
Cryptographic Test Correction

Eric Levieil and David Naccache
École normale supérieure

Département d’informatique, Équipe de cryptographie
45 rue d’Ulm, f-75230, Paris cedex 05, France
{eric.levieil,david.naccache}@ens.fr

Abstract. Multiple choice questionnaires (mcqs) are a widely-used assessment pro-
cedure where examinees are asked to select one or more choices from a list.

This invited talk1 explores the possibility of transferring a part of the mcq’s correction
burden to the examinee when sophisticated technological means (e.g. optical charac-
ter recognition systems) are unavailable. Evidently, such schemes must make cheating
difficult or at least conspicuous.

We did not manage to devise a fully satisfactory solution (cheating strategies do exist)
– but our experiments with a first clumsy system encouraged us to develop alternative
mcq formats and analyze their performance and security.

1 Foreword

Three years ago I moved from industry to academia.

At the first staff meeting, I discovered that the university’s policy2 was to assign first-
year amphitheater courses to the newest staff members. I was delighted by the perspective of
lecturing computer science to 600 students.

A day later, I got a call from the Reprography Department. The reprographer wanted to
ascertain that the test’s camera-ready copy will reach him at least a month before the test.
I suddenly realized that my Ph.D. students and I will have to spend our winter vacations
correcting a heap of 600 multiple choice questionnaires (mcqs).

While designing the mcq, an intriguing question started taunting my mind: Could the
freshmen ”chip-farm” help correcting the heap of copies?

After all – since twenty years we routinely witness all sorts of miracles in cryptography:
Alice and Bob regularly prove knowledge without revealing secrets, anonymously say ”no”,
flip coins over the phone, transfer bits obliviously and so on.

Could any of these wonderful tools help?

I challenged my Ph.D. students to imagine methods for safely delegating to the examinees
the burden of mcq correction.

The result is the cryptographic curiosity presented here.

David Naccache

2 Introduction

mcqs are an assessment procedure, invented in 1914 by Frederick J. Kelly, where examinees
are asked to select one or more choices from a list. mcqs are widely used in education, opinion
polls, elections, and many other areas.
1 This is not a refereed research paper.
2 Université Paris ii Panthéon-Assas

This paper explores the possibility of safely transferring a part of the mcq’s correction
burden to the examinee, when sophisticated technological means, such as optical character
recognition (ocr) systems, are unavailable.

We regard an mcq as a list of n questions {question1, . . . , questionn}.
Each questioni is associated to two potential choices answeri,0 and answeri,1, of which

only one is correct. We denote by c the mcq’s answer-vector, namely:

ci = 1 iff answeri,1 is correct.

The student is required to generate an answer-vector c̃:

c̃i = 1 iff the student thinks that answeri,1 is correct.

And the corrector, usually the newest member of the faculty staff, computes the mark:

m = n−
n∑

i=1

(ci ⊕ c̃i)

2.1 Cryptographic Test Correction

To transfer the correction burden to the examinee, the mcq designer generates a secret key k
and computes, using an encoding algorithm E , a set of 2n public values vi,j where 1 ≤ i ≤ n,
j ∈ {0, 1}:

{vi,j} = E(c, k)

Students are instructed to:

– Generate c̃ as before but, in addition, apply an easily computable accumulation algorithm
M to {vi,j} and c̃.

– Write down the result t = M({vi,j}, c̃) on the questionnaire.

The examiner uses a (potentially complex) scoring algorithm C to compute the student’s
final mark m:

m = C(t, k) =
{

n−∑n
i=1(ci ⊕ c̃i) if ∃c̃ such that t = M({vi,j}, c̃)

⊥ otherwise

We call {E ,M, C} a Cryptographic Test Correction (ctc) scheme.

2.2 Desirable Features

Ideally, we would like {E ,M, C} to have the following features:

Security: We say that an algorithm A has a ctc cheating advantage ε if:
∣∣∣∣∣Pr[C(A({vi,j}, c̃), k) > n−

n∑

i=1

ci ⊕ c̃i]− 1
2

∣∣∣∣∣ ≥ ε

{E ,M, C} is {w, ε}-secure if no algorithm requiring w basic calculator operations (i.e.
+,−,×,÷) has a ctc cheating advantage ε.

