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Abstract. We propose an efficient batch verification of multiple signa-
tures generated by different signers as well as a single signer. We first
introduce a method to generate width-w Non-Adjacent Forms (w-NAFSs)
uniformly. We then propose a batch verification algorithm of exponentia-
tions using w-NAF exponents, and apply this to batch verification for the
modified DSA and ECDSA signatures. The performance analysis shows
that our proposed method is asymptotically seven and four times as fast
as individual verification in case of a single signer and multiple signers,
respectively. Further, the proposed algorithm can be generalized into 7-
adic w-NAFs over Koblitz curves and requires asymptotically only six
elliptic curve additions per each signature for batch verification of the
modified ECDSA signatures by a single singer. Our result is the first
one to efficiently verify multiple signatures by multiple signers that can
introduce much wider applications.
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1 Introduction

Batch verification was introduced by Naccache et al. to verify multiple signatures
more efficiently [NMVR94]. Their method is to use a set of small exponents to
verify multiple exponentiations simultaneously: Let G be an abelian group with
a generator g. Given a batch instance of n pairs {(21,v1), (Z2,¥2), -+, (Zn,Yn)}
with z; € Z and y; € G, the algorithm checks if g2=i=1 %% = [T, y;* for ran-
domly chosen s; € S, where the exponent set S is taken to be the set of e-bit
prime integers for small e. This test was improved by adopting small exponent
set {0, 1}* by Yen and Laih [YL95] and Bellare et al. [BGR98]. Another improve-
ment [CLO6] was obtained by taking longer integers of small weights, so called
sparse exponents, as elements of S rather than small integers.

In this paper, we improve the previous results by employing generalized
sparse exponents, so called width-w non-adjacent forms (w-NAFs for short).
A w-NAF of weight ¢ is a radix 2 representation satisfying: (1) each nonzero



digit is an odd integer less than 2%, (2) at most one of any w consecutive dig-
its is nonzero, and (3) the number of nonzero digits is t. We first introduce a
method to generate w-NAFs uniformly and then propose a batch verification al-
gorithm of exponentiations using w-NAF exponents. The performance analysis
shows that N exponentiations can be verified with 16N 4+ 241 multiplications
over a finite field. In the previous method, it was 40N 4241 and 19N + 241 using
small exponent test [BGR98] and sparse exponent test [CLO6], respectively. Our
verification cost becomes 14N + 235 elliptic curve additions over elliptic curves
in which a subtraction is as efficient as an addition.

To apply batch verification technique to DSA [DSA], one needs to slightly
modify the signature scheme as in [NMVR94]. We apply the proposed algorithm
for batch verification of the modified DSA and ECDSA signatures. The verifica-
tion can be asymptotically 7.1 and 8.3 times as fast as individual verifications in
a finite field and an elliptic curve with 160 bit security, respectively. Furthermore,
for digital signatures by the multiple signers with the same system parameters
the proposed verification performs asymptotically 4.3 and 4.8 times faster than
the individual verifications in a finite field and an elliptic curve, respectively.
Our result is the first one about the batch verification of signatures by different
signers.

We further generalize our method to 7-adic w-NAFs over Koblitz curves.
In [CLOG], the authors proposed a batch verification algorithm for the modified
ECDSA signatures by one signer, in which only 9 elliptic curve additions are
required for one additional signature. Using 7-adic w-NAFs, we reduce it to 6
elliptic curve additions. It is very surprising that only 6 elliptic curve additions
are required asymptotically to verify one signature.

Applications Batch verification will be useful in any settings where multi-
ple signatures need to be verified at once. We have a variety of applications in
which our proposed method can be employed. In some cases, we may need to
adjust our techniques. For example, in e-cash applications, merchants and/or
consumers need to verify the validity of lots of electronic coins signed by the
bank. E-voting systems need to verify huge number of signed ballots as fast as
possible. In the outsourced database applications [MNTO04], numbers of clients’
query request messages need to be authenticated by servers. Another example
is authenticated routing based on public key cryptography, in which network
packets are signed and verified in each node and each router has to verify many
signatures. We also are able to apply to Mixnet [Abe99] for making systems or
protocols privacy-preserving, and VSS (Verifiable Secret Sharing) [Fel87] scheme
which is a fundamental technique for fault-tolerant and secure distributed com-
putations such as reliable broadcast, peer group membership management, and
Byzantine agreement.

