
Improved On-Line/Off-Line Threshold
Signatures

Emmanuel Bresson1, Dario Catalano2?, and Rosario Gennaro3

1 DCSSI Crypto Lab, 51 bd de La Tour-Maubourg, 75700 PARIS 07 SP, France.
Email: emmanuel.bresson@polytechnique.org

2 Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy. Email: catalano@dmi.unict.it

3 I.B.M. T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598.
Email: rosario@us.ibm.com

Abstract. At PKC 2006 Crutchfield, Molnar, Turner and Wagner pro-
posed a generic threshold version of on-line/off-line signature schemes
based on the “hash-sign-switch” paradigm introduced by Shamir and
Tauman. Such a paradigm strongly relies on chameleon hash functions
which are collision-resistant functions, with a secret trapdoor which actu-
ally allows to find arbitrary collisions efficiently. The “hash-sign-switch”
paradigm works as follows. In the off-line phase, the signer hashes and
signs a random message s. When, during the on-line phase, he is given a
message m to sign the signer uses its knowledge of the hash trapdoor to
find a second preimage and “switches” m with the random s. As shown by
Crutchfield et al. adapting this paradigm to the threshold setting is not
trivial. The solution they propose introduces additional computational
assumptions which turn out to be implied by the so-called one-more
discrete logarithm assumption.
In this paper we present an alternative solution to the problem. As in the
previous result by Crutchfield et al., our construction is generic and can
be based on any threshold signature scheme, combined with a chameleon
hash function based on discrete log. However we show that, by appropri-
ately modifying the chameleon function, our scheme can be proven secure
based only on the traditional discrete logarithm assumption. While this
produces a slight increase in the cost of the off-line phase, the efficiency
of the on-line stage (the most important when optimizing signature com-
putation) is unchanged. In other words the efficiency is essentially pre-
served. Finally, we show how to achieve robustness for our scheme. Com-
pared to the work by Crutchfield et al., our main solution tolerates at
most dn/4e (arbitrarily) malicious players instead of dn/3e however we
stress that we do not rely on random oracles in our proofs. Moreover we
briefly present a variant which can achieve robustness in the presence of
dn/3e malicious players.

? Work partially done while CNRS Researcher at the Laboratoire d’Informatique de
l’Ecole Normale Superieure, Paris, France.



1 Introduction

In a threshold signature scheme [6], digital signatures can be produced by a group
of n players (rather than by one party) who hold the secret key in a shared form
among them. In order to produce a valid signature on a given message m, the
individual players engage in a communication protocol that has the signature
as its output: a simplified way to think about this is that each player produces
a partial signature on the message, and then the players combine them into a
full signature on m. A threshold signature scheme achieves threshold t < n,
if no coalition of t (or less) players can produce a new valid signature, even
after the system has produced many signatures on different messages. Threshold
signatures are mainly motivated by the need to protect signature keys from
the attack of internal and external adversaries: by keeping these keys shared,
the adversary must compromise at least t+1 servers to learn the private signing
key. Threshold signatures have found many practical applications, not only in the
area of protecting high-security keys (such as the signature key of a certification
authority), but also as a tool implementing secure distributed protocols, such as
large-scale distributed data storage systems [17, 19].

The most serious obstacle in the practical deployment of threshold signatures
is the time needed to compute signatures, since the “normal” costs of public-
key operations required by a “centralized” digital signature are magnified by
the communication and computations required by the distributed protocol that
computes threshold signatures. As pointed out in [4], Pond (a prototype for
OceanStore a large-scaled distributed data storage system [17]) spends 86% of
its time computing threshold signatures. Thus it is important to look for ways
of speeding up signature computation, without compromising security.

The idea proposed in [4] (the inspiration for our work) is to use on-line/off-
line signatures (introduced in [8]). In these signatures the signing process is
divided in two parts: a computationally intensive part which is done off-line, i.e.
before the message being signed is known. This off-line part produces some tem-
porary data which is stored and then used at the time the message to be signed is
known. At that point, the computation of the actual signature requires very little
effort. Such signatures can be constructed starting from any regular digital signa-
ture, via combination with one-time signatures (as in [8]) or chameleon hashing
([15, 21]). It is also worth pointing out that some digital signature schemes (e.g.
the Digital Signature Standard [16]) are intrinsically on-line/off-line.

What we need then, is an on-line/off-line threshold digital signature. We
should point out that the threshold DSS signatures presented in [12] is an ex-
ample of such signature. What we are interested however is a generic solution:
a way to convert any threshold signature into an on-line/off-line one. The work
by Crutchfield et al. in [4] is the first example of that. They showed how to com-
bine any threshold signature with a threshold version of a specific chameleon
hash function based on the discrete logarithm problem (the well known Peder-
sen commitment [18]). The final result is a reasonably efficient scheme whose
security holds under the security of the original signature scheme together with



the one-more discrete-log assumption (recalled below), which is stronger than the
traditional assumption of computational infeasibility of the discrete log function.
Our Results. We present a new and improved generic on-line/off-line thresh-
old signature scheme. As in [4] we combine any threshold signature scheme, with
a chameleon hash function based on discrete log. However our scheme can be
proven secure based only on the traditional discrete log assumption. The price
to pay is a slight increase in the cost of the off-line signature computation com-
ponent, but the efficiency of the on-line part remains unchanged with respect
to [4]. Thus we present a scheme that without compromising the overall level of
efficiency improves [4] on the security assumption.