In other words, we require that even if a cheating student knows the correct answers
to all the questions but one, inferring the missing answer from {vi,j}, or (more generally)

2

manipulating t to artificially increase m is unfeasible given the simple calculator authorized
by the university’s regulations (Figure 1) and the test’s limited duration.

Unlike e-cash or e-voting protocols, ctc does not seem to require protection against col-
luding parties (examinees cannot communicate). However, we do need some form of limited
resistance against adaptive attacks as students knowing u correct answers can potentially gen-
erate 2u valid t-values corresponding to marks expectedly3 ranging between zero and (n+u)

2 .

Efficiency: Trivially, one can design a secure ctc by assigning to the vi,j successive powers
of two or zeros. i.e.:

vi,j =
{

0 if j = 0
2i−1 if j = 1

The encoding vi,j = j × 2i is secure but inefficient. The size of t, i.e. n bits, is obviously
an overkill as we do not need to convey to the examiner the precise answer vector c̃ but only
the Hamming distance between c and c̃ (a quantity of information encodable in log2 n bits).

Denoting by T the maximal bit length of t we require that T < n.
T measures the ctc’s efficiency as it represents the number of digits that the corrector

will need to key into his computer per corrected form.
As the theoretical foundations were ready, we started thinking about implementing ctcs.

3 Practical Experiments with an Insecure and Clumsy ctc

A simplified ctc was tested on 550 economics freshmen4. To avoid unresolvable complaints
and computational errors, students were requested to both tick the correct answers and use
the ctc. Ticked answers were used whenever C returned ⊥ (27 cases), when a statistical alert
occurred (unrecorded number of cases) or when the student didn’t sum up the vi,j at all (79
cases).

We made the following risk management assumptions:

– As modular arithmetic was not part of the students’ curriculum we assumed that the
theoretical tools necessary for cheating were not at the average student’s command.

– No parameters or specifications were revealed and a form of psychological warfare was
used: we subtly hinted that the scheme is ”...probably very resilient to cheating...”.

– A cheater who would have discovered5 one of the (many) existing cheating strategies
would have anyway obtained an excellent mark given the course’s subject matter6.

3.1 Description

Generate five integers {ρ, k, g > nk, p > (n + 1)g, e} such that gcd(e, p) = 1.
The authorized pocket-calculator must be able to handle at least the number (ρ + 1)np.
Prepare the following values:

– Pick n random bits {b1, . . . , bn} and define εi,bi = 0 and εi,1−bi = 1.

3 The student can force part of the mcq to contribute any precise number of points ≤ u. Answers
to the rest of the mcq will result in an expected contribution of (n−u)

2
points.

4 Examinees were given additional thirty minutes to account for the extra computational burden.
5 e.g. given the scheme’s additive nature.
6 Introduction to Computer Science

3

Fig. 1. Authorized Calculator (10-Digit Precision, Restricted to +,−,×,÷).

– For 1 ≤ i ≤ n and j ∈ {0, 1} generate randomly 0 ≤ ri,j ≤ ρ.
– For 1 ≤ i ≤ n generate randomly 0 ≤ ai < p.

We denote by τi = (¬ci ⊕ c̃i)k, in other words:

τi =
{

k if the student’s answer to question i is correct
0 if the student’s answer to question i is incorrect

and define:

vi,j = ((ai + (¬ci ⊕ j)k + gεi,j) e mod p) + ri,j × p

Students were instructed to sum the vi,j corresponding to their answers and answer ran-
domly whenever they don’t know the answer7.

The examiner computes:
(
t× e−1 − (

∑n
i=1 ai) mod p

)
which is

∑n
i=1(τi + gεi,c̃i) ∈ N.

This is easily checked by bounding:

0 <

n∑

i=1

(τi + gεi,c̃i) < n(k + g) = g + n× g < p

We therefore recover the exact value:

t′ = t× e−1 −
(

n∑

i=1

ai

)
mod p =

n∑

i=1

(τi, + gεi,c̃i) = mk + g

n∑

i=1

εi,c̃i = mk + gq

where:

0 ≤ q =
n∑

i=1

εi,c̃i ≤ n

7 the rationale is both the need to collect all the ais for decryption to work, and preventing ”the
cryptanalyst” from generating t-values corresponding to precisely chosen marks.

4

but mk ≤ nk < g hence we can retrieve mk and q with no ambiguity.

q =
⌊

t′

g

⌋
and m =

t′ − qg

k

If m 6∈ N or m 6∈ [0, n] or q 6∈ [0, n] return ⊥ (i.e. trigger a manual form verification). The
odds to hit a multiple of k by picking t at random are 1

k .