Organization The rest of paper is organized as follows: we first define batch
verification and introduce fast exponentiation methods in Section 2. An efficient
batch verification algorithm is proposed in Section 3, and its applications to



signature schemes are described in Section 4. We then present more efficient
algorithm over Koblitz curves in Section 5 and conclude in Section 6.

2 Preliminary

2.1 Batch Verification

Let G be a cyclic group of prime order p with a generator g. Given a subset S
of Z,, we define a batch verifier Vg following [BGR98,CL06]:

1. Input a batch instance {(z;,y;) € Z, x Gli =1,2,...,N}

2. Vg takes N elements c1,ca, ..., cy uniformly from the exponent set S
3. Vg computes x = Zivzl c;iri and y = Hivzl Yyt

4. If g* = y output 1 and otherwise output 0

We say a batch instance {(x;,y;) € Z, x G|i =1,2,..., N} is correct if g% = y;
for all ¢+ and incorrect otherwise. Note that the verifier Vg outputs 1 for a correct
instance regardless of S. We define the Fail(Vs) to be the maximum probability
that an incorrect batch instance passes the test. That is,

Fail = Prob[Vs(X) =0 1
ar (VS) A batclrlnii)s{tance X{ o [VS( ) ]}7 ( )
where probability is over the random choice of ¢y, ...,cy uniformly from S.
Then, if ¢1, co, ..., cy are uniformly chosen from S, we have
yoesCo)ler, .o en €8, gererttenan —
Fail(Vg) = max [{(er cn)lex ¢ 9 H
a€Z¥\{(0....,0)} {(c1,. . en)lers .. en € S

(2)
Theorem 1 in [CLO6] shows that it is upper-bounded by 1/|S|; that is, we
have g% = y; for all ¢ with probability at least 1 — 1/|S].

2.2 Fast Exponentiations

To evaluate the performance of the proposed algorithm, we apply the most up-
to-date fast exponentiation methods to our batch verification and individual
ones. Following [HHMO0], Lim-Lee method (fixed based comb) and the window
method appeared to be most efficient methods for a fixed base and a non-fixed
base, respectively. We consider an exponentiation on a group of m-bit prime
order. Lim-Lee method with window size w requires at average (m/w — 1) dou-
blings and (m/w —1)(1 —2~%) additions. Window method with window size w
requires at average (m/(w+1)+2%~! —s) multiplications and (m+ 1) squarings
over a finite field, and (m/(w + 1) +2¥~1 — s) additions and (m + 1) doublings
over an elliptic curve. Refer to [LL94,HHMO0O] for more details.

In this paper, we will consider a finite field of 160 bit order, an elliptic curve
of 160 bit order and Koblitz curve K163 as a base group G. K163 is given by
E :y?+ay = 23+ 2% +1 over Fyies and has 162 bit order (cofactor=2). Notation
used in the rest of paper is summarized in Table 1. We present the number of
group operations for fast exponentiations in Table 2.



Table 1. Notation

w window size
m bit length of exponents
t Hamming weight

Mem| number of finite field elements or elliptic curve points to be stored
Er finite field exponentiation

My | finite field multiplication

Sy finite field squaring

M. | scalar multiplication in elliptic curves

Ae elliptic curve addition

D elliptic curve doubling

Table 2. Performance of Fast Exponentiation Algorithms

l Group ‘ Method H w ‘Mem‘/\/if or .Ag‘Sf or DE‘
Finite Window NAF 4 7 39 161
Field Lim-Lee 4 14 38 40

Elliptic w-NAF 4 3 36 161
Curve Lim-Lee 4 14 38 40

Koblitz T-adic w-NAF 5 7 34 0
Curve |Fixed-based 7-adic w-NAF 6 15 23 0

3 Batch Verification of Exponentiations on Abelian
Groups

Let w > 2 be an integer. A radix 2 representation is called a width-w nonadjacent
Form (w-NAF, for short) if it satisfies: (1) each nonzero digit is an odd integer
with absolute value less than 2¥~1, and (2) for any w consecutive digits, at most
one is nonzero [MS06].

