can be easily seen that the non-interactive version of this observation
holds in the Random Oracle Model. That is, a Fiat-Shamir non-interactive proof
of knowledge (i.e. our NIPoK) with SpS property and challenge space ChSp is
a non-interactive κ-proof of knowledge in the the Random Oracle Model with
knowledge error κ = |ChSp|−1. Based on these observations, we have the fol-
lowing lemma:

Lemma 2. A scheme UDVS is κ-non-delegatable if a designated signature is a
Fiat-Shamir non-interactive proof of knowledge of a signature or the secret key
of the verifier, with SpS property and |ChSp| ≥ 1

κ .

4.3 Construction of UDVS Schemes from Standard Signatures

We show how to construct a universal designated verifier signature from any
signature scheme in C, assuming the verifier has a key pair with key type in K.
We use the building blocks introduced before, i.e. proof of disjunctive knowledge
and the Fiat-Shamir transform, to construct the UDVS schemes. Our construc-
tion has the distinctive property that the verifier’s key pair type can be chosen
independently from the signer’s signature. That is the construction works for
any combination of a signature in class C and a verifier key pair type in K. Let
SS = (KeyGen,Sign,Verify) be a standard signature scheme in class C and KT
be a verifier-chosen key type in K with key generation algorithm KeyGen and
pair deciding algorithm Pair. The construction is as follows:

– CPGen gets as input 1k, and returns cp = 1k as the common parameter. The
signer and the verifiers choose their own signature scheme and key pair type,



respectively, i.e.

GUDVS. (SKeyGen,Sign,PVer)
4
= SS. (KeyGen,Sign,Verify)

and VKeyGen
4
= KeyGen .

– To designate, the signature-holder first converts the signature and then con-
structs a signature of disjunctive knowledge of σ̃pre or skv. The DV-signature
is a pair consisting of σ̃aux and this signature of knowledge, i.e.

Algorithm GUDVS.Desig (pks, pkv,m, σ)
(σ̃aux, σ̃pre)← Convert (pks,m, σ)
δ ← SoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)}
σ̂ ← (σ̃aux, δ)
return σ̂

– To verify the DV-signature, one verifies the validity of the signature of knowl-
edge δ according to the message, the public keys of the signer and the verifier,
and the value σ̃aux provided, i.e.

Algorithm GUDVS.DVer (pks, pkv,m, σ̂)
d← VoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)} (δ)
return d

4.4 Security Analysis

DV-Unforgeability. We use the Forking Lemma to prove DV-Unforgeability
of the construction. The Forking Lemma was originally proposed by Pointcheval
and Stern [12]. Recently, Bellare and Neven proposed a general version of the
Forking Lemma in [48]. We use the results and formulations from the latter in our
proof. Basically, our SoK-type constructions guarantees the ability to extract
a signature or the verifier’s secret key from a DV-forger through forking. The
extracted signature or secret key is later used to solve the underlying problem of
the signature scheme or that of the verifier key pair, respectively. Thus, given a
successful DV-forger, we will be able to solve at least one of the above underlying
problems and we have the following theorem. The proof is given in the full version
of this paper [44].

Theorem 1. Let SS be a standard signature in C and PSS be its underlying
problem. Also, let KT be a key type in K and PKT be its underlying problem.
The construction GUDVS based on the combination of the signature SS and the
verifier key-type KT is DV-unforgeable if PSS and PKT are both hard.

Non-Transferability Privacy. Non-transferability privacy for GUDVS is due
to the very concept behind our construction. The designated signature consists
of two values, a publicly-simulatable value σ̃aux and a witness indistinguishable
signature of knowledge of a valid converted signature or the verifier’s secret key.