Implementation values and a marking example are given in Appendix A.

Fig. 2. 550 Distrusted Correctors (Right) Filling 550 Cryptographic mcqs (Left).

Fig. 3. The University’s Grand Amphithéatre.

3.2 Statistical Analysis

Unfortunately, this scheme is insecure. Namely, if a student knows the algorithm’s specifica-
tions, then several efficient cheating strategies exist. For instance the cheater may identify one
correct answer, say i, subtract the incorrect vi,j from the correct one and obtain a ”clean”
encoding of +k:

5

∆ = (k + εg)e + αp where ε ∈ {−1, 1}

The cheater will then pick random answers to the entire questionnaire, thereby reaching
an expected average mark of n

2 and artificially improve it by adding a multiple of ∆.

To overcome this (to some extent) we used a basic statistical test on q. Namely, if q does
not exceed a given likelihood threshold, we treat the form as suspicious and verify it manually.
Indeed, if the cheater brutally adds µ∆ to t the additional ±µg will start showing up as a
statistical bias in the distribution of q.

Evidently, a very good student could use much smarter cheating strategies based on the
linear combination of several ∆ values derived from different questions weighted by moderate
coefficients but we considered such a strategy unlikely given our risk management assump-
tions.

A given vi,j has a 1
2 probability to contain no g and a 1

2 probability to contain g. Thus,
the probability that q takes a given value 0 ≤ d ≤ n is simply:

Pr[q = d] =
(

n

d

)
× 1

2n

30 40 50 60

0.02

0.04

0.06

0.08

Fig. 4. Pr[q = d] =
(
80
d

)× 2−80

That is, for n = 80:

d Pr[|q − n/2| ≤ d] d Pr[|q − n/2| ≤ d] d Pr[|q − n/2| ≤ d]

0 0.08893 7 0.90709 14 0.99895

1 0.26245 8 0.94334 15 0.99955

2 0.42357 9 0.96701 16 0.99982

3 0.56596 10 0.98168 17 0.99993

4 0.68569 11 0.99032 18 0.99997

5 0.78148 12 0.99513 19 0.99999

6 0.85436 13 0.99768 20 1.00000

Table 1. Pr[q = d] =
(80

d

)× 2−80.

We hence triggered, in addition, a manual verification whenever |q − 40| ≥ 7.

We conjecture that no student tried to cheat but the scheme’s clumsiness and poor security
performances motivated the quest for alternative ctc mechanisms – some of which we describe
in the next section.

6

4 Alternative ctc Mechanisms

An alternative line of research is the development of new mcq mechanisms. This section
describes such a scheme – called Interval Estimation mcqs (iemcqs).

Again, questioni is associated to two potential choices answeri,0 and answeri,1, of which
only one is correct. answeri,0 is printed in blue while answeri,1 is printed in red8.

The test’s idea consists in having the student determine the (correct) number of (correct)
red answers.

In other words, the student’s output is a sequence of three digits: the number of red
answers, the number of blue answers and (implicitly) the difference between n and the sum
of the previous two, i.e. the number of unsolved questions. This output can be encoded using
only two integers – we choose to ask for an interval containing the number of red answers.

Assume, for example, that n = 9 and that the examinee identified 2 reds and 3 blues, the
student’s answer will be [2, 6]. This notation means that the student thinks that there are at
least 2 reds and at most 6 = 9− 3 reds. The low and high bounds will be denoted by a and c
(here a = 2 and c = 6) while b will denote the correct answer, i.e. the precise number of reds.
In other words, [a, c] reads as ”I hope that a ≤ b ≤ c”. The interval’s narrowness reflects the
examinee’s knowledge.

Evidently, if questions are independent, we would expect b ' n
2 . Hence, we must first pick

b randomly in [0, n] and color the iemcq accordingly. In practice, we recommend n = 9, as
this shrinks answers to two decimal digits (compact notation) and allows approaching 100
points using eleven question-packs. Note that, unlike additive ctcs, filling an iemcq does not
require a pocket calculator.

Mapping [a, c] to a mark (scoring) is the most delicate part, as the scoring function must:

– faithfully reflect the student’s knowledge.
– be fairly resilient to statistical attacks.
– and have a small standard deviation.

