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Abstract. We prove in a non-black-box way that every bounded list ahda®-
mitment scheme iknowledge-bindingThis is a new and rather strong security
condition, which makes the security definitions for timarsping much more
natural compared to the previous definitions, which assunpeedictability of
adversaries. As a direct consequence, list and set comntisnkemes with par-
tial opening property are sufficient for secure time-stargpf the number of
elements has an explicit upper bound On the other hand, white-box reduc-
tions are in a sense strictly weaker than black-box rednsti®herefore, we also
extend and generalize the previously known reductions.cbnesponding new
reductions are(v/N) times more efficient, which is important for global-scale
time-stamping schemes whekeis very large.

1 Introduction

Commitment schemes are basic building blocks in numeroysagraphic protocols.
The most important properties of commitment schemes adirigrand hiding. A com-
mitment is hiding if it reveals no information about the coitted message and binding
if it is impossible to change the committed message aftatsvaithout detection. First
such schemes for committing a single bit were proposed bynHHW] and by Bras-
sardet al[5] and were proven secure under the hardness of factorswgrgstion. Later
works have significantly improved their efficiency and weade the underlying com-
plexity theoretic assumptions, see [14, 10] for furtheerehces. Here, we study the
so calledpartially releasablecommitments, in which one can compute a commitment
(also calleddiges) for a list X = (z1,...,zy) Of bit-strings, so that it is possible to
partially open the commitment for every € X without disclosing the other elements
of X. For openinge; it is sufficient to present a decommitment strisig(also called
certificatg. Achieving the hiding property is somewhat trivial, as @aa always add
another layer of commitments. Hence, our main emphasis th®binding property.
List commitments [3, 1, 17] that are only binding are knowmas-way accumulators
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In particular, we analyze the security oftimme-stampingprotocol, where clients
send their requests,, ...,z x to a Time-Stamping Server (TSS) who computes the
commitmente and sends the corresponding certificatgs . ., sy back to the clients.
If ¢ is published in an authentic way then everybody can veri& #h was generated
beforec was published. This principle is used in practical timevgiang schemes [12]
wherec is computed as the root of a hash tree. List commitment schemeee be-
lieved to be exactly what one needs for such kind of time-ptagh However, Buldas
et al[7] pointed out a flaw in the security proof of [12]. By givingcarefully crafted
oracle separation they showed that pure collision-rasigtés insufficient to prove that
the hash tree time-stamping schemes [12] are secure. Inwthds, either there are
collision-resistant functions that are still insecuretiore-stamping, or the security of
time-stamping schemes follows from currently unknown ctaxipy-theoretic results.
The key point of this paradoxical result is that the numbecarhmitted elements is
potentially unbounded. In Sec. 4, we prove that all list agtccemmitments, where the
cardinality of X has an explicit boundX| < N, are suitable for time-stamping. The
proof is given in the exact security framework andig,/N) times more efficient than
the previous reduction [7]. This improvement is especiaijuable for global-scale
time-stamping schemes in whiét is very large.

In Sec. 5, we show that all binding bounded list and set comenits aré&nowledge-
binding This is a new and extremely strong security requiremeipiiad from the se-
curity of time-stamping schemes. Its strength is comparabtheplaintext awareness
property, which is defined for public key encryption. The Wiedge-binding property
is also much more intuitive requirement for time-stampiolgesnes than the previous
ones [7,9], which use unpredictable probability distribos to model the stream of
“new documents” sent to a TSS. Roughly, the knowledge-bimgroperty states that
for every efficient TSS, it is possible (by observing the catmmant procedure) to effi-
ciently extract the lisfC of all documents that can be opened by the TSS in the future.
The dedicated extractor must know only the internal coisde®f TSS and some pub-
lic parameters. Consequently, even if the TSS is malicibusyustknowthe whole list
X before the corresponding commitment is published. Thamadlto prove the security
in the classicaideal vs real worldcomparison framework [11, pp.622—-631,697—700].

Moreover, the notion of knowledge-binding commitments banuseful in other
cryptographic protocols, because the ability to open a cibmemt does not change in
time and we may skip the proofs of knowledge in the commitnpéiaise. On the other
hand, the corresponding security proofs are not black bbis feans that once we
have an efficient adversady that breaks the knowledge-binding conditive know
that there existain efficient adversar’ that breaks the binding property of the corre-
sponding commitment scheme. However, we may have no effigiays to construct
A’. Therefore, in reality the knowledge-binding property tenviolated but the com-
mitment scheme may still be practically binding—the efiitibreaking procedure ex-
ists but is not known. Black-box security proofs in turn gareefficient procedure for
constructingd’ from A. In this sense, Theorems 14 give substantially strongeirie
guarantees for a fixed hash function (e.g. SHA-1) than Timsfeand 6.

In Sec. 6, we briefly discuss about other possible applicatid knowledge-binding
such as distributed and fine-grained time-stamping.



Some of the details of this work have been omitted becausparfeslimitations.
The missing details will be published in the IACR ePrint Aikeh

2 Preliminaries and Notation

We use a non-uniform model of computations, where each ithgoA is specified as
an input of a universal multi-tape Turing machidethat first copies the code df to
its working-tape and then starts to interpretitis at-time algorithmif U performs at
mostt elementary operations to interpret the codéafidependent of the input a.