Although w-NAF gives an efficient exponentiation on a group admitting fast
inversion, it is not useful for a group such as a multiplicative subgroup of a
finite field in which an inversion is much slower than a multiplication. We here
introduce a generalized version of w-NAF with a digit set D.

Definition 1. Let w be an integer > 2 and D = {aq, ag, ..., aqw-1} where a;’s
are nonzero odd integers and distinct modulo 2. A w-NAF with the digit set D
18 a sequence of digits satisfying the following conditions:

1. Each digit is zero or an element in D.

2. Among any w consecutive digits, at most one is nonzero.

A w-NAF with the digit set D is denoted by a = (Gpm—1---a1a9)2 or a =
Z?Z)l a;2" where a; € D U{0}.

Definition 2. Let a = (am—1am—2...a0)2 be a w-NAF with the digit set D.
Then the length of a, denoted by len(a), is defined to be the smallest i such that



ai—1 # 0. By notation, we let len(0) = 0. The number of nonzero digits in its
representation is called the weight of a and denoted by wt(a).

The uniqueness of the representation can be easily shown as follows. The
argument is a simple generalization of Proposition 2.1 in [MS06].

Theorem 1. Let g be a positive integer. All w-NAFs of length < m with the
digit set D are distinct modulo q if m < log,(q/C) where C = max{|z — y| :
z,y € DU{0}}.

Proof. Suppose there are two different w-NAFs which represent the same integer.
Let (ag—1a¢—2---ag)2 and (bp_1by_o---bg)a are different representation such

that
V=1

l—1
a=> a2 =Y b2 (3)
=0 1=0

Assume / is the smallest integer satisfying the above property.

If ag = by, we have two different and shorter w-NAFs which stand for the
same integer. Thus it should be ay # bg. If a is even, both of ay and by should
be zero and ag = bg. It therefore should be odd and both of ag and by should
be nonzero. Since the representations are w-NAFs, ag # 0 and by # 0 implies
ay = =ay = 0and by = --- = b, = 0. From the equation (3), we have
ag = by mod 2". Since all elements in D are distinct modulo 2%, we must have
ag = by, which contradicts with the minimality of £. Thus each integer has only
one w-NAF with the digit set D.

Moreover, let C7 and Cy be the maximal and minimal element in D U {0}.
Then C = Cy — Cs. The largest w-NAF of length < m is less than C12™. The
smallest w-NAF of length < m is greater than C32"". Thus the difference of any
two w-NAFs is less than (C; — C2)2™ = C2™ < g for m < log(q/C). Therefore
any two w-NAF of length < m must be distinct modulo ¢ or identical.

Theorem 2. The number of w-NAFs of length < m and weight t with the digit

set D is
(m —(w—1)(t - 1)>2(w—1)t
; .

Proof. Consider an algorithm to choose ¢ positions out of m — (w — 1)(¢t — 1)
positions and fill each of them by w — 1 consecutive zeros followed by an element
in D. This algorithm gives a w-NAF of length m + (w — 1). Then its first (w—1)
positions should be always zero since each nonzero digit is preceded by (w — 1)
consecutive nonzeros. By discarding the first (w — 1) zeros, we get a w-NAF
of length < m. Since the algorithm covers all w-NAFs of length < m and the
algorithm outputs one of (m_(w_tl)(t_l)ﬂ(w_l)t strings, we have the theorem.

From the proof of Theorem 2, we introduce Algorithm 1 to produce a random
secret exponent in a finite field of 2™ elements.

Using the set of w-NAFs, we can perform efficient batch verification of ex-
ponentiations on a group as in Algorithm 2. Here we use simultaneous multipli-
cation methods and online precomputation method.



Algorithm 1 (Generation of w-NAF exponents of weight t)

Input: m, w, t and the digit set D
Output: w-NAF of length <m

1:

Choose ¢ positions out of n — (w — 1)(¢ — 1) positions.

2: Fill each position by (w — 1) consecutive zeros followed by an element in D.
3:
4: Print the string which is a w-NAF of length < m

Discard the first (w — 1) positions of the string.