In addition – we would like iemcqs to allow students who know answers with sufficiently
high probability (say 80%) to continue benefiting from this knowledge.

As these objectives are independent and incomparable, an ”ideal” scoring function might
not exist. We hence looked for functions that reasonably comply with the above objectives.
The following proposals are thus examples and not reference designs.

We will start with a basic scoring function C1 and refine it progressively, explaining at
each step the rationale of our successive refinements. To simplify calculations we assume that
a correct answer is rewarded by a point while an incorrect answer is penalized by a point.

4.1 Notations and definitions

We denote by χa,c(x) the Heaviside function:

χa,c(x) =
{

1 if x ∈ [a, c]
0 otherwise

and by da,c(x) the distance between x and the interval [a, c], i.e.:

da,c(x) = (1− χa,c(x))max (a− x, x− c)

8 The use of colors is not mandatory. Any form of distinction between answers will do (e.g. preceding
answers by symbols such as ♥ or ♠ etc.).

7

1

a c a c

Fig. 5–A. The Heaviside Function χa,c(x). Fig. 5–B. The Distance Function da,c(x).

We also define two auxiliary variables:

∆ = n + a− c and δ =

{∣∣ a
∆ − b

n

∣∣ if ∆ 6= 0

0 if ∆ = 0

∆ is the number of possibilities that the student has ruled out.
δ expresses the difference between the ratio of reds estimated by the student (a

∆) and the
actual ratio of reds (b

n) in the iemcq.

4.2 Heaviside Scoring

Heaviside scoring is defined as:

C1(n, a, b, c) = ∆ + (χa,c(b)− 1)(n + 1)

Intuitively, C1 correlates the student’s mark to the number of possibilities ruled-out. The
role of the penalty component (χa,c(b) − 1)(n + 1) is to equate the expectation of random
guessing to zero.

C1 complies with all criteria but resilience to statistical attacks. Indeed, a cheater could
use the proportion of reds he spots as an estimate (sample) of the actual ratio of reds in
the iemcq (iemcq ”redness”) and narrow his interval accordingly. This might significantly
optimize his mark (e.g. by +20%).

For example, if the cheater successfully detected 3 reds and no blues amongst n = 9, the
risk taken by betting that the unknown answers contain 2 more reds is moderate. We call
such cheaters ”narrowers”.

4.3 Distance Scoring

In addition, C1’s penalty component is insensitive to the magnitude of mistakes. After all, it
would be desirable to penalize a {[a, c] = [1, 4], b = 5} less than a {[a, c] = [1, 4], b = 9}.

While it seems clear that gradual penalty implies using da,c(x), there seems to be no
obvious way to tune the penalty function (other than increasing penalty as da,c(x) grows).
We therefore used the probability ϕ(d) to miss b by d to fine-tune a linear penalty coefficient
γ1:

C2(n, a, b, c) = ∆− γ1 (n + 1) da,c(b)

Note that ϕ(x) reflects the test’s hardness (i.e. depending on pedagogic factors).
Typically, the configurations ϕ(1) = ϕ(2) = 1

2 or {ϕ(1) = 6
10 , ϕ(2) = 3

10 , ϕ(3) = 1
10} are

C1-compatible when γ1 = 2
3 . We recommend to adopt this value of γ1 – a value we used in

our simulations hereafter.

8

A second design objective is to discourage narrowers. Indeed, an examinee’s answer is not
only an interval. It also expresses a redness approximation.

In general a (non exaggerating) narrower will score the same ∆ as an honest examinee,
however, the narrower’s redness estimate will be less accurate. In other words, his δ will be
expectedly bigger. We thus use δ to damp ∆:

C3(n, a, b, c) = ∆(1− δ)− γ1 (n + 1) da,c(b)

4.4 Father Christmas Scoring

During the French revolution, different strategies for abolishing birth privileges were debated.
Proposals ranged from forbidding titles to exiling noblemen or... making titles available to
anybody i.e. eliminate distinctions by devaluation.

All our scoring functions allow cheaters to estimate the iemcq’s redness. While endeav-
oring to limit the cheaters’ redness estimation abilities (using δ) we also reduce the cheaters’
advantage by devaluation: namely, we award automatically to any examinee the cheaters’
redness approximation advantage. We call this ”Father Christmas Scoring”, as we distribute
extra points to all examinees.

