
Solving Systems of Modular Equations in One
Variable: How Many RSA-Encrypted Messages

Does Eve Need to Know? ∗

Alexander May, Maike Ritzenhofen

Faculty of Mathematics
Ruhr-Universität Bochum, 44780 Bochum, Germany

alex.may@ruhr-uni-bochum.de
maike.ritzenhofen@ruhr-uni-bochum.de

Abstract. We address the problem of polynomial time solving univari-
ate modular equations with mutually co-prime moduli. For a given sys-
tem of equations we determine up to which size the common roots can
be calculated efficiently. We further determine the minimum number of
equations which suffice for a recovery of all common roots. The result that
we obtain is superior to Håstad’s original RSA broadcast attack, even if
Håstad’s method is combined with the best known lattice technique due
to Coppersmith. Namely, our reduction uses a slightly different trans-
formation from polynomial systems to a single polynomial. Thus, our
improvement is achieved by optimal polynomial modelling rather than
improved lattice techniques. Moreover, we show by a counting argument
that our results cannot be improved in general. A typical application for
our algorithm is an improved attack on RSA with a smaller number of
polynomially related messages.

Key words: Chinese Remaindering, Coppersmith’s method, Håstad’s attack,
systems of univariate modular polynomials

1 Introduction

The RSA cryptosystem [14] is the public key cryptosystem which is most widely
used in practice. Therefore, it has attracted the interest of many cryptanalysts
since its invention in 1977 (compare e. g. [2]). In the following, let us denote
by N = pq the RSA modulus with prime factors p and q, and let ZN denote
the ring of integers modulo N . Let e be the public exponent, and let d = e−1

(mod ϕ(N)) be the private key.
Attacks on RSA intend either to factorize the modulus and thereby recover

the private key, or to compute e-th roots modulo N , i. e. to decrypt ciphertexts.
∗ This research was supported by the German Research Foundation (DFG) as part of

the project MA 2536/3-1

2 Alexander May, Maike Ritzenhofen

The equivalence or inequivalence of these two problems is still open. However,
partial results are known in restricted models [3, 4, 10].

In this paper we deal with the problem of extracting e-th roots. This is the
well-known RSA problem: Given an RSA modulus N , a public exponent e and
a ciphertext c ≡ me (mod N), find the corresponding plaintext m.

If me < N , the equation does not only hold in ZN but over the integers,
and we can calculate m easily. This implies that encrypting small messages with
small public exponents is insecure.

Let us look at the inhomogeneous case. Namely, suppose the most significant
bits are known so that the unknown part remains small enough. Then we get the
equation (m̃ + x)e ≡ c (mod N), with m̃ denoting the known, x the unknown
part of the message. D. Coppersmith [6] showed that this inhomogeneous case
can be solved efficiently under the same condition xe < N .

Precisely, he showed that given a composite integer N and a univariate poly-
nomial f(x) ∈ ZN [x] of degree δ one can determine all zeros smaller than N

1
δ

efficiently. Hence, (m̃ + x)e ≡ c (mod N) can be solved if |x| < N
1
e .

Now we may ask what happens if we get further information in form of
additional polynomials? Can we then determine larger zeros as well?

There are two variants of systems of polynomial modular equations. Either
there exist equations with the same modulus or all moduli are different. The
first case was considered in Coppersmith, Franklin, Patarin and Reiter [7]. They
showed that it is usually sufficient to have two equations f1(x) ≡ 0 (mod N)
and f2(x) ≡ 0 (mod N) in order to recover the common roots. Let a be the
common solution of the two equations. Then, f1(x) and f2(x) share a factor
(x − a). Computing the greatest common divisor gcd (f1(x), f2(x)) (mod N)
reveals this factor if it is the only common factor. In the rare cases where the
greatest common divisor is not linear, the method fails and further polynomials
are needed. The running time of this method is O(δ log2 δ) where δ is the degree
of the given polynomials.