Algorithm 2 (Batch Verification of Exponentiations using w-NAF Ex-
ponent)

Input: m,w,t, D, and N exponentiation pairs (2;,y;) € Zq X G for an abelian group

G of order ¢ with a generator g

Output: True or false

Take N random exponents ci,cz,...,cn from the set of w-NAFs of length < m
and weight ¢, where ¢; =377 ¢i;2% and ¢;; € DU {0}.
for o« € D do
Yi,a < y§¥ /* precomputation */
end for
y—1
for j = m — 1 downto 0 do
Y~y
for i =1 upto N do
if ¢;j = o € D then
Y<—Y Yia
end if
end for

: end for
: Compute g* for x = ZN
. if y = ¢g” then

s—q Cizi mod q.

Accept all of N instances

: else

Reject

: end if




We need to take an appropriate digit set for each of specific groups. For a
multiplicative subgroup of a finite field in which an inversion is much slower than
a multiplication, we take D = {1,3,...,2¥ — 1}. It then requires the precompu-
tation that takes one squaring and 2*~! multiplications. Steps 6-13 take m — 1
squarings and tN — 1 multiplications since each exponent has ¢ nonzero digit.
Hence the total complexity is m squarings and N (¢ +2*~1) multiplications plus
one exponentiation using memory for 2*~1! — 1 group elements.

For an elliptic curve group in which a subtraction is as efficient as an addition,
we take D = {£1,43,...,£(2*"2 — 1)}. In this case, the precomputation cost
reduces to one elliptic doubling and 2¥~2 elliptic additions. Hence the total
complexity is m elliptic doublings and N (t + 2%~2) elliptic additions plus one
scalar multiplication using memory for 2°~2 — 1 elliptic curve points.

Table 3. Number of Multiplications for Batch Verification on Abelian Groups

Common Finite Field Elliptic Curve

‘ m ‘ t ‘Security M em‘ Complexity M em‘ Complexity

159 [ 19 [ 2%0° 0 [I19NM;+159S;+1&; || 0 [ 19NAA159D+1 M.
158 [ 15 | 25172 1 [ 17TNM+158S;+1Ef || 0 | 15NA+158D+1 M,
157 [12] 274 3 [ 16NM;+157S;+1E; || 1 | 1ANAA+15TD+1 M.
156 | 11 | 2539 7 [ 19NM;+156S;+1E; || 3 | 15NA+156D.+1 M,
155 9 | 27°F 15 | 25NM;+1558;+1E¢ || 7 | 1TNA+155D.+1 M.

ol x| w8

Table 4. Comparison of Batch Verification of Exponentiations

[ Method | Finite Field [ Elliptic Curve |
Individual N(39M;+1615y) N(36A.+161D.)
[YL95,BGRI8]|| N(40M;)+80M;+161S; | N(40.A.)+74A.+161D,
[CLO6] N(19M)+80M+161S; | N(15A.)+74A.+161D.
Proposed N(16Mf)+80M;+161Sy | N(14.Ac)+74A.+161D,

Table 3 presents the performance of batch verification over a finite field and
an elliptic curve and shows appropriate weight ¢ on a group of 160-bit prime
order ¢ for various w. We take m = 160 — w to guarantee the uniqueness of
exponents by Theorem 1. For example, we can use 3-NAF for a finite field,
which requires only 16 N multiplications, 157 squarings and one exponentiation.
For an elliptic curve, we can use 2-NAF requiring only 15N multiplications,
158 squarings and one exponentiation. Note that security in Table 3 implies the
security of the batch verification with the given parameters, which is computed
as (mf(wftl)(t*l))Q(w_l)t by Theorem 2.



4 Batch Verification of Multiple Signatures

To apply the batch verification of exponentiations to verification of signatures,
one need to modify signature schemes. Naccache et al. presented a modified DSA
for batch verification [NMVR94]. Our batch verification is also applicable to this
modified DSA. But, considering the attack by Boyd and Pavlovski [BP00], we
made a little change to the verification procedure. The performance of the batch
verification algorithm is evaluated based on the screening parameter ¢ = 80.