1.1 The Approach in a Nutshell

First we describe the so-called “hash-sign-switch” paradigm as introduced by
Shamir-Tauman [21], that uses chameleon hashing [15] to construct on-line/off-
line signatures. Then we discuss the threshold version in [4] and finally our
improvement on it.

A chameleon hash function is defined by a public key CH (we use the public
key to denote the actual function) and a secret trapdoor T . It takes two argu-
ments a message m and a random string r. The function is collision-resistant,
unless one knows the trapdoor T . But knowledge of T allows to find arbitrary
collisions, i.e. given c = CH(m, r) and an arbitrary message m′, the holder
of the trapdoor can find r′ such that c = CH(m′, r′). For many chameleon
hash functions, this collision-finding procedure is very efficient, requiring only a
single modular multiplication. The Shamir-Tauman [21] idea is to construct on-
line/off-line signatures as follows. The off-line part would consists of computing
c = CH(a, r′) for some arbitrary a, r′ and then computes s the signature of c
under an ordinary signature scheme. On input the actual message m the signer
(who knows the trapdoor T as part of the signing key) computes r such that
c = CH(m, r) and outputs r, s. The verifier computes c and verifies s on it.

The contribution of Crutchfield et al. is to build a way to compute the values
c and r distributively, i.e. by servers who hold T in a shared form. They use
Pedersen’s commitment [18] as the chameleon hash function: CH(m, r) = grhm

in a cyclic group of prime order. To “thresholdize” CH they use techniques
developed in the context of discrete-log based threshold cryptography (e.g. [12]).
The proof of their scheme has, however, a subtle issue. The proof of security of
the threshold scheme in [4] is carried out via simulation: an adversary forging the
threshold scheme is transformed via a simulation of the distributed environment
into a forger for the centralized scheme, or a collision-finder for CH. In the [4]
protocol the value c is revealed to the adversary (who may have corrupted up to
t of the signing servers) before the final signature is computed (as opposed to the
centralized Shamir-Tauman solution where the adversary sees c only after the
signature is issued). This in turns means that the simulation of the on-line phase
is constrained to use a specific c generated in a simulation performed before m
was known. This is why the proof in [4] must use the stronger one-more discrete
log assumption.



Our contribution is an alternative way to get around the above problem,
so that we do not require this stronger assumption. The basic idea is to use
a variation of Pedersen’s commitment for the chameleon hashing. We define
CH(m, r, s) = gmhr

1h
s
2. The crucial property of this chameleon hash function is

that it has two “independent” trapdoors (logg h1 and logg h2), and we can give
a random one to the simulator to help in performing the simulation4. On the
other hand if the adversary finds a collision for CH, with probability 1/2 this
collision will reveal the other trapdoor, thus allowing us to solve the discrete log
problem.

On the difference between the assumptions. Our proof relies on the
standard discrete log assumption: given a cyclic group G of prime order q, a
generator g, and a random value y ∈ G, find z ∈ Zq such that y = gx. This
assumption has been widely used and it’s the basis of many of the cryptographic
schemes used in practice. The assumption used in [4] is stronger since the ad-
versary is given access to an oracle that computes discrete logs: on input y the
oracle returns x such that y = gx. The task is then: given k random values in
G, y1, y2, . . . , yk, find all the discrete logs xi s.t. yi = gxi , while being allowed
to query the oracle at most k − 1 times. This assumption is newer and not as
established as the traditional discrete log assumption.

On the robustness guarantees. It is desirable in a distributed environment
to be able to guarantee robustness. Informally, this means that, even if up to t
players behave dishonestly, the remaining honest ones are still able to perform the
computation correctly. The scheme proposed in [4] enables such property, either
in the random oracle model, or by using a technique pointed out by Damg̊ard
and Dupont [5], and provided that n > 3t + 1. As a comparison, our technique
allows to deal with up to n/3 players that can be either halting at any time,
or arbitrarily malicious except during the on-line signing phase. If we want to
tolerate malicious players at any step of the protocol, we have to5 restrict the
threshold to t < n/4.

1.2 Related work

As we pointed out, Even et al. introduced the notion of on-line/off-line signatures
in [8] and constructed them combining regular signatures with efficient one-time
signatures. However the length of the signatures is an issue in this approach.
Shorter signatures can be obtained by using chameleon hashing [15] combined
with regular signatures as pointed out by Shamir and Tauman [21].

4 The idea of using two independent trapdoors to construct a secure digital signature
scheme is not new, as it goes back to the seminal paper of Goldwasser, Micali and
Rivest [14].

5 More precisely, it would be possible to tolerate one third of the players behaving
maliciously at any time, by using general techniques such as non-interactive zero-
knowledge proofs in order to enhance every protocol step with robustness. However,
the obtained scheme would have become highly inefficient; we decided to maintain
practicability rather than optimizing threshold.