It is worth pointing out that a scenario with two RSA encryptions under co-
prime public exponents (e1, e2) and a common modulus N is a special case of this
setting. Namely, an attacker has to find the common root m of f1(x) = xe1−me1

(mod N) and f2(x) = xe2−me2 (mod N). G. Simmons [16] has presented a neat
attack for this special setting with running time polynomial in the bitlength of
(e1, e2). Namely, one computes integers u1, u2 such that u1e1+u2e2 = 1 with the
help of the Extended Euclidean Algorithm. This gives us m = (me1)u1(me2)u2

(mod N).
In this work, we focus on equations with different moduli N1, N2, . . . , Nk ∈ N.

Without loss of generality, we assume that all moduli are composite as modular
equations over finite fields can be solved efficiently (compare e. g. [1], Chap-
ter 7.4). We further assume that the Ni, i = 1, . . . , k, are relatively prime. In
case of our main application, RSA-moduli, we can otherwise compute prime
factors of the Ni by computing the greatest common divisor.

Before we define our polynomial roots problem in general, let us give a moti-
vating cryptographic application. This application was introduced by J. Håstad

Solving Systems of Modular Equations in One Variable 3

in [8, 9] and can be considered as an analogue of Simmon’s attack in the setting
of different RSA moduli. A user wishes to send the same message m to several
participants having different moduli and using plain RSA encryption without
padding techniques. Suppose these users share the same public exponent e = 3.
Then, an attacker obtains three equations m3 ≡ ci (mod Ni) for i = 1, 2, 3. He
can make use of the fact that the Ni are relatively prime and combine the equa-
tions by the Chinese Remainder Theorem. Thus, he gets m3 (mod N1N2N3) and
is able to determine m in Z as m3 < N1N2N3. Therefore, the attacker solves the
system of polynomial equations fi(x) ≡ x3 − ci ≡ 0 (mod Ni), i = 1, 2, 3, with
the common root m.

Now let us generalize to arbitrary polynomial equations. We define the prob-
lem of solving systems of modular univariate polynomial equations (SMUPE-
problem).

Definition 1 (SMUPE-problem). Let k ∈ N, δ1, . . . , δk ∈ N, and let N1, . . . ,
Nk ∈ N be mutually co-prime composite numbers of unknown factorization.
Suppose N1 < N2 < . . . < Nk. Let f1(x), . . . , fk(x) be polynomials of degree
δ1, . . . , δk in ZN1 [x], . . . , ZNk

[x], respectively. Let

f1(x) ≡ 0 (mod N1)
f2(x) ≡ 0 (mod N2)

... (1)
fk(x) ≡ 0 (mod Nk)

be a system of univariate polynomial equations.

Let X ≤ N1, X ∈ R. Find all common roots x0 of (1) with size |x0| < X.

Our goal is to compute an upper bound X for which the SMUPE-problem
is solvable in time polynomial in

∏k
i=1 δi and in the bitlength of

∏k
i=1 Ni. This

upper bound will give us a condition on the number of equations k in terms of
δi and Ni. This will enable us to compute the minimal k such that the SMUPE-
problem can be computed up to the bound X = N1, i.e. system (1) can be solved
efficiently.

J. Håstad [9] gave the following algorithm for solving the SMUPE-problem.
Let δ ∈ N be the maximum degree of all polynomials occuring in the system, i. e.
δ := maxi=1,...,k{δi}. One first multiplies the given polynomials with xδ−δi to
adjust their degrees. Then one combines the resulting polynomials using the
Chinese Reminder Theorem to a univariate polynomial f(x) with the same
roots modulo

∏k
i=1 Ni. Applying lattice reduction methods, J. Håstad derived

k > δ(δ+1)
2 as a lower bound on the number of polynomials for efficiently finding

all roots x0 with |x0| < N1. This bound can be easily improved to k ≥ δ by
directly applying Coppersmith’s lattice techniques [6] to f(x) (see e.g. [2]).