Both values are generateable by the designated verifier, indistinguishably from
the real designated signatures. To forge a designated signature, the verifier will
first simulate σ̃aux via the algorithm AuxSim and then, similar to the prover, he
will be able to construct a non-interactive proof of disjunctive knowledge of σ̃pre

or the verifier’s secret key (knowing the latter, of course). The forged designated
signature will be consisting of the simulated σ̃aux along with this signature of
knowledge, i.e. we have the following forge algorithm:

Algorithm GUDVS.Forge (pks, skv, pkv,m)
σ̃aux ← AuxSim (pks,m)
δ ← SoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)}
σ̂ ← (σ̃aux, δ)
return σ̂

AuxSim’s ability to simulate σ̃aux and witness indistinguishability of the
signature of knowledge together, will imply that the output of the algorithm
GUDVS.Forge is indistinguishable from real designated signatures. The existence
of AuxSim and a Σ protocol for the proof of knowledge of a converted signature
is guaranteed if SS belongs to C. Furthermore, the existence of a Σ protocol for
proof of knowledge of the verifier’s secret key is guaranteed if KT belongs to K.
Thus, GUDVS.Forge will be successful in forging designated signatures for any
combination of a signature in C and a verifier key type in K. Combining this
with Lemma 1, we will have the following theorem.

Theorem 2. The construction GUDVS achieves non-transferability privacy for
any combination of a signature in C and a verifier key type in K.

Non-Delegatability. The very design of our UDVS construction is geared to-
wards providing non-delegatability through the use of signatures of knowledge.
However, to meet the requirements of Lemma 2, we must first prove that a des-
ignated signature in our scheme is a signatures of knowledge of a signature or
the secret key of the verifier with SpS property. All we know now is that a des-
ignated signature in our scheme consists of a σ̃aux and a signature of knowledge
of σ̃pre or the secret keys of the verifier, with both HVZK and SpS properties.

It can be seen that a designated signature (σ̃aux, δ) as a signature of knowl-
edge has the SpS property in the Random Oracle Model. The reason is that two
designated signatures with the same first-move message (i.e. Random Oracle
query, which includes σ̃aux along with the commitment) and different challenges
(i.e. Random Oracle responses) will provide two δs with the same commitment
and different challenges. This will give us the secret, i.e. σ̃pre or skv. If the former
is given, then one can retrieve a valid signature by running the Retrieve algorithm
on input (σ̃aux, σ̃pre). Thus, two designated signatures with the same Random
Oracle query and different Random Oracle responses will give us a signature
or the verifier’s secret key. Hence, the designated signature will have the SpS
property as well and by Lemma 2 we will have the following theorem:



Theorem 3. The construction GUDVS is κ-non-delegatable for any combina-
tion of a signature in C and a verifier key type in K for which |ChSp| ≥ 1

κ .

Note that although a designated signature is an HVZK signature of knowl-
edge of a σ̃pre or the verifier’s public key, it may not be an HVZK signature of
knowledge of a signature or the verifier’s public key, since it reveals σ̃aux which
might include some information about the signature. However, Lemma 2 does
not require the designated signature to have the HVZK property.

4.5 Further Constructions

Our constructions can be easily extended to universal multi-designated-verifier
signatures, where a signature is designated to more than one verifier. This can
be done by setting the designated signature to be a one-out-of-(n+1) disjunctive
signature of knowledge of the (converted) signature and the secret keys of the n
verifiers. Again, these schemes allow the signer and the verifiers to choose their
settings independently, thus the verifiers might have different types of keys.

The construction can also be extended to designate more than one signature
at a time. This is useful in situations where a user wishes to show more than
one certificate to a verifier and does not want the verifier to be able to convince
a third party of the validity of her certificate. For instance, consider a situation
where a user must show at least k out of n certificates to a verifier to obtain
a service from the verifier. The user will construct the designated signature by
constructing a (k +1)-out-of-(n+1) signature of knowledge of the n (converted)
signatures and the secret key of the verifier. This construction offers an extra
privacy property in that the verifier, after seeing a designated signature, can not
determine which k certificates is used by the user.

4.6 Comparison

We use constructions in [1, 6] as benchmarks for our constructions. We choose
instances of our constructions that match the signature scheme and verifier key
type of the benchmark schemes. Similar to [6], we assume the cost of computing
a product ax ·by ·cz and O(α) low exponent exponentiations both, are equivalent
to a single exponentiation. We use the same typical parameters for lengths of
members of different groups, namely 1.024 kb for DL groups and RSA modules
and 0.16 kb for ChSp. To further simplify the comparison, we only consider the
dominant term for the costs of computation assuming that a pairing (pair.) �
an exponentiation (exp.) � a multiplication (mult.) � an addition, with “�”
standing for “costs (much) more than”. We note that designation of a certifi-
cate has two phases: before choosing the designated verifier and after that and so
computation can be carried out in accordingly. We off-line and on-line to denote
the two phases, respectively. An interesting property of our construction is that
cost of on-line phase is relatively low (one multiplication). This makes our con-
structions suitable for systems in which certificates must be frequently verified
by (and hence designated to) multiple different verifiers. Table 1 summarizes the