C4(n, a, b, c) =

{C3(n, a, b, c) + γ2(c− a) if b = c = n or a = b = 0

C3(n, a, b, c) otherwise

C4’s side-effect is an increase in standard deviation, but this increase can be controlled by
γ2. We propose to use γ2 = 1

2 .

4.5 Features

Accuracy Table 2 shows the correlation between the mark obtained by considering a test
as a traditional mcq and as an iemcq scored with C` (for ` = 1, 3, 4).

The quantity:

µk,n =
k∑

a=0

n∑

b=0

(
b

a

)(
n− b

k − a

)
= (k + 1)

(
n + 1
k + 1

)

counts the number of different ways in which k correct answers can be potentially dis-
tributed between a reds and k − a blues9. We can hence compute Av[C`, k, n], the average
mark of an examinee knowing k answers out of n in an iemcq scored with C`:

Av[C`, k, n] =
1

n× µk,n

k∑
a=0

n∑

b=0

(
b

a

)(
n− b

k − a

)
C`(n, a, b, n− k + a)

Note that for C1 averaging is unnecessary as C1 coincides with scores obtained using a
traditional mcq.

9 µk is the denominator of the k-th element in line n in Leibniz’s Harmonic triangle

9

k Av[C1, k, 9] Av[C3, k, 9] Av[C4, k, 9]

0 0.000 0.000 0.100

1 0.111 0.078 0.167

2 0.222 0.180 0.257

3 0.333 0.286 0.353

4 0.444 0.394 0.450

5 0.556 0.505 0.550

6 0.667 0.620 0.653

7 0.778 0.735 0.757

8 0.889 0.856 0.867

9 1.000 1.000 1.000

k Av[C1, k, 12] Av[C3, k, 12] Av[C4, k, 12]

0 0.000 0.000 0.077

1 0.083 0.058 0.128

2 0.167 0.133 0.197

3 0.250 0.212 0.269

4 0.333 0.292 0.343

5 0.417 0.373 0.418

6 0.500 0.457 0.496

7 0.583 0.540 0.572

8 0.667 0.626 0.651

9 0.750 0.712 0.731

10 0.833 0.800 0.813

11 0.917 0.891 0.898

12 1.000 1.000 1.000

Table 2. Average Accuracy for n = 9 and n = 12.

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

C4

C3

C1

Fig. 5. Av[C1, k, 12], Av[C3, k, 12] and Av[C4, k, 12]

It appears that all scoring functions approximate quite faithfully a traditional mcq (plain
black line).

Narrowers’ Advantage Table 3 lists Ad[C`, k, n], the average advantage of a narrower over
an honest examinee assuming that both know k answers (of which a are red).

The cheater’s strategy will depend on {a, k} – whose values he knows. As b is unknown
to the cheater, we exhaust all the possible fraudulent answers [ã, c̃] (given {a, k}), select the
best-performing (over [ã, c̃]) cheating advantage:

F`(n, ã, c̃, a, b, k) = C`(n, ã, b, c̃)− C`(n, a, b, n− k + a)

and average10 over b:

Ad[C`, k, n] =
1

n× µk,n

k∑
a=0


 max

0 ≤ ã ≤ n
ã ≤ c̃ ≤ n

(
n∑

b=0

(
b

a

)(
n− b

k − a

)
F`(n, ã, c̃, a, b, k)

)


10 The
∑n

b=0 in the following formula can be simplified into a
∑n−k+a

b=a .

10

k 0 1 2 3 4 5 6 7 8 9

Ad[C1, k, 9] 0.000 0.198 0.198 0.175 0.147 0.102 0.069 0.031 0.000 0.000

Ad[C3, k, 9] 0.012 0.091 0.145 0.144 0.134 0.102 0.074 0.038 0.008 0.000

Ad[C4, k, 9] 0.000 0.068 0.111 0.110 0.101 0.078 0.052 0.027 0.000 0.000

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Ad[C1, k, 12] 0.000 0.208 0.225 0.216 0.205 0.177 0.151 0.113 0.082 0.049 0.020 0.000 0.000

Ad[C3, k, 12] 0.011 0.081 0.144 0.167 0.163 0.156 0.136 0.110 0.086 0.054 0.028 0.005 0.000

Ad[C4, k, 12] 0.000 0.066 0.118 0.142 0.136 0.131 0.111 0.091 0.068 0.042 0.022 0.000 0.000

Table 3. Narrower’s Advantage for n = 9 and n = 12.