Our contribution: We give a different construction to combine all k polynomial
equations into a single equation f(x) ≡ 0 (mod

∏k
i=1 Ni). Instead of multiply-

ing the polynomials by powers of x like in Håstad’s approach, we take powers of

4 Alexander May, Maike Ritzenhofen

the polynomials fi(x) themselves. This results in the condition
∑k

i=1
1
δi
≥ 1 for

solving the SMUPE-problem for all x0 with |x0| < N1. In case all polynomials
share the same degree δ this corresponds to Håstad’s condition k ≥ δ. For poly-
nomials of different degrees, however, our new condition is superior. Especially,
a few polynomials of low degree suffice.

The paper is organized as follows. In Section 2, we review Coppersmith’s
result from [6] and the Chinese Remainder Theorem for polynomials. In Sec-
tion 3, we prove the new sufficient condition on the number of polynomials that
is needed to recover all common roots efficiently. The improved RSA broadcast
attack is given as an application in Section 4. In Section 5, we show that our
condition cannot be improved in general by giving an example for which the
condition is optimal.

2 Preliminaries

The problem of solving modular univariate polynomial equations is believed to
be difficult in general. Under some restrictions on the roots however, this is not
the case. In [6], D. Coppersmith showed how to provably determine zeros of
modular univariate equations with sufficiently small size.

Theorem 1 (Coppersmith [6]). Let f(x) be a monic polynomial of degree
δ ∈ N in one variable modulo an integer N of unknown factorization. Let X be
a bound on the desired solution x0. If X ≤ N

1
δ then we can find all integers x0

such that f(x0) ≡ 0 (mod N) and |x0| ≤ X in time O(δ5(δ + log N) log N).

The running time can be achieved by using an algorithm of Nguyen, Stehlé [13]
for the LLL lattice basis reduction step (see [11, 12]).

The SMUPE-problem can be reduced to the problem of solving a single
univariate polynomial equation by combining the equations into a single one
with the same solutions. Then we can apply Theorem 1. A possible way to
combine equations is by Chinese Remaindering which is described e. g. in [9, 15].

Theorem 2 (Chinese Remainder Theorem). Let k ∈ Z. Let δ ∈ N, δ > 1.
For i = 1, . . . , k let Ni ∈ N be pairwise relatively prime numbers, and let fi(x) ∈
Z[x] be polynomials of degree δ.
Then there exists a unique polynomial f(x) modulo M :=

∏k
i=1 Ni such that

f(x) ≡ fi(x) (mod Ni) (2)

The polynomial f(x) can be determined in time O(δ log2 M).

Proof. Let M :=
∏k

i=1 Ni, Mi := M
Ni

and M ′
i be the inverse of Mi modulo Ni for

i = 1, . . . , k. The existence of such an inverse is guaranteed by gcd(Mi, Ni) = 1.
Then

f(x) =
k∑

i=1

MiM
′
ifi(x)

Solving Systems of Modular Equations in One Variable 5

is the desired solution. If we look at f(x) modulo Nj for j ∈ {1, . . . , k}, all
summands with index i 6= j cancel out (as Nj divides Mi) and MjM

′
jfj(x) ≡

fj(x) (mod Nj).
Now suppose that g(x) is another solution fulfilling the required conditions.

Then, f(x) − g(x) ≡ 0 (mod Ni) for all i = 1, . . . , k, and therefore also f(x) ≡
g(x) (mod M).
Multiplication modulo M and calculating the inverses by the Extended Eu-
clidean Algorithm can be performed in time O(log2 M). Determining all coeffi-
cients of f then gives us O(δ log2 M) for the complete algorithm. ut

3 An Improved Algorithm for Solving SMUPE

For notational convenience let us briefly recall the SMUPE-problem. Given
k ∈ N, N1, . . . , Nk ∈ N, mutually co-prime composite numbers of unknown
factorization, such that N1 < . . . < Nk, and a system of polynomial equations

f1(x) ≡ 0 (mod N1)
f2(x) ≡ 0 (mod N2)

... (1)
fk(x) ≡ 0 (mod Nk),

where f1(x), . . . , fk(x) are of degree δ1, . . . , δk ∈ N in ZN1 [x], . . . , ZNk
[x], re-

spectively.
Let X ≤ N1, X ∈ R. Recover all solutions x0 of (1) with |x0| < X.