4.1 Modified DSA

Let p be a 1024 bit prime and g a 160 bit prime dividing p — 1. We assume that
(p —1)/(2¢) has no divisor less than g to resist the attack in [BP0O]. Let g be a
generator of a subgroup G of order ¢ in IF),. Take a random x € Z,,. The private
key is x and the corresponding public key is y = ¢g*. A signature for a message
m € Z, is given by

(r=g¢"modyp, o==k"'(m+2xr)modq)

for a random k € Z,. It is verified by checking if r = +g¢%y® mod p for a =
mo~! mod ¢ and b = ro~! mod ¢. Note that 7 = ((¢* mod p) mod q) is used in
the original DSA. The verification admits only » = ¢g%® mod ¢, but here we
relax the verification to admit r = +¢%y” mod ¢ due to Boyd and Pavlovski
attack, in which the security loss is only one bit.

Signatures by Multiple Signers Given N signatures (m;,7;,0;), each of
which is signed by a signer with the public key y;, we apply the batch verifi-
cation by 3-NAFs with the digit set D = {1,3,5,7}, which gives best perfor-
mance as in Table 3. First, take random w-NAFs cy,...,cn. Next, compute
a=— vazl a;c; mod ¢ and b; = —riai_lci mod g for each 4. Finally compute

N N
b )
g* [[wi T 7 modp, (4)
=1 =1

and if it is 1 or p — 1, accept all IV signatures.

We now evaluate the verification cost. For simplicity, we only count F}, op-
erations. Since g is fixed, we appl}/l Lim-Lee method of window size w = 4 to
compute ¢, and each of ¢ or g?i is computed by 4-NAF. Thus an individ-
ual signature verification consists of one Lim-Lee, one 4-NAF method and one
multiplication. On the other hand, the batch verification consists of one Lim-
Lee, N 4-NAF, 16 N multiplications and N multiplications. Table 5 shows the
achieved gains as ratio of the proposed method and individual one. Note that
the measurement is conducted only in case of Sy=M rand Sy=0.8 M. Following
[BHLMO1], it is between 0.8 and 0.86.



Signatures by A Single Signer We consider N signatures (m;,r;,0;) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {1,3,5,7}. First, take random w-NAFs ¢y,...,cny. Next, compute a =

- Zf\il a;c; mod ¢ and b = — Zf\il ricri_lci mod ¢. Finally compute

N N
g [T I s mod p, (5)
i=1 i=1

and if it is 1 or p — 1, accept all n signatures.

Now we evaluate the verification cost. Since both of g and y are fixed, we
may apply Lim-Lee method to compute ¢* and y®. The individual verification
consists of two Lim-Lee and one multiplication. On the other hand, the batch
verification consists of two Lim-Lee and 14N additions. The performance is given
in Table 5.

Table 5. Performance of Batch Verifications of Signatures over a Finite Field

[Signers||  Individual | Proposed [Ratio(Sy=M)[Ratio(S;=0.8M)|
Multi. [[N(78 M ;+161S57)|N(55M ) +40M ;+161Sf] 0.23 + 0.84/N | 0.27 + 0.82/N
Single || N(76 M ;+40S;) | N(16 M) +76 M;+40S; | 0.14 +2.04/N | 0.15+ 1.90/N

4.2 Modified ECDSA

ECDSA is an elliptic curve analogue of DSA [ECDSA]. Our batch verification al-
gorithm is applied to the modified ECDSA [ABGLSV05] as in DSA case. The se-
curity of the modified ECDSA is equivalent to the standard ECDSA [ABGLSV05].