Threshold signature schemes were introduced by Desmedt and Frankel [6].
We point out that threshold DSS signatures (constructed in [12]) are intrinsically
on-line/off-line and do not require the extra steps described in this paper or [4].
On the other hand the techniques in this paper allow the underlying signature
to be any desired scheme. RSA-based threshold signatures (which can be used
as the underlying scheme in our construction) are presented in [11, 22].

2 Definitions and Notation

A function f : N → R is said to be negligible if for any c > 0, there exists an
index kc ∈ N such that f(k) < k−c for all k > kc. PPT stands for Probabilistic
Polynomial-Time. In several points in this paper we make use of a cyclic subgroup
of prime order in a finite field Zp. To fix the notations, we denote by p and q
two prime numbers such that q|p − 1 and q is sufficiently large. Moreover, we
will denote by G a subgroup of Z?

p with order q and by g a generator of G.

Definition 1 (Discrete logarithm assumption). Let k = |q| be a security
parameter. The Discrete Logarithm (DLOG) Assumption in G states that for
any PPT algorithm A, the probability that A outputs x on input (p, q, g, gx) is
negligible in k (the probability space is on the random choice of p, q, g and x ∈ Zq

and the internal coins tosses of A).

For lack of space we omit the definition of digital signature schemes.

Definition 2 (On-line/off-line signature scheme). An on-line/off-line sig-
nature scheme Σon,off = (KeyGen,Sign,Ver) is a signature scheme in which the
signing algorithm Sign can be divided into two phases:

– Off-line phase: an algorithm Signoff that takes as input the private key and
generates a signature token σoff ,

– On-line phase: an algorithm Signon which on input a message m and a sig-
nature token σoff , together with the private signing key, produces a signature
σ on m.

For this definition to be of practical interest, it is required that the cost of
the on-line phase is as small as possible.

Definition 3 (Threshold signature scheme). A threshold signature scheme
T-Σ consists of the following PPT algorithms (T-KeyGen,T-Sign,Ver):

– the key generation algorithm T-KeyGen(1`) is a distributed key generation
algorithm that generates a public key pk and provides each party with a share
ski of the secret key sk;

– the threshold signing protocol T-Sign runs in two phases:
• the signature share generation T-Signshare(m, {ski}) is run interactively

so that each party obtains a share σi of a signature on the message m,
• the signature reconstruction T-Signcombine({σi}) builds the full signature

σ given the generated signature shares σi;



– the verification algorithm Ver(pk, m, σ) is unchanged.

It is required that such scheme is simulatable, in the sense of [10]. Also it is
worth noticing that the notion is independent of the on-line/off-line feature. Here,
we are going to consider “threshold” on-line/off-line signatures. In this case, the
signature share generation coincides with the off-line phase of the scheme: the
obtained “shares” are generated without knowing the message to be signed; and
the signature reconstruction coincides with the on-line phase. For completeness,
we provide below a formal definition for such scenario.

Definition 4 (On-line/off-line threshold signature). An on-line/off-line
threshold signature T-Σon,off is made of the following components:

– T-KeyGen(1`) is the distributed key generation algorithm that generates pk
and provides each party with a share ski;

– T-Signshare,off is the off-line signature share generation that generates a sig-
nature token σoff and provides each party with a signature share σi;

– T-Signcombine,on is the on-line reconstruction phase that, given the message
m to be signed, produces the final signature σ from the token σoff and the
private signature shares σi;

– Ver is the verification algorithm (unchanged).

Security of a threshold signature scheme can be defined in several ways, but
the strongest definition (see [12]) requires the protocols to be simulatable, which
guarantees that the threshold signature scheme is as secure as its centralized
version. If the protocol is secure even in the presence of t arbitrarily malicious
players, then the protocol is called robust.

3 Building blocks

In this section we briefly discuss some basic protocols that are going to be useful
in the sequel. In the following we will denote by n the number of players involved
in the protocol (in particular we assume n � q). We assume that the players are
connected through point-to-point private channels and by a broadcast channel.
We model failures on the network by allowing the existence of an adversary who
is allowed to corrupt up to t < n/3 players6. The adversary is assumed to be
static, meaning that the set of corrupted players is chosen at the beginning of
the protocol.

All the basic protocols presented in this section require O(1) rounds of com-
munication. We assume that all secrets are shared through a secret sharing
scheme à la Shamir [20], using polynomials of degree t and, throughout this
section, we assume that t < n/3. We remark that, for these choices of param-
eters, all the following protocols already provide robustness (or they can easily
be modified to do so using very standard techniques).

6 For the protocols described in the next section, however, we will require t < n/4 to
guarantee robustness.



Multiplying two shared secrets. For this task we adopt the well known
protocol by Ben-Or et al. [2]. In what follows we denote MUL[ai, bi] → [ci] an
execution of this protocol, where ai and bi are the original shares held by player
Pi and ci is the share obtained after the additional communication round.

We stress that it is well known [2], how to modify the above protocols in
order to achieve robustness against a static adversary controlling up to t < n/3
players.