Considering for example Coppersmith’s method (Theorem 1) for the first

equation in (1), only small roots x0 with |x0| < N
1

δ1
1 can be found in polynomial

time. By considering further equations this bound can be improved until all
solutions can be found eventually.

By Håstad’s algorithm in combination with Theorem 1 the condition k ≥ δ
with δ := maxi=1,...,k{δi} is sufficient to solve a system of equations efficiently.
However, this condition is clearly not optimal as the following trivial example
shows. Let N1 < . . . < N4 and take the following equations.

x3 ≡ c1 (mod N1)
x3 ≡ c2 (mod N2)
x3 ≡ c3 (mod N3)
x5 ≡ c4 (mod N4)

Then k = 4 < 5 = δ, i.e. the condition is not fulfilled. However, if we just take
the first three equations, we are able to compute all common solutions smaller
than N1. This gives us the intuition that the proportion of higher and lower
degrees of the polynomials ought to be taken into account. Let us now change

6 Alexander May, Maike Ritzenhofen

the given example a little bit into a non-trivial one, so that no subsystem of the
equations fulfills the sufficient condition.

x3 ≡ c1 (mod N1)
x3 ≡ c2 (mod N2)
x5 ≡ c3 (mod N3)
x5 ≡ c4 (mod N4)

The parameters k and δ and the Ni remain the same. Can we still determine all
solutions? We notice that we can transform the first equation by squaring into

x6 ≡ 2c1x
3 − c2

1 (mod N2
1).

Applying Theorem 1 to this equation, we can find all solutions x for which
|x| < (N2

1)
1
6 = N

1
3
1 holds. This is the same bound which we get for the roots of

the original equation x3 ≡ c1 (mod N1). We proceed with the second equation
in the same way, then multiply the two other equations by x and finally combine
all the equations by Theorem 2 (Chinese Remainder Theorem). This gives us

x6 ≡ a1(2c1x
3 − c2

1) + a2(2c2x
3 − c2

2) + a3xc3 + a4xc4 (mod N2
1 N2

2 N3N4),

where the ai are the coefficients from the Chinese Remainder Theorem, i. e.
ai ≡ 1 (mod Ni), ai ≡ 0 (mod Nj), j 6= i. The above equation can be solved
in Z for x with |x| < (N2

1 N2
2 N3N4)

1
6 . This condition is fulfilled for any x with

|x| < N1 = (N6
1)

1
6 ≤ (N2

1 N2
2 N3N4)

1
6 . Therefore, we can determine all solutions

of the above system of equations, although the condition k ≥ δ is not fulfilled.
In order to generalize our approach we make the following crucial observation.

Let f(x) be a polynomial of degree δ. Let f(x) ≡ 0 (mod N) for N ∈ N, and let
m ∈ N. Then g(x) := fm(x) ≡ 0 (mod Nm). The solutions x with |x| < N of
the two equations remain unchanged. Moreover, with Coppersmith’s Theorem 1
we can determine those solutions for which the condition |x| < N

1
δ ⇔ |x| <

(Nm)
1

mδ holds. Thus, Coppersmith’s bound is invariant under taking powers of
the polynomial f(x).

As opposed to our approach, in Håstad’s algorithm one does not take powers
of the polynomials but multiplications of polynomials with powers of x. This
increases the degree of the polynomial but leaves the modulus unchanged. Let
f(x) be a polynomial of degree δ with f(x) ≡ 0 (mod N) for N ∈ N. Then with
γ > δ the equation g(x) := xγ−δf(x) ≡ 0 (mod N) contains all the solutions x of
f(x) with |x| < N . However, applying Coppersmith’s method to determine roots
of g(x) we only get roots x with |x| < N

1
γ < N

1
δ . So obviously, Coppersmith’s

bound is not invariant under multiplication with powers of x. This explains why
we obtain a superior bound on the size of the roots.