Table 2 reads as follows: Under C1 and n = 9, an honest examinee knowing k = 2 answers
will score 0.22 (cf. to Table 1). Table 2 shows that under identical circumstances a cheater
could hope to score 0.22 + 0.198 ' 0.42.

Naturally, an ideal scoring function C` will feature an Ad[C`, k, n] = 0. Note that, for n = 9
and n = 12, we nearly always have:

Ad[C4, k, n] ≤ Ad[C3, k, n] ≤ Ad[C1, k, n]

Partial Knowledge Another interesting benchmark is Pa[C`, ω, n], the mark expected by
an examinee who knows the answer to each question with probability ω.

We regard the experiment as a vision test where the student – standing at a distance from
the corrector’s answer form – tries to identify (and count) the colors of the iemcq’s answers.
As distance increases, ω tends to 1

2 , i.e. reds and blues become less and less distinguishable.
Having stared at the distant form for long enough, the student finally makes his mind and

bets that the form contains s red answers and n− s blue answers. The probability ω applies
to each individual answer.

For each {C`, ω, s, n} there exists an optimal answer [a, c] that we discover by exhausting all
intervals [ã, c̃]. The frequency-weighted score-contribution of these optima when the student’s
blind shot hits x reds amongst b reds and s− x reds amongst n− b blues gives:

Pa[C`, ω, n] =
1

n× νn

n∑
s=0

max
0 ≤ ã ≤ n
ã ≤ c̃ ≤ n

s∑
x=0

n∑

b=0

ωn−b−s+2x(1− ω)b+s−2x

(
b

x

)(
n− b

s− x

)
C`(n, ã, b, c̃)

The normalization factor νn is:

νn =
n∑

s=0

s∑
x=0

n∑

b=0

ωn−b−s+2x(1− ω)b+s−2x

(
b

x

)(
n− b

s− x

)

ω 1.00 0.90 0.80 0.70 0.60 0.50

Pa[C1, ω, 9] 1.00 0.64 0.47 0.31 0.15 0.00

Pa[C3, ω, 9] 1.00 0.60 0.38 0.18 0.05 0.01

Pa[C4, ω, 9] 1.00 0.60 0.40 0.22 0.11 0.10

Pa[mcq, ω, 9] 1.00 0.80 0.60 0.40 0.20 0.00

ω 1.00 0.90 0.80 0.70 0.60 0.50

Pa[C1, ω, 12] 1.00 0.67 0.50 0.33 0.17 0.00

Pa[C3, ω, 12] 1.00 0.61 0.40 0.20 0.05 0.01

Pa[C4, ω, 12] 1.00 0.62 0.42 0.22 0.10 0.08

Pa[mcq, ω, 12] 1.00 0.80 0.60 0.40 0.20 0.00

Table 4. Pa[C`, ω, 12] for n = 9 and n = 12.

Note that Pa[C`, ω, n] = Pa[C`, 1− ω, n] and Pa[usual mcq, ω, n] = ω − (1− ω) = 2ω − 1.

Standard Deviation To assess the typical standard deviation of the different C`s the follow-
ing simulation was performed: We generated one million random 99-question iemcqs. Each
iemcq contained 11 groups of n = 9 questions.

For each iemcq we generated a random binary vector e1, . . . , e99. If ei = 1 we considered
that the examinee answered the i-th question correctly. If ei = 0 the question was not an-
swered. The iemcq was then corrected as a traditional mcq and as an iemcq scored with C1,
C3 and C4.

The experiment’s means, µ and standard deviations, σ, are reported here:

11

mcq C1 C3 C4
σ 0.050 0.050 0.052 0.060

µ 0.500 0.500 0.453 0.503

Table 5. Experimental Results.

Efficiency Table 5 allows to estimate efficiency, i.e. the number of decimal digits that the
examiner needs to key into his computer per corrected form.

The examiner starts by setting a target σ′ and multiplies the number of questions by:

(σ

σ′

)2

The following table assumes binary encoding for the traditional mcq and the compressed
answer encoding of Appendix B for n = 12:

mcq C1 C3 C4
n = 9 31 24 24 32

n = 12 31 18 18 24

Table 6. Efficiency.