Pedersen’s VSS. Pedersen’s Verifiable Secret Sharing protocol [18], extends
Shamir secret sharing scheme [20] in order to tolerate a malicious adversary
corrupting up to n/2 players, including the dealer. Moreover the scheme preserves
the security of the secret in a strong information theoretic sense. In a nutshell the
scheme goes as follows. Let h be another generator of G, such that the discrete
logarithm of h in base g is unknown and assumed to be hard to compute. In
the sharing phase, the dealer D starts the protocol by choosing two (random)
polynomials f(·) and g(·) of degree t, such that f(0) = a, where a is the secret
being shared. Next, it gives the values (ai, ri) = (f(i), g(i)) to each participants
Pi. Moreover it broadcasts the verification values Vj = gαj hβj mod p where αj

(resp. βj) is the j-th coefficient of f(·) (resp. g(·)). By these positions, each
player is allowed to verify the validity of the received shares by simply checking
that gaihri =

∏t
j=0 V ij

j mod p.
If some player holds shares that do not satisfy the equation above, he broad-

casts a complain against the dealer. If more than t players do so, the dealer is
disqualified. Otherwise the dealer publishes the values f(i), g(i) matching the
equation above for each complaining party Pi.

In the reconstruction phase each player Pi is required to reveal both f(i)
and g(i). This is to make sure that players provide the (correct) shares they
originally received. Notice that a dishonest player can provide incorrect shares
that are consistent with the equation above if and only if it can compute the
discrete logarithm of h in base g. Thus, Pedersen’s VSS guarantees soundness
only with respect to polynomially bounded adversaries.

We denote by Ped-VSS[a, r](g, h, p, q, t, n) → [ai, ri](V ) an execution of Ped-
ersen’s VSS protocol where the dealer distributes a secret a, using the additional
random value r, with public parameters (g, h, p, q, t, n). Moreover, ai, ri denote
the local (secret) shares received by player Pi at the end of the distribution
phase. V = {Vj} denotes the set of commitments broadcasted by the dealer
during the execution of the protocol.

Joint Pedersen’s VSS. The sharing phase of Pedersen’s VSS can be easily
generalized to the case where no special dealer is required and where the players
jointly generate a random shared secret. We denote with Joint-RPed-VSS(g, h, p,
q, t, n) → [ai, ri, TS , a](V,Q) the execution of the protocol with public parameters
g, h, p, q, t, n and where each player Pi gets as local output the shares ai, ri,
with ai referring to the final secret a. Q denotes the subset of {1, . . . , n} of the
indexes of the players that have not been disqualified during the execution of the
protocol. Finally TS denotes the transcript produced by the n VSS’s executed
by the players.



Computing shares of the inverse of a shared secret. Let a be an
invertible element in Zq. Assume that a is shared among the players and denote
with ai the share held by player Pi. The following protocol, due to Bar-Ilan and
Beaver [1], allows to compute shares of b, such that ab ≡ 1 mod q from shares
of a. The basic idea is as follows. First the players jointly generate a shared
random value r (using the protocol described above), then they multiply the
two shared secrets a and r by means of the (full) multiplication protocol. To
conclude this phase, the players reveal the shares obtained after the execution of
the multiplication protocol and they jointly reconstruct the value u ≡ ar mod q.
If u ≡ 0 mod q the protocol is restarted. Otherwise u is invertible modulo q
and every player can locally compute his share of a−1 mod q by setting bi =
ri · u−1 mod q. We denote this protocol by INV[ai] → [bi].
Shared Exponentiation of Secrets [7]. This allows to compute gahb

1h
c
2

when a, b, c are shared secrets. For lack of space the description of this protocol
is omitted. The interested reader can find full details in [7]. In the following we
will refer to this protocol as Share-Exp(g, h1, h2) → (gahb

1h
c
2).

Discrete Log-based Distributed Key Generation [10]. This protocol
allows a set of user to securely generate private keys for discrete log based en-
cryption schemes (see [10] for details). In the following we will refer to this
protocol as DL-DKG(g, h, p, q, t, n) → [xi](y, V, Q).

4 The new scheme

We now describe our generic on-line/off-line threshold signature scheme. This
scheme can be based on any threshold signature T-Σ = (T-KGen,T-Sig, Ver).
We will focus on an optimistic version of it where, instead of verifying correctness
each time a new signature is generated, verification occurs only if a signature
happens to be invalid.

Recall that a generic threshold on-line/off-line signature scheme T-Σoff,on is
composed of the following algorithms

T-Σoff,on = (T-KeyGen,T-Signshare,off ,T-Signcombine,on,Ver)

In what follows we assume that t < n/4.
Key Generation. This protocol is performed only once. The full description
is given in Figure 1. We assume that the primes p, q and two generators g, g1

of a subgroup G of order q in Z∗
p are given as public parameters to the players.

Note that such an assumption can be relaxed using standard techniques: for
example it is possible to consider a more general key generation protocol where
the parties jointly choose the primes p and q as well as the generators g and g1.
However we believe that such a formulation would only make the presentation
more intricate, thus distracting the reader from the focus of this paper, which
are the protocols for threshold on-line/off-line threshold signatures.
Off-line Signing. The signing protocol for the off-line phase is described in
Figure 2. We remark here that every time the Joint-RPed-VSS protocol is exe-
cuted, the sharing polynomial is tacitly assumed to have degree t.