In the following analysis we will restrict ourselves to monic polynomials. If
one of the given polynomials fi(x) is not monic, either the coefficient of the
leading monomial is invertible, or we can find a factor of the modulus. In the
first case, we make the polynomial monic by multiplication with the inverse of

Solving Systems of Modular Equations in One Variable 7

the leading coefficient. In the latter case, we obtain for RSA moduli the complete
factorization, which in turn allows for efficiently solving this polynomial equation
modulo the prime factors.

Theorem 3. Let (fi, δi, Ni), i = 1, . . . , k, be an instance of the SMUPE-problem

with monic fi. Define M :=
∏k

i=1 N
δ
δi
i with δ := lcm{δi, i = 1, . . . , k}. Then the

SMUPE-problem can be solved for all x0 with

|x0| < M
1
δ

in time O(δ6 log2 M).

Proof. Let x0 be a solution of the system of polynomial equations (1). Then x0

is a solution of

f
δ
δi
i (x) ≡ 0 (mod N

δ
δi
i) for all i = 1, . . . , k.

All these equations have common degree δ and are monic.
Combining them by Chinese Remaindering yields a polynomial f(x) of de-

gree δ such that x0 is a solution of f(x) ≡ 0 (mod M) with M :=
∏k

i=1 N
δ
δi
i .

Moreover, this polynomial is still monic.
For the coefficient aδ of the monomial xδ in f(x) it holds that aδ ≡ 1

(mod N
δ
δi
i) for all i = 1, . . . , k and therefore aδ ≡ 1 (mod M).

The above step can be performed in time O(δ log2 M) by Theorem 2. With
Theorem 1 all solutions x0 of the above equation which fulfill |x0| ≤ M

1
δ =

(
∏k

i=1 N
δ
δi
i)

1
δ can be found in time O(δ5(δ+log M) log M). The result can there-

fore be obtained in time O(δ6 log2 M). ut

Remark 1. The same result is obtained by applying Coppersmith’s method [6]
directly to the polynomials f1(x), . . . , fk(x) instead of f(x).

Theorem 3 immediately gives us a sufficient condition on k and the δi for
solving the SMUPE-problem for all x0 ∈ ZN1 .

Corollary 1. The SMUPE-problem can be solved for all x0 ∈ ZN1 in time
O(δ6 log2 M) provided that

k∑
i=1

1
δi
≥ 1. (3)

Proof. Let x0 be a common solution to all the equations. An application of

Theorem 3 gives us |x0| < M
1
δ := (

∏k
i=1 N

δ
δi
i)

1
δ as an upper bound for all roots

that can be computed in time O(δ6 log2 M). As (
∏k

i=1 N
δ
δi
i)

1
δ ≥

∏k
i=1 N

1
δi
1 =

N

∑k
i=1

1
δi

1 ≥ N1 all solutions x0 ∈ ZN1 can be found. ut

8 Alexander May, Maike Ritzenhofen

This gives us an algorithm to solve the SMUPE-problem with running time
polynomial in the bitsize of the Ni, i = 1, . . . , k, if δ is polynomial in the bitsize
of the Ni.

Comparing this to the result due to Håstad and Coppersmith we observe
that in the case δ := δ1 = . . . = δk the sufficient condition is k ≥ δ with both
methods. For different δi however, our method is always superior. Taking e.g.
the illustrating example with public exponents (3, 3, 5, 5) from the beginning of
this section, we see that our new condition 1

3 + 1
3 + 1

5 + 1
5 = 16

15 ≥ 1 is fulfilled.

4 Application: RSA with Polynomially Related Messages

A typical example in which polynomially related messages occur is an RSA
broadcast scenario. Assume a user wants to broadcast a message m to k different
users using an RSA encryption scheme with public exponents e1, . . . , ek and co-
prime public moduli N1 < . . . < Nk. From the ciphertexts c1 (mod N1), . . . , ck

(mod Nk) an attacker can compute the message m if m is smaller than the
upper bound given in Theorem 3. He sets fi(x) = xei − ci (mod Ni) and applies
Theorem 3.