Let F be an elliptic curve. Assume that the order g of F is prime and G € E
a generator (If E has a cofactor # 1, the signature scheme should be modified
due to [BP0O]). The private key is « and the corresponding public key is @ = zG.
A signature for given message m € Z,, is

(R=kG, o=k '(m+azr) modq)

where R = (z1,y1) and r = 21 mod ¢ for a random k € Z,. The verification is
done by checking if R = aG + bQ for a = mo~! mod g and b = ro~! mod q.
Given N signatures (m;, R;,0;), we compute t; = cri_1 mod ¢ first, and then
a; = m;t; mod ¢ and b; = r;t; mod ¢ for each i. Next, take random s; € S and
compute a = — > a;s; mod g and b= — 3" | b;s; mod ¢. Finally compute

aG +bQ + i siRRi,

=1

and if it is a point at infinity O, accept all n signatures.
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Signatures by Multiple Signers Given N signatures (m;, R;,0;), each of
which is signed by a signer with the public key @;, we apply the batch verifica-
tion by 3-NAFs with the digit set D = {£1,43}. First, take random w-NAFs
ci,...,cn. Next, compute a = — Zf\il a;c; mod q and b, = —riai_lci mod ¢ for
each ¢. Finally compute

N N
aG + Z b;Qz + Z ci Ry, (6)
i=1 i=1

and if it is the point at infinity O, accept all N signatures. Remark that if we
take an elliptic curve whose order is prime as above, the Boyd and Pavlovski
attack [BP0O0] can not be applied.

Signatures by A Single Signer We consider N signatures (m;, R;,0;) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {£1,+3}. First, take random w-NAFs ¢,...,cn. Next, compute a =

— va:l a;c; mod ¢ and b = — Zfil riaflci mod ¢ for each ¢. Finally compute

N
aG +bQ+ > R, (7)
i=1
and if it is the point at infinity O, accept all N signatures.
Performance comparison of individual and batch verifications of ECDSA is
given in Table 6. The performance of individual verifications is evaluated based

on the standard verification equation. Note that the cost can be reduced by 40
% using some special method in [ABGLSV05].

Table 6. Performance of Batch Verification of Signatures over an Elliptic Curve

l Signers H Individual ‘ Proposed ‘Ratio (De:Ae)‘Ratio (De:0.5A5)‘
Multiple|[N(74.A, + 164D, )|N(50A, )+ 384, + 164D, ] 0.21 + 0.84/N | 0.33 + 0.79/N
Single || N(76.4.440D,) |N(14A,)+74A.+164D,| 012 + 1.72/N | 0.16 + 1.37/N

5 Batch Verification on Koblitz Elliptic Curves

Consider an ordinary elliptic curve E defined over F, with #E(F,) =¢+1—t
and ged(g,t) = 1. The Frobenius map 7 is defined as follows:

T E(?q) — E(Fq)Q (z,y) — (z,y7),
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where F, is the algebraic closure of F,. The Frobenius map 7 is a root of the
characteristic equation xg(T) = T? — tT + ¢ in the ring of endomorphisms
End(E). We denote E(Fgn) by the subgroup of E(F,) consisting of Fy«-rational
points. Let G be the subgroup of E(F,») generated by P with a prime order ¢
satisfying €2 { #E(F») and £ { #E(F,).

We now introduce a generalization of 7-adic NAF into 7-adic w-NAF, which
was introduced in [Sol00] on Koblitz curves.

Definition 3. Let w be an integer > 2. A T-adic w-NAF is a sequence of digits
satisfying the following two conditions:

1. Each non-zero digit is an integer which is not divisible by q¢ and whose ab-
solute value is less than ¢* /2.
2. Among any w consecutive digits, at most one is non-zero.

A T-adic w-NAF is denoted by a = (apm—1---a1a9); or a = Z;igl a; Tt

The length and the weight of a 7-adic w-NAF are defined similarly to w-
NAFs. Note that given a m-adic w-NAF a = (a;,—1 - - - a1ap0)- and a point Q € E,
aQ is computed as aQ) = 22151 a;7(Q).

Theorem 3. Let a = (am—1,...,00)r and b = (byr—1,...,bo)r be two T-adic
w-NAFs. Then a@Q = bQ for some nonzero Q € G implies that m = m’ and
a; = b; for all i if
max{m,m’'} < M, ¢, = log (€> —(w—1) (8)
’ = q,,w q (qw/Q + 1)2 ’

Proof. Assume there is a nonzero point ) € G such that a@Q = bQ for two
distinct 7-adic w-NAFs a = (aym—1,...,60)r and b = (b1, ..., bo)r. By adding
zero digits to the front of the strings, we may assume m = m’. Then we have
0 =aQ —bQ ="' dir(Q) for d; = a; — b

Let F(T) = Y., d;T". Since End(E) is an order of the imaginary quadratic
field, F'(7) can be considered as an element of Z[¢] divisible by £. Since xg(7) = 0,
F(T) and xg(T') must have a common root in the algebraic closure of F,. Thus
the resultant R = Res(T? —tT + q, F(T)) satisfies R=0 mod /.