On-line/Off-line Threshold Key Generation Protocol

Public Parameters: a set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p − 1 and |q| = k, two elements g, g1 of order q in Z?

p, a
threshold parameter t < n/4 and a threshold signature scheme T-Σ. We denote
by G the subgroup of Z∗

p generated by g;
Common Output: the public key of the scheme;
Private Output (for player Pj): a share of the signing secret key.

1. The players jointly run the T-KGen algorithm, on input 1k. This produces a
public verification key vk. Moreover each player privately receives a share ski

of the corresponding signing key.
2. The players jointly run the DL-DKG(g, g1, p, q, t, n) algorithm twice (with param-

eters g, p, q) in order to obtain two public values h1, h2. We denote with yi and
zi the shares of the two secret keys y, z (such that gy = h1 and gz = h2) held
by player Pi.

3. The players run the INV(yi) protocol to get shares Yi of the inverse Y of y.
4. The public key is set as PK = (g, p, q, g1, vk, h1, h2), while each player Pi

retains the quadruple SKi = (ski, yi, zi, Yi) as its own local secret key.

Fig. 1. The Key Generation Protocol for our On-line/off-line Threshold Signature
Scheme

On-line Signing. The signing protocol for the on-line phase is described in Fig-
ure 3. We remark here that no signature share verification is explicitly required
by the protocol. This is because we decided to follow an optimistic approach
(in general it is reasonable to assume that the signature shares are going to be
correct almost all the time). Still, in order to guarantee robustness, we need to
make sure that, even if some players sent incorrect shares, honest participants
should be able to reconstruct a valid signature. Later we describe how to achieve
that for the case n > 4t.
Verification. Given a purported signature (Com, ρ, r, s) on a message m, one
accepts it as valid if the following relation is true

Ver(vk, Com, ρ) ?= 1 ∧ Com
?= gmhr

1h
s
2

Achieving Robustness. If the verification procedure Ver(vk, Com, ρ) fails, then
some of the participants are providing incorrect shares. In principle, one can
always reconstruct the correct signature as our assumption that n > 4t assures
us enough points to correctly interpolate s′ and r′. The trivial approach of trying
all the possible subsets of 2t + 1 shares, however, does not work, as the number
of such subsets is in general exponential (in n). Here we suggest the following
two-phases approach.

First Phase: In the first phase, the correctness of the s′i’s is verified. This is
done though the commitment materials produced during round 6 of the off-



Off-line Threshold Signing Protocol

Public Parameters: a set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p − 1, |q| = k, two generators g, g1 of G, a threshold
parameter t < n/4 and a threshold signature scheme T-Σ;

Private Input (for player Pj): the local signing key SKj = (skj , yj , zj , Yj);
Private Output (for player Pj): a signature token σoff and a signature share

σj .

1. The players jointly run the Joint-RPed-VSS(g, g1, p, q, t, n) protocol three times
to produce three shared random values m, r, s. Let mi, ri, si be the shares ob-
tained by player Pi after participating to the three Joint-RPed-VSS.

2. The players execute the Share-Exp protocol, each holding local inputs mi, ri, si.
Let Com = gmhr

1h
s
2 be the public output.

3. The players run the (entire) T-Sig algorithm to compute a signature ρ on the
message Com.

4. The players run (a simplified version of) the Joint-RPed-VSS algorithm (with
parameters g, p, q) to generate shares ωi of a 2t-degree (random) polynomial
p0, such that p0(0) = 0.

5. The players run the full multiplication protocol MUL twice to compute shares of
the products r · y and s · z. Finally they (non interactively) compute shares of
the quantity m + r · y + s · z. Let τi be the share held by player Pi.

6. The players jointly run the Joint-RPed-VSS(g, g1, p, q, t, n) protocol in order to
produce a shared random value s′. Let s′i be the share obtained by player Pi

as a local output.
7. The output signature token is σoff = (Com, ρ) while the signature share for Pi

is σi = (ωi, τi, s
′
i)

Fig. 2. The signing algorithm for the off-line stage

line threshold signing protocol. If t shares turn out to be incorrect, this allow
us to identify and remove all the dishonest players immediately (and then
there is no need to proceed to phase two).

Second Phase: If less than t incorrect shares have been identified in phase one,
in round 3 of the on-line phase, the players interpolate the correct r′ using
the Berlekamp-Welch decoder [3]. The correctness of this approach follows
from the error correcting capabilities of polynomial interpolation. Since we
are interpolating a polynomial of degree d = 2t and we have up to f = t
erroneous points, using the Berlekamp-Welch bound we get that the number
of points needed to correctly interpolate is d + 2f + 1, which, in our case,
means, 2t + 2t + 1 = 4t + 1 (this is why we required n > 4t).