In order to avoid sending various encryptions of the same message, a user
might add some randomness ri and then encrypt the linearly related messages
(m + ri), i = 1, . . . , k, instead of m. However, if the attacker gets to know the
randomness, he can calculate Fi(x) := fi(x + ri) (mod Ni) and analyze the
system of equations Fi(x) ≡ 0 (mod Ni), i = 1, . . . , k. As degree, modulus and
leading coefficient are the same for Fi(x) and fi(x), the upper bound on m, up
to which m can be recovered efficiently, also remains unchanged. More generally,
taking polynomially related messages instead of linearly related ones, the degree
of Fi(x), i = 1, . . . , k, changes from ei to eiγi, where γi is the degree of the
known polynomial relation.

Theorem 4. Let k ∈ N, (ei, Ni), i = 1, . . . , k, be RSA public keys with N1 <
N2 < . . . < Nk and co-prime Ni. Furthermore, let m ∈ ZN1 and let gi(x) ∈ Z[x]
be polynomials of degree γi ∈ N with aiγi

the coefficient of xγi for i = 1, . . . , k.
Let c1, . . . , ck be the RSA-encryptions of gi(m) under the public key (ei, Ni).

Define δi := eiγi and M :=
∏k

i=1 N
δ
δi
i with δ := lcm{δi, i = 1, . . . , k}.

Then an adversary can recover the message m in time O(δ6 log2 M) provided
that

k∑
i=1

1
δi
≥ 1.

Proof. Without loss of generality we assume that all aiγi
are invertible modulo

Ni. (Otherwise gcd(aiγi
, Ni) and Ni

gcd(aiγi
,Ni)

will give us the factorization of Ni

for at least one i ∈ {1, . . . , k}. We can then compute m modulo the prime factors.
This can be done efficiently (see [1])).

Solving Systems of Modular Equations in One Variable 9

We are looking for a solution m of fi(x) := gi(x)ei − ci ≡ 0 (mod Ni), i =
1, . . . , k. However, the polynomials fi(x) are not necessarily monic. Therefore, we
modify them slightly to be able to apply Corollary 1. Let Fi(x) := a−ei

iγi

(
gi(x)ei−

ci

)
(mod Ni), i = 1, . . . , k. Hence, Fi(x) is a monic polynomial of degree δi =

eiγi. The theorem then directly follows as an application of Corollary 1. ut

5 Optimality of Our Bound for Solving SMUPE

In this section, we will see that the condition |x0| < M
1
δ for efficiently solving

the SMUPE-problem given in Theorem 3 is optimal if the moduli Ni are prime
powers. This implies that the condition cannot be improved in general, unless we
make use of the structure of the moduli or of the specific polynomials occuring
in the system. Thus, our argument does not exclude the existence of superior
conditions for special moduli, e.g. square-free Ni. Moreover, our formula captures
the intuition that equations of low degree δi comprise more information since
they contribute to the sum in (3) with a larger term 1

δi
than equations with

higher degree.
The counting argument that we use is a generalization of the argument in [5]

to systems of polynomial equations instead of a single equation.
Let k ∈ N. Let p1, . . . , pk be different prime numbers, δ1, . . . , δk ∈ N and

N1 := pδ1
1 , . . . , Nk := pδk

k . Suppose N1 < . . . < Nk. Let us look at the following
system of polynomial equations.

f1(x) := xδ1 ≡ 0 (mod N1)
f2(x) := xδ2 ≡ 0 (mod N2)

... (4)
fk(x) := xδk ≡ 0 (mod Nk)

We would like to determine all solutions x0 of this system with |x0| < N1 = pδ1
1 .

An application of Theorem 1 to a single equation fi(x) ≡ 0 (mod Ni) efficiently
yields all solutions x0 with |x0| < (Ni)

1
δi = pi. Furthermore, each multiple of pi

is a solution of fi(x) ≡ 0 (mod Ni). Thus, if x0 is a multiple of
∏k

i=1 pi, then x0

is a common zero of all the polynomials.
Let δ := lcm{δi, i = 1, . . . , k}. We apply the same method as in the proof

of Theorem 3 to the polynomial equations in system (4). Namely, we take their
δ
δi

th powers and combine them by Chinese Remaindering (Theorem 2). This

gives us an equation f(x) ≡ xδ (mod M) with M :=
∏k

i=1 N
δ
δi
i =

∏k
i=1 pδ

i with
the same roots as in (4).