5 Further Research

It seems that homomorphism, necessary for mark accumulation, is the root-cause of the se-
curity problems encountered while designing all additive ctcs we could think of. The design
of an additive ctc which is simultaneously practical, secure and efficient remains an open
problem. Potential solutions could involve the use of non commutative operations such as
moderate-size matrix multiplications or vector products11. Unfortunately, the cost of 80 ma-
trix multiplications or vector products is prohibitive and so are the foreseeable error odds.
The use of simple physical accessories (scratch cards [1], tables, envelopes, etc) also seems a
promising idea.

The generalization of iemcqs and scoring functions to more than two colors, attacks on
the iemcqs proposed in this paper or the development of better scoring functions are also
welcome – as these might find practical applications during the 2008-2009 academic year...

6 Acknowledgments

The authors wish to warmly thank Nora Dabbous, Vanessa Gratzer, Hervé Leplat and Gue-
orgui Tzotchev for their comments and suggestions during the design of the schemes proposed
in this work.

References

1. T. Moran and M. Naor, Polling with Physical Envelopes: A Rigorous Analysis of a Human-
Centric Protocol, Advances in Cryptology - Eurocrypt 2006, Lecture Notes in Computer Science
vol. 4004, pp. 88–108, Springer-Verlag.

11 Taking advantage of the fact that −→u ∧ (−→v ∧ −→w) 6= (−→u ∧ −→v) ∧ −→w .

12

A Implementation Details

Fix {n = 80, g = 9189, k = 54, p = 3931231, e = 2032603} and generate:

i ai vi,0 student vi,1

1 5498 50178050 • 18103810 X
2 19893 61139595 • 09409200 X
3 6294 X 32424036 • 04908839

4 6545 71173575 • 39099335 X
4 5441 X 32286548 • 67671047

5 9189 28139589 • 55033814 X
7 17580 X 68719202 • 81137287

8 13388 X 19850231 • 79443088

9 14708 X 61409445 • 49619172

10 19321 14960283 • 69373125 X
11 6861 44856367 • 72371564 X
12 1571 71821899 • 60024786 X
13 13903 X 05518892 • 09453543

14 18627 66751733 • 26815031 X
15 11471 23445338 • 62754228 X
16 14564 47835434 • 43900783 X
17 2659 42802779 • 61834542 X
18 11202 19495495 • 66045875 X
19 13374 70642801 • 34637330 X
20 10978 X 39557468 • 51354581

21 18810 61319906 • 21383204 X
22 13683 57926475 • 21921004 X
23 13811 78294568 • 26564173 X
24 12734 43495725 • 19283947 X
25 9648 60541981 • 01570096 X
26 12917 X 64958123 • 53788822

27 3219 72142831 • 09239715 X
28 8971 17157059 • 21084870 X
29 4619 X 67330650 • 67955042

30 1482 X 63890976 • 16719624

31 13212 X 24095841 • 35892954

32 11850 15728623 • 58347772 X
33 9833 31656743 • 31653323 X
34 5271 09108400 • 01242518 X
35 9059 X 54187901 • 19431214

36 10894 02794576 • 61138649 X
37 1410 07965293 • 39411721 X
38 6456 31796224 • 15446908 X
39 6519 06532204 • 49151353 X
40 5459 X 49217247 • 41358205

i ai vi,0 student vi,1

41 4395 X 36600526 • 49018611

42 2457 X 48613553 • 76135590

43 6430 37606525 • 80846646 X
44 18139 14405678 • 68818520 X
45 9341 61598589 • 81251324 X
46 3423 26839816 • 58286244 X
47 13508 75687895 • 78994734 X
48 4543 X 38652214 • 82520147

49 18648 15086852 • 49843539 X
50 10242 X 09910823 • 25639167

51 3981 X 32765573 • 72081303

52 4790 57477648 • 22093149 X
53 10402 68117501 • 43905723 X
54 13061 35916405 • 51016937 X
55 5825 22942575 • 65561724 X
56 1062 X 47239433 • 59657518

57 18333 11676329 • 81814095 X
58 19114 X 69576507 • 38130079

59 3226 63094152 • 42813605 X
60 15857 X 53546130 • 69895446

61 10718 73560627 • 69005004 X
62 7214 X 58360971 • 03948129

63 4281 13552933 • 17480744 X
64 18135 41656345 • 68550570 X
65 2170 27736431 • 27112039 X
66 4245 X 34725349 • 58316155

67 849 03800769 • 43109659 X
68 10077 32276769 • 12617194 X
69 927 X 24436812 • 25061204

70 7304 25391442 • 25388022 X
71 8668 73518851 • 34203121 X
72 18606 24067070 • 47030064 X
73 10119 82265016 • 78330365 X
74 7537 X 70480342 • 27240221