Remark 1. We stress that, the key generation and the off-line signing protocols,
can achieve robustness even with respect to an adversary controlling up to n/3−1
players (rather than the more restrictive setting t < n/4). This is because, as
observed in Section 3, all the protocols we are using as building blocks (i.e.



On-line Threshold Signing Protocol

Public Parameters: A set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p− 1 and |q| = k, two generators g, g1 of G, a threshold
parameter t < n/4 and a threshold signature scheme T-Σ;

Public Input: a message m′ to be signed;
Private Input (for player Pj): the signing key SKj = (skj , yj , zj , Yj), together

with the signature token σoff = (Com, ρ) and the signature share σi = (ωi, τi, s
′
i)

produced during the off-line stage;
Public Output: a signature σ for m′

1. Each player broadcasts the share s′i. This allows the player to locally interpolate
the value s′.

2. Each player Pi locally computes the following share

r′i = (τi − m′ − s′ · zi) · Yi + ωi mod q

3. Finally the players broadcast their shares r′i, in order to reconstruct r′.
4. The signature for m′ is given by

σ = (Com, ρ, r′, s′)

Fig. 3. The signing algorithm for the on-line stage

those described in Section 3) are already robust against such kind of adversaries,
or they can easily be modified to achieve robustness. By contrast, the on-line
signing protocol makes use of a reconstruction phase for values that are shared
over 2t-degree polynomials and thus, requires the threshold to be bounded by
n/4.

5 Security Proof

Theorem 1. Assuming that T-Σ = (T-KGen,T-Sig, Ver) is a threshold sig-
nature scheme secure against adaptive chosen message attack and the discrete
logarithm assumption holds, the On-Line/Off-line Threshold Signature scheme
presented above is existentially unforgeable against an adaptive chosen message
attack, mounted by a static adversary controlling up to one fourth of the n par-
ticipants.

Proof (Sketch). The proof goes by contradiction, we assume that there exists an
adversary A that breaks the existential unforgeability of the proposed scheme
and we show how to exploit it to break either the unforgeability of the underlying
signature scheme T-Σ or the discrete logarithm assumption. In other words, we
build an efficient algorithm B that, using A as a black box, succeeds in the above
mentioned tasks.

Notice that, any valid forgery must be of one of the following types



– Type I: (Com, ρ, s′, r′) on a message m′ such that Com 6= Comi for all previ-
ously issued signatures (Comi, ρi, s

′
i, r

′
i) on messages m′

i,
– Type II: (Com, ρ, s′, r′) on m′ such that Com = Comi for some previously

issued signature (Comi, ρi, s
′
i, r

′
i) on a message m′

i, but at least two of the
following conditions must hold
1. m′ 6= m′

i

2. s′ 6= s′i
3. r′ 6= r′i

It is easy to get convinced that the above (mutually exclusive) conditions
cover the entire spectrum of possibilities.
Type I forgeries. We show how to build an algorithm B against the existential
unforgeability of T-Σ using an adversary A that produces this type of forgeries
with non-negligible probability. To do so we start with B receiving as input,
in a preliminary phase, the public key material of a secure threshold signature
scheme T-Σ = (T-KGen,T-Sig, Ver). His goal is to use the forgery produced by A
to contradict the existential unforgeability of T-Σ. This means that, after having
received a number of signatures Sigi for messages Mi of its own choice, B should
be able to produce a couple (M, Sig) such that Sig is a valid signature for the
message M with respect to the given public key (and, of course, (M, Sig) 6=
(Mi, Sigi) for all i’s).

First note that, being T-Σ a secure threshold signature scheme scheme we re-
quire that it is simulatable, in the sense of [10]. In particular this means (see [10])
that:

1. The algorithm T-KGen is simulatable, meaning with this that there exists
a simulator S1 that, on input the verification key and the public output
generated by an execution of T-KGen, can simulate the view of the adversary
on that execution.

2. The protocol T-Sig is simulatable, meaning with this that there exists a
simulator S2 that, on input the public input of T-Sig, t shares, and the
produced signature σ, can simulate the view of the adversary on an execution
of T-Sig that outputs σ.

With this in mind we show how to simulate the three protocols presented in
the previous section.

On-line/Off-line Threshold Key Generation: B performs rounds 2, 3 and
4 exactly as in the real game, meaning with this that it plays the role of each
honest player exactly as prescribed by the protocol.
Round 1 is done by running the simulator S1 on input the relevant values B
has received in the preliminary phase.
Thus, by the simulatability property of T-KGen, the entire simulation of
T-KeyGen is indistinguishable from a real execution of the protocol.

Off-line Threshold Signing Protocol: B executes the following variant of
the T-Signshare,off protocol.
Steps 1, 2, 4, 5 and 6 are done exactly as in the original protocol, thus we



focus on step 3. At that point B queries his signing oracle (which is relative to
T-Sig) in order to get a signature ρi on the computed Comi. Then B executes
the simulator S2 on input the public parameters, the shares of the controlled
players and the value of ρi in order to produce the corresponding view. By
the simulatability of T-Sig this is indistinguishable from a real execution.

On-line Threshold Signing Protocol: Whenever A asks the i-th signature
query on a message m′

i, B executes the protocol exactly as prescribed in the
previous section.