comparisons, with “Typ. σ̂ len.” and “ND” standing for “Typical σ̂ length” and
“Non-Delegatability”, respectively and comparatively more desirable values in
bold. The table shows, our schemes generally have more (yet comparable) costs
of off-line designation and designated verification and result in longer designated
signatures. However, our schemes have less online designation cost and provide
provable non-delegatabilty. Our schemes are also (almost) generic and provide
the desirable property of signer-verifier setting independence. A side effect of
using the Forking Lemma for proof of security is that security reductions are not
tight.

Table 1. Comparison of the properties of Steinfeld et al’s schemes with those of their
corresponding GUDVS counterparts

Scheme Hard problem
Desig cost

DVer cost Typ. σ̂ len. ND
off-line on-line

DVSBM [1] BDH none 1 pair. 1 pair. 1.0 kb 7

GUDVS (BLS+DL) CDH 2 pair. 1 mult. 2 pair. 5.3 kb 3

SchUDVS1 [6] SDH 1 exp. 1 exp. 1 exp. 2.0 kb 7

SchUDVS2 [6] DL 2 exp. 1 exp. 2 exp. 1.5 kb ?
GUDVS (Schnorr+DL) DL 4 exp. 1 mult. 3 exp. 5.3 kb 3

RSAUDVS [6] RSA 1 exp. 2 exp. 2 exp. 11.6 kb ?
GUDVS (RSA-FDH+DL) RSA & DL 2 exp. 1 mult. 2 exp. 4.3 kb 3

5 Identity-based Signatures

In this section, we first review the definitions of the IBS scheme and its security.
Then we propose a generic construction of IBS schemes from any signature
scheme in C and prove it secure.

5.1 Definition and Security

Identity-based cryptosystems were proposed by Shamir [19] in an attempt to
remove the need for a public-key infrastructure. In such systems, the users’
identities are used as their public keys. However, users lose their ability to choose
their own secret keys and must ask a key-generation center (KGC) to provide
them with their respective private keys.

An identity-based signature is a tuple of four algorithms as follows: a master
key generation algorithm MKeyGen, which on input 1k, where k is a security pa-
rameter, outputs a pair of master secret key and master public key (msk,mpk),
a user key generation algorithm UKeyGen, which on input msk and a user iden-
tity id, outputs a user secret key usk, a signing algorithm Sign, which on input
usk and a message m, outputs a signature σ on the message, and finally a veri-
fication algorithm Verify, which on input mpk, id, and (m,σ), outputs a binary



decision indicating whether or not σ is a valid signature on m with respect to
mpk and id.

We use Bellare and Neven’s definition for the security of an IBS scheme [20]
against existential unforgeability under chosen message and identity attacks,
denoted by id-euf-cma-attack. For the formal definition refer to [20] or [44].

5.2 Generic Construction of IBS and Its Security

In this section we show how to extend a signature in C to an IBS scheme. The
idea is to use the key pair of the signature scheme as the master key pair of
KGC, and use the signing algorithm as the users’ key generation algorithm in
the following way: a user’s secret key corresponding to her public identity, is
obtained by signing the user’s identity using the KGC’s secret key. The secret
key is securely given to the user. Now, the user is able to prove her identity, since
she can prove the knowledge of a converted signature on her identity. The Fiat-
Shamir transform can be used to transform this proof into a signature scheme.
The resulting signature would be an identity-based signature.

The concrete description of the generic construction is as follows. Let that the
standard signature SS = (KeyGen,Sign,Verify) be in C. The generic IBS scheme
GIBS is constructed as follows:

To generate a master key pair, the KCG runs the key generation algorithm
of the signature scheme and outputs the public and secret key pair as the master
public and secret key pair for the identity based signature scheme. To generate a
user’s key pair, the KCG simply signs the user’s identity using his master secret
key and outputs the generated signature (together with the master public key
and the user’s identity) as the user’s secret key, i.e.