75 5030 42415286 • 49653356 X
76 18830 X 03377285 • 46624246

77 3049 X 76476460 • 48961263

78 17663 60833762 • 21518032 X
79 15458 X 40577426 • 17614432

80 6769 15416617 • 22654687 X

i εi,0 ri,0 ri,1

1 1 12 4

2 1 15 2

3 1 8 1

4 1 18 9

5 1 8 17

6 1 7 13

7 0 17 20

8 0 5 20

9 1 15 12

10 1 3 17

11 0 11 18

12 0 18 15

13 1 1 2

14 1 16 6

15 0 5 15

16 0 12 11

17 1 10 15

18 1 4 16

19 1 17 8

20 1 10 13

i εi,0 ri,0 ri,1

21 1 15 5

22 1 14 5

23 1 19 6

24 1 11 4

25 0 15 0

26 0 16 13

27 0 18 2

28 0 4 5

29 0 17 17

30 1 16 4

31 1 6 9

32 1 4 14

33 0 8 8

34 0 2 0

35 0 13 4

36 1 0 15

37 0 2 10

38 1 8 3

39 1 1 12

40 1 12 10

i εi,0 ri,0 ri,1

41 0 9 12

42 1 12 19

43 0 9 20

44 1 3 17

45 0 15 20

46 0 6 14

47 1 19 20

48 0 9 20

49 1 3 12

50 1 2 6

51 1 8 18

52 0 14 5

53 1 17 11

54 1 9 12

55 1 5 16

56 0 12 15

57 1 2 20

58 1 17 9

59 1 16 10

60 1 13 17

i εi,0 ri,0 ri,1

61 1 18 17

62 0 14 1

63 0 3 4

64 1 10 17

65 1 7 6

66 1 8 14

67 0 0 10

68 0 8 3

69 0 6 6

70 0 6 6

71 0 18 8

72 1 6 11

73 0 20 19

74 1 17 6

75 1 10 12

76 1 0 11

77 1 19 12

78 0 15 5

79 0 10 4

80 1 3 5

As εi,1 = 1− εi,0 we only list here εi,0.
The mcq included n = 80 questions. To reduce computational errors, examinees were

provided with a form in which they had to report five groups of four numbers. Examinees

13

were instructed to add four consecutive vi,j values12 using the M+ key and subtract the vi,js
again to control that no addition error occurred. If no error occurred, the result would be
recalled using the MRC key and copied into the table. In the table, the 20 numbers were
divided into five groups of four and added, again, using the same procedure. Finally, the five
partial sums were added to get t.

To ease the students’ task, a lookup table was also given in the test’s appendix. The table
gave, for each group of four consecutive questions, sixteen possible sums. Hence – all in all –
students could compute t by adding (and controlling the addition of) only 25 integers.

Example: The student’s choice (materialized by •s) results in t = 3355519689.
The examiner computes:

t′ =

(
t× e−1 −

(
n∑

i=1

ai

)
mod p

)
= 388206

Hence:

q =
⌊

t′

g

⌋
=

⌊
388206
9189

⌋
= 42 and m =

t′ − qg

k
=

388206− 42× 9189
54

= 42

As 0 ≤ m ≤ n and m ∈ N we accept m = 42 as the student’s mark and do not trigger a
manual form verification because Pr[|q − 40| ≤ 2] ' 0.42.

B Compressed Answer Encoding

This appendix describes a way to compress iemcq answers for n = 12. Despite the fact that,
in principle, 0 ≤ a ≤ 12 and 0 ≤ c ≤ 12, we compress the answer into a couple of decimal
digits by ”reusing” impossible interval notations such as [7, 3].

This is achieved by asking the student to write on the form:

[c− 7, a] if a ≤ 3 and c ≥ 10
[c− 3, a− 4] if a ≥ 4 and c ≥ 10
[a, c] otherwise

n = 12 is particularly suitable both in terms of answer compactness and standard devia-
tion.

12 for instance table1 = v1,0 + v2,1 + v3,1 + v4,0 + v5,1 etc.

14