Let 7, and 73 be the roots of xg. Then R = F(1)F(72) and |11| = |72| = /4.
For each 7 € {11, 72}, we have

m—1 m—1 m—1
IF@I< Y ldillrl < Y aallr'+ > il
i=0 =0

=0

S

o q” (gmrw-D/2 1) (mtw—1)/2( w/2
_2<[2—‘—1) o7 1 <q (¢“= +1).

Thus, |R| < ¢™t*~1(¢*/?2 + 1)2 < £. Hence R = 0. Because xp is irreducible
over Z, this implies xg|F (T) over Z.
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Assume that d;, is the lowest nonzero coefficient of F'. Then we can write
T="F(T) = (9o + 1T+ + gm—3—i, T 7)x£(T)

for some g; € Z. By equating the coefficients, we know d;, = qgo and d;j4; =
q9; —tgj—1+gj—2 for 1 < j <w—1, where we set g_; := 0 by convention. Since
each of a;, and b;, is not divisible by ¢, both a;,+; and b;,11 is nonzero. Hence
dig+1 = -+ = dijy4+w-1 = 0. That is,

Eqn(j) = qg9; —tgj—1+gj—2=0 for 1 <j<w-—1. (9)

From d;,+1 = 0 and g_1 = 0, we have g|go since ged(q,t) = 1. By repeating this
procedure, we have gg, g1, - .., gw—2 are divisible by gq.

After replacing g; by g;/q in the Eqn(1),..., Eqn(c—1), we repeat the above
procedure to obtain ¢|go, g1, - - -, gw_3- At the end, we have ¢¢|go. Therefore, we
have ¢%|d;,. However, this is impossible since |d;,| < ¢%.

The above theorem tells us that distinct 7-adic w-NAFs of length m < M ¢ .
play an role of distinct group homomorphisms of G. Moreover, if a = b in End(E),
we have R = Res(T? —tT + q, Zggl(ai — b;)T") satisfies R = 0. By the same
argument with Theorem 3, we have a; = b; for all ¢ regardless of k, which implies
that every endomorphism of E has at most one 7-adic w-NAF.

Theorem 4. The number of T-adic w-NAFs of length < m and weight t is

(5] )

Proof. As in Theorem 2, we consider an algorithm to choose t positions out of
m + (w — 1) — wt positions and fill each of them by w — 1 consecutive zeros
followed by an integer not divisible by ¢ whose absolute value is less than ¢* /2.
By discarding the first (w — 1) zeros, we get a 7-adic w-NAF of length < m
with weight ¢. Conversely, any string with the property can be produced by the
algorithm.

Now we count the number of cases. First we have (m_(w_tl)(t_l)) choices for ¢
positions. Next, each position is filled by an integer x such that x is not divisible
by ¢ and |z| < ¢"/2. The number of such integers is

*(|5]-[5])

We introduce an algorithm to output a random secret exponent in a sub-
group G of order ¢ in an elliptic curve E(Fgn). Algorithm 3 produces uniformly
distributed w-NAFs of length < m with weight ¢ if m < Mg 4,

Algorithm 4 describes batch verification using 7-adic NAF on Koblitz Curves,
given (x;,Q;) for 1 < i < N. For ease of notation, we describe the algorithm

which completes the proof.
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Algorithm 3 (7-adic w-NAF Exponent of weight t)

Input: ¢, m, w, and ¢
Output: 7-adic w-NAF of length < m

1:
2:

W

Choose t positions out of m — (w — 1)(¢ — 1) positions

Fill each position by (w — 1) consecutive zeros followed by an integer not divisible
by ¢ whose absolute value is less than ¢* /2

Discard the first (w — 1) positions of the string

Print the string which is a 7-adic w-NAF of length < m

Algorithm 4 (Batch Verification using T-adic NAF on Koblitz Curves)