Algorithm GIBS.MKeyGen (k)
(msk,mpk)← SS.KeyGen (k)
return (msk,mpk)

Algorithm GIBS.UKeyGen (msk, id)
σ ← SS.Sign (msk, id)
usk ← (mpk, id, σ)
return usk

An identity-based signature is constructed as a signature of knowledge of
KGC’s signature on the identity of the signer by, first running the corresponding
conversion algorithm on input σ (which is contained in the user secret key of the
signer) to obtain (σ̃aux, σ̃pre), then constructing a proof of knowledge of σ̃pre and,
finally transforming the result into a signature of knowledge on m via the Fiat-
Shamir transform. The signature is a pair consisting of σ̃aux and this signature
of knowledge, i.e.

Algorithm GIBS.Sign (usk, m)
(σ̃aux, σ̃pre)← Convert (mpk, id, σ)
δ ← SoK {σ̃pre : Valid (mpk, id, (σ̃aux, σ̃pre))} (m)
σ ← (σ̃aux, δ)
return σ



To verify an identity-based signature σ, one verifies the validity of the sig-
nature of knowledge δ according to the identity of the signer, the master public
key, and the value σ̃aux provided, i.e.

Algorithm IBS.Verify (mpk, id,m, σ)
d← VoK {σ̃pre : Valid (mpk, id, (σ̃aux, σ̃pre))} (m, δ)
return d

This construction is a generalized version of Kurosawa and Heng’s construc-
tion [23]. They required a stronger requirement on their signature schemes. We
note the similarities between the ideas behind Kurosawa and Heng’s and our con-
structions, and that of Naor’s observation on transforming any identity-based
encryption to a standard signature scheme [49, p. 226]. In both, a user’s secret
key is a signature of the KGC on the user’s identity. Our constructions can
be seen as the Naor’s observation in the reverse direction, i.e. from the non-
identity-based world to the identity-based world. A possible result of combining
the two ideas is the construction of identity-based signatures from identity-based
encryptions.

We propose the following theorem for the security of our construction. A
sketch of the proof is given in the full version of this paper [44].

Theorem 4. Let SS be a standard signature in C and PSS be its underlying
problem. The construction GIBS based on the signature SS is id-euf-cma-secure
if PSS is hard.

5.3 Further Constructions

We observe that the above generic construction of IBS schemes has kind of
a nesting property in the sense that if one extends the definition of class C
to identity-based signature schemes, then the construction GIBS will belong to
the class C itself. This is due to the fact that a GIBS signature in the form
σ = (σ̃aux, (Cmt, Rsp)) can be converted to the converted signature bellow:

˜̃σ =
(˜̃σaux, ˜̃σpre

)
= ((σ̃aux, Cmt) , Rsp) .

For all the signatures listed above, knowledge of Rsp can be proved via a Σ
protocol. Hence, for all the constructions of IBS schemes from these signatures,
the GIBS can be nested in the way that an identity based signer can act as a
new KGC for a new user. This enables construction of hierarchical identity-based
signature schemes [50].

An extension of the GIBS construction that follows from the nesting property
is the construction of identity-based universal designated verifier signatures from
any signature in C. In such a scheme, a designator wishes to designate a cer-
tificate signed by an identity-based signature, and the designated verifier is also
identity-based. The designated verifier’s secret key is a signature on his identity
by the KGC. To designate, the designator will simply construct a disjunctive
proof of knowledge of (a converted version of) her certificate or (a converted



version of) the verifier’s secret key. Proofs of security of the scheme can be
constructed by combining the ideas used to prove the generic UDVS and IBS
schemes secure.

Another possible extension of the GIBS schemes is the construction of iden-
tity-based ring signatures from any signature scheme in C. To generate such a
signature, the signer will construct a one-out-of-n signature of knowledge of the
n user secret keys in the chosen ring, where each user secret key is a signature
of the KGC on the corresponding user identity.

6 Concluding Remarks

We proposed generic constructions of UDVS and IBS schemes from a large class
of signatures. Our constructions result in schemes which have comparable effi-
ciency to those with similar properties. The generic UDVS construction is prov-
ably non-delegatable and offers a desirable property, which is independence of
the signer’s and the verifier’s setting. Many IBS schemes can be seen as instances
of our generic IBS construction. It is possible to use our techniques to construct
generic universal multi-designated-verifier signatures, hierarchical identity-based
signatures, identity-based universal designated verifier signatures, and identity-
based ring signatures
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