Now assume that, once A is done with its signing queries, it produces a
forgery of type I (ρ, Com, s′, r′) on a message m′. Type I forgery means that Com
differs from all Comi and thus was never queried by B to its signing oracle. Then
B produces its own forgery against T-Σ by setting M = Com and Sig = ρ.
Type II forgeries. We show how to build an algorithm B that breaks the
discrete logarithm assumption using an adversary A that produces this type of
forgeries with non-negligible probability. To do so we start with B receiving as
input, in a preliminary phase, a couple (g, h) ∈ G2. His goal is to use the forgery
produced by A to determine the discrete log of h in base g.

We assume that B is allowed to program the common parameters g, g1, in the
sense that it is allowed to set g as the g received in the preliminary phase and to
choose g1 according to a distribution that is perfectly indistinguishable from the
distribution according to which g1 has to be chosen. In particular, notice that
this allows B to choose g1 in a way such that it knows the discrete log of g1 in
base 7 g. In what follows we assume, for simplicity, that m′ 6= m′

i always holds.
It is straightforward to extend the proof to the more general case where m′ (the
forged message) may be equal to m′

i (the message queried for signing).
First, B flips a coin β. If β = 0 it bets on the fact that A will provide a forgery

of type II where conditions 1 and 3 above hold true, that is m′ 6= m′
i and r′ 6= r′i.

If β = 1 B bets on the fact that the forgery will satisfy m′ 6= m′
i and s′ 6= s′i.

Informally the proof goes in two stages. In the first one B will simulate a real
execution of the protocol, playing the role of non-corrupted parties. In this phase
we have to make sure that the simulated protocol is perfectly indistinguishable
from the real one. In the second part of the proof, we show how B can exploit
the provided forgery to solve the received discrete logarithm challenge.

As for the first part of the proof, we describe in detail the simulation of the
three protocols, described in the previous section.

On-line/Off-line Threshold Key Generation: B performs steps 1 and 4 ex-
actly as in the real game, meaning with this that it plays the role of each
honest player exactly as prescribed by the protocol.
Step 2 is done as follows. The first execution of the DL-DKG protocol (i.e.
the one leading to the generation of h1) is replaced by a execution of the
simulator S for DL-DKG, as given in [10], on input (g, h). As a result, this
produces the public value h1 = h and properly distributed values for the

7 Formally this is equivalent to assume that all the public parameters are part of a
shared random string, that the simulator is allowed to ”program” in the proof



parties controlled by A. In particular the simulation looks to A perfectly in-
distinguishable from the real execution of the protocol, however the players
will share some secret value ŷ that does not correspond to the actual discrete
log of h1 in base g. The second execution of the DL-DKG protocol is done as
in the real game.
Step 3. B runs an execution of the INV protocol, but with each of the honest
players holding a share ŷi of ŷ. Notice that such an execution looks perfectly
indistinguishable (with respect to the real one) to A, as the latter is static
and controls only up to t < n/4 players.
Hence the simulation provides the adversary with a view (public outputs +
controlled players’ private outputs) which is perfectly indistinguishable from
a real execution.

Off-line Threshold Signing Protocol: Steps 1, 2, 3, 4 and 6 are done exactly
as in the real game, thus we focus on step 5. Here the only difference with
respect to the real protocol is that the (full) multiplication protocol MUL used
to compute r · y is run by B using the shares ŷi for the honest players. Once
again, this results in a protocol which looks perfectly indistinguishable to
the real one, from A’s perspective.

On-line Threshold Signing Protocol: B first recovers the value s′ shared
during the off-line phase. Notice that it can do this as it controls n − t >
3n/4 > t parties. Next, once m′ is known, it sets r′ = r and and computes
a value ŝ′ such that r′ = (m + rŷ + sz −m′ − ŝ′z)Ŷ mod q, where Ŷ is the
(known) inverse computed in the key generation protocol. Notice that this
means that ŝ′ = (m − m′)z−1 + s mod q. We stress that, since B controls
more than 2t players it can easily compute all the values above. Next, B
uses its knowledge of the discrete log of g1 in base g to cheat and interpolate
s′ as ŝ′ (in a way that remains consistent with the previously broadcasted
commitments). The rest of the protocol is done as in the real execution.

Note that the simulation is perfectly indistinguishable from the real one. This
means that the adversary cannot know if the simulator knows both the values
y and z or only z, as in our case. Thus if the adversary produces a forgery of
type II such that m′

i 6= m′ and r′i 6= r′ one can easily break the received discrete
logarithm challenge. Indeed, since Com′ = Comi we have that

gm′
i+zs′

ih
r′

i
1 = gm′+zs′

hr′

1

and thus the required value is ((m′
i −m′) + z(s′i − s′))(r′ − r′i)

−1 mod q.

If β = 1 B bets on the fact that A will provide a forgery of type II where
conditions 1 and 2 hold, that is, m′ 6= m′

i and s′ 6= s′i. Again, we describe the
simulation of the three protocols, focusing on the differences with the case β = 0.