Input: (2;,Q;) for 1 <i< N
Output: True or false

1:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Choose N random elements ¢; = >°7_ cijm (1 < i < N) from the set of T-adic
w-NAF of length < m and weight ¢, where c¢;; is an integer not divisible by ¢ whose
absolute value is less than ¢* /2 and €;; = ¢;;/|cij| for nonzero c;; for each 1, j.
for 1 <k<2*2do

R[2k—1] <O
end for
for j =0toedo

fori=1to N do

if Cij 7'é 0 then
R[|cij|] — Rlleis]] + €577 (Q:)
end if

end for
end for
Q — R"™' —1]
T «— R[2*™! —1]
for k=2""2—-1to2do

T «— T+ R[2k — 1]

Q—Q+T
end for
Q«—2Q+ T+ R[1]
if Q = cP then

Accept all of N instances
else

Reject
end if
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in case of ¢ = 2, but it can be easily extended into the general case. For more
details, Steps 2-11 compute

N m—1
-3 S sinte)r@)
i=1j=0,c;=

for each odd integer 1 < k < 2*~1 — 1. Steps 12-18 compute

2z—1
> kQk = (Rozc1+- -+ R1)+2((2— 1) Razm1 + (2~ 2)Ra— 5+ 2R5 + Ry)
k=1,2tk

for z = 2¥~2 where the last term is computed using BGMW method [BGMW93].
From complexity point of view, Step 1 requires tN — 2¥~2 additions at average
and Steps 5-11 require at most 3 + 2(z — 1) = 2z + 1 = 2¥~! 4+ 1 additions.
Hence the total complexity is at average tIN +2¥~2 4 1 additions with 2 =2 — 1
memory.

Table 7 presents an appropriate weight ¢ and the corresponding attack com-
plexity for each w over Koblitz curve. The length m is taken to be the largest
integer to preserve the uniqueness as in Theorem 3. Additions is the number of
additions to be required for batch verification, where # A, is the number of
additions for one scalar multiplication. For example, #Ays, can be 34 using 7-
adic 5-NAF. Note that when enumerating the number of elliptic curve additions,
we ignore the 7 operations since their cost is negligible; they are implemented
merely by a circular shift and very efficient even in polynomial basis.

Table 7. Number of Additions for Batch Verification over a Koblitz Curve

l w ‘ m ‘ t H Mem ‘ Additions ‘ Complexity ‘
2 159 | 15 0 15N + 2+ # A, 2814
3 156 | 13 1 13N + 3+ # A, 2815
4 154 | 11 3 1IN + 5+ #An, 2836
5 152 | 10 7 10N + 9+ #An, 2862
6 150 | 9 15 ON + 17 + # A, 2871
7 148 8 31 8N + 33 + #An, 286 T
8 146 | 7 63 TN + 65+ #An, 2833
9 144 | 6 127 | 6N +129 + # A, 2785
10 142 6 255 | 6N + 257 + #An, 2839

Table 8 gives a comparison with other methods. We apply the fixed-based
T-adic w-NAF method for fixed base computation with the precomputation. In
a single signer case, the proposed method is asymptotically 9 times faster than
the individual one.
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Table 8. Comparison of Batch Verifications over Koblitz Curve

l Method “ Exponentiation [ Single Signer [Multiple Signersl

Individual 23N 5TN 57N
[CLO6] 9N + 84 9N + 118 -
Proposed 6N + 163 6N + 186 30N + 152

[Proposed/Ind][ 0.26 +7.09/N [ 0.11+3.26/N [ 0.53 +2.67/N |

6 Conclusion

We propose an efficient batch verification method of exponentiation. By apply-
ing the proposed algorithm, we can improve the efficiency of batch verification
of digital signatures. To the best of our knowledge, we firstly propose a batch
verification of signatures by multiple signers so that we can speed up verification
of digital signatures about four times faster than individual verification thereof.
In particular, our method can be applied to any servers or devices that need to
verify multiple signatures at once. It would be an interesting problem to apply
our algorithm to various applications involving many exponentiations including
Mix-Net [Abe99], proof of knowledge, anonymous authentications, and authen-
ticated routing.
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