We assume that M
1
δ < N1. Otherwise M

1
δ ≥ N1 > |x0|, i. e. the condition of

Theorem 3 is fulfilled and there is nothing to be shown. Therefore, let ε > 0 such
that M

1
δ +ε < N1. Suppose now we could calculate all simultaneous solutions

x0 of the system such that |x0| < M
1
δ +ε = (

∏k
i=1 pi)1+δε. Since we know that

every integer multiple of
∏k

i=1 pi is a root of (4), the number of roots is roughly

10 Alexander May, Maike Ritzenhofen

2(
∏k

i=1 pi)δε. This implies that we have exponentially many roots x0 with |x0| <
M

1
δ +ε, which we cannot even output in polynomial time. Consequently, there is

no polynomial time algorithm that improves upon the exponent in the condition
|x0| < M

1
δ of Theorem 3.

6 Acknowledgments

We thank the anonymous reviewers of PKC 2008 for their helpful comments.

References

1. E. Bach, J. Shallit, “Algorithmic Number Theory, Volume 1, efficient algorithms”,
The MIT Press, 1996

2. D. Boneh, “Twenty years of attacks on the RSA cryptosystem”, Notices of the AMS,
1999.

3. D. Boneh, R. Venkatesan, “Breaking RSA May Not Be Equivalent To Factoring”,
Advances in Cryptology (Eurocrypt 1998), Lecture Notes in Computer Science, Vol-
ume 1233, pages 36-51, 2001

4. D. Brown, “Breaking RSA May Be As Difficult As Factoring”, Cryptology ePrint
Archive Report 2005/380, 2005

5. D. Coppersmith, “Finding Small Solutions to Small Degree Polynomials”, CaLC
2001, Lecture Notes in Computer Science, Volume 2146, pages 20-31, 2001

6. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Volume 10(4), pp. 223-260, 1997

7. D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, “Low-exponent RSA with
related messages”, Advances in Cryptology (Eurocrypt 1996), Lecture Notes in Com-
puter Science, Volume 1070, pages 1-9, Springer Verlag, 1996.

8. J. Håstad, “On Using RSA with Low Exponent in a Public Key Network”, In Ad-
vances in Cryptology (Crypto ’85), Lecture Notes in Computer Science, Volume 218,
pages 403-408, Springer Verlag, 1985

9. J. Håstad, “Solving Simultaneous Modular Equations of Low Degree”, SIAM Journal
on Computing, Vol. 17, no. 2, pp. 336–341, 1988

10. G. Leander, A. Rupp, “On the Equivalence of RSA and Factoring Regarding
Generic Ring Algorithms”, In Advances in Cryptology (Asiacrypt 2006), Lecture
Notes in Computer Science, Volume 4284, pages 241-251, Springer Verlag, 2006

11. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients”, Mathematische Annalen, Volume 261, pp. 513–534, 1982

12. A. May, “Using LLL-Reduction for Solving RSA and Factorization Problems: A
Survey”, LLL+25 Conference in honour of the 25th birthday of the LLL algorithm,
2007, online available at http://www.cits.rub.de/personen/may.html

13. P. Q. Nguyen, D. Stehlé, “Floating Point LLL Revisited”, In Advances in Cryptology
(Eurocrypt 2005), Lecture Notes in Computer Science, Volume 3494, pages 215 - 233,
Springer-Verlag, 2005.

14. R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, Volume 21(2), pp.
120-126, 1978

15. V. Shoup, “A Computational Introduction to Number Theory and Algebra”, Cam-
bridge University Press, 2005

Solving Systems of Modular Equations in One Variable 11

16. G. Simmons, “A “Weak” Privacy Protocol Using the RSA Crypto Algorithm”, Cryp-
tologia, Volume 7, number 2, pages 180-182, 1983