On-line/Off-line Threshold Key Generation: This time, the simulation of
DL-DKG is used to generate h2 and thus B knows y and a value ẑ that differs
from logg h2.
Note, this change influences step 3, which, this time, is done exactly as in a
real execution of the protocol (with B controlling the honest players).



Off-line Threshold Signing Protocol: Everything is done as before, by just
switching the roles of z and y.

On-line Threshold Signing Protocol: In this simulation B uses its knowl-
edge of the discrete logarithm of g1 in base g to interpolate s′ as the value
s shared in round 1 of Off-line Threshold Signing Protocol. The rest of the
protocol is done exactly as in the real game.

Again, note that the simulation is perfectly indistinguishable from the real
one. Thus if the adversary produces a forgery of type II on a message m′ such
that m′

i 6= m′ and s′i 6= s′ one can easily break the received discrete logarithm
challenge in a way that is basically identical to what described for the case β = 0.

Remark 2 (Achieving robustness for up to t < n/3 faults). Notice that the pro-
tocol presented in previous section can be modified in order to tolerate up to
t < n/3 malicious players. The modification is as follows. The key generation al-
gorithm remains more or less unchanged: we add one additional round on which
the players compute shares λi = Yi · zi. In the off-line signing algorithm we add
one additional execution of the (full) multiplication to create shares µi of the
product τ · Y . Finally, in the on-line signing algorithm, step 2 is modified by
setting r′i = µi −m′Yi − s′λi + ωi mod q.

It is easy to check that the proof goes through in basically the same way.
Notice that this modified protocol is less efficient than the proposed one, but
the efficiency loss involves the off/line components only (i.e. key generation and
off-line signing).

References

1. J. Bar-Ilan and D. Beaver. Non cryptographic fault tolerant computing in a con-
stant number of rounds of interaction. In Proceedings of the ACM Symposium on
Principles of Distributed Computation, pp.201–209, 1989.

2. M. Ben-or, S. Goldwasser and A. Widgerson Completeness Theorems for non-
cryptographic fault tolerant distributed computation. In Proc. of 20th Annual
Symposium on Theory of Computing, 1988.

3. E. Berlekamp and L. Welch Error correction of algebraic block codes. US Patent
4,633,470.

4. C. Crutchfield, D. Molnar, D. Turner and D. Wagner Generic On-Line/Off-Line
Threshold Signatures In Proc. of PKC ’06, pp.58–74, Lecture Notes in Computer
Science vol.3958, Springer-Verlag, 2006.

5. I. Damg̊ard and K. Dupont. Efficient Threshold RSA Signatures with General
Moduli and No Extra Assumptions. In Proc. of PKC ’05, pp 346–361, Springer-
Verlag, 2005.

6. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. CRYPTO’89, LNCS vol.435
pp.307–315, Springer 1990.

7. M. Di Raimondo and R. Gennaro Provably Secure Threshold Password-Authen-
ticated Key Exchange. In Proc. of Eurocrypt’03, 2003.

8. S. Even, O. Goldreich and S. Micali. On-Line/Off-Line Digital Signatures. J.
Cryptology 9(1): 35-67, Springer 1996.



9. P. Feldman A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In
Proc. 28th FOCS, pp. 427–437, 1987.

10. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key
Generation for Discrete-Log Public-Key Cryptosystems. Eurocrypt’99, pp.295–310,
Lecture Notes in Computer Science vol.1592, Springer-Verlag, 1999.

11. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust and Efficient Sharing
of RSA Functions. J. Cryptology 13(2): 273-300, Springer 2000.

12. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. : Robust Threshold DSS
Signatures. Inf. Comput. 164(1): 54-84 (2001).

13. R. Gennaro, M. Rabin and T. Rabin. Simplified VSS and fast-track multi-party
computations with applications to threshold cryptography. In Proc. 17th ACM
Symposium on Principle of Distributed Computing, 1998.

14. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen message attacks. SIAM J. on Computing 17(2):281-308 1988.

15. H. Krawczyk and T. Rabin. Chameleon Signatures. 2000 NDSS Symposium,
pp.143-154.

16. National Institute for Standards and Technology. Digital Signature Standard
(DSS). Technical Report 169, August 30 1991.

17. J.Kubiatowicz, D.Bindel, Y.Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao. OceanStore: An
architecture for GlobalScale Persistent Storage. 2000 ACM Architectural Support
for Programming Languages and Operating Systems Conference.

18. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. Crypto’91, pp.129-140, Lecture Notes in Computer Science vol.576,
Springer-Verlag, 1992.

19. S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and J. Kubiatowicz. Pond:
The OceanStore prototype. 2003 USENIX Conference on File and Storage Tech-
nologies.

20. A. Shamir, “How to share a secret,” Comm. of the ACM, vol. 22, no. 11, pp.
612–613, November 1979.

21. A. Shamir and Y. Tauman. Improved On-line/Off-line Signature Schemes.
Crypto’01, pp.355-367, Lecture Notes in Computer Science vol.2139, Springer-
Verlag, 2001.

22. V. Shoup. Practical Threshold Signatures. EUROCRYPT 2000, LNCS vol.1807,
pp.207–220, Springer 2000.