By  «— D we mean thate is chosen randomly according to a distributitn
In particular, if A is an algorithm, then: — A(y) means that: is chosen accord-
ing to the output distribution oA on an inputy. Finite sets are identified with the
corresponding uniform distributions, e.g.,— {0, 1}6 means thatr is a uniformly

chosen/-bit string. If Dy, ..., D,, are distributions and”(x1,...,z,,) is a predi-
cate, therPr [x; < Dy,..., 2y < Dy, : F(x1,...,2,)] denotes the probability that
F(x1,...,x,) s true after the ordered assignmenteef. . ., z,,.

By a cryptographic primitive]d we mean a set of computable functions associated
with the advantage functioAdvg(-), such that for every adversarial algoritimthe
advantage\dvy (A) is a positive real number. Mostljdvg; (A) is defined as the non-
trivial success (scaled probability) in certain gasae that captures the desired prop-
erties ofB. A primitive B3 is said to be(t, ¢)-secure in terms ofec if Advy®(A) < ¢
for everyt-time adversanA. For example, by dt, ¢)-securecollision-resistant hash
functionwe mean a pait{ = (Gen, h) of algorithms such that ipk <— Gen is an
arbitrary output of the generation function thetpk, -) = hpk(-) is a function of type
{0,1}* — {0, 1}™ wherel > m; and for every-time adversar :

Advs"(A) = Pr[pk Gen, (z1, z2) —A(pk) : 21 # T2 A hp(z1) = hpi(2)] < € .

Time-success ratioQuite often it is suitable for adversaries to find a tradebefiveen
plausible attacking-timéeand the corresponding advantageé) againstg. If the min-
imum time-success ratitor P is ag, thens(t) < ﬁ by definition. Often, we cannot
estimate anything else abdptthanass. Now, any black- or white-box reduction intro-
duces achange ratioy = 2 whereaqy is the time-success ratio of the basic primitive
anda; is the ratlo of the derlved primitive, i.e., we have estdt#id a new approximate
boundzs (t) < -+ WO . Therefore, large values ofprovide better approximating bounds.

Sampling bounds.Our proofs use several standard statistical boundsXlet. ., X,,
be identically distributed independent zero-one randonaliées withy, = Pr [X; = 1]
and letX = Zz’;l X;. Then for any0 < 6 < 1 the Chernoff bounds [13]

PriX < (1—0)um] <e™/2 and  Pr(X > (1+0)um] < e 0mu/3

We also need a Birthday bound to determine the collisiongodity. LetYy, ..., Y,, be
identically but arbitrarily distributed independent ranadvariables with possible values

{1,...,N}. Then the probability that all Y;-s are different satisfigs < e~ “5¥ . In
particular, ifm > 1.5v/N andN > 9 thenp < 1.




3 Partially Releasable Commitment Schemes

Set and list commitments. Most commitment schemes fétbit strings facilitate only
complete disclosure of the committed input. In the contéxinoe-stamping, the com-
plete input can be several gigabytes long whereas we agtuedld to disclose only a
few hundred bits. Therefore, we study commitment schenmaSdicilitate partial dis-
closure of inputslist commitmentare order-preserving: committed strings are ordered
tuples.Set commitments turn do not provide any ordering. Like ordinary commit-
ment schemes, these commitments are specified by four Hgsiitlams: Gen, Com,
Cert and Ver. Initialization algorithmGen generates public parameteyis. Elements
(ma, ..., my) are committed by computin@, d) < Compk(mi,...,my,), where the
commitmente is sent to the receiver antlis kept by the sender for later use. To prove
thatm,; was indeed used to compute the commitmenhe sender generates a certifi-
cat® s — Certp(d, m;) the validity of which can be tested with theer algorithm.

The commitment schemefignctionalif for any (¢, d) < Comg(ma, ..., m,) and
s « Certp(d, m;), the verification resulNerpy (¢, n, m;, s) = true with overwhelming
probability. For list commitments, the certificateontains also the exact locatiomf
the decommitted element, denotedags) = i. We explicitly assume that a decom-
mitment certificate for a s€€ = {z1, ..., .} is a union of the corresponding element
certificatessy, . .., s,. denoted by; U. .. U s,.. Consequently, certificates can be freely
joined together and split into sub-certificates. For mampmdtment schemes such lists
can further be compressed but this is only an implementaligail.

We omit the formal definition of the hiding property, since stady only the fea-
tures related to the binding property. The binding propertgifferent for set and list
commitments. For list commitments, the binding propertyiiated if an adversary
can open theé-th element in two different ways:

pk — Gen7 (Ca n, %o, 50,1, Sl) — A(pk) :
AdvPM(A) = Pr | 29 # x1 Aloc(so) = loc(s1) . @

A Verpi(e,n, xo, so) = Verpk(c,n, x1,81) = true

where the probability is taken over the coin tosses of abbvaht algorithms. Since
certificates are closed under union and there is no ordeoinget commitments, the
only way to misbehave is to exceed the siz&lof

pk < Gen, (¢,n,X,s) «— A(pk) :

AdvPM(A) = Pr
Verpi(c,n, X, s) =true A |X| > n

: (@)

whereVery (¢, n, X, s) first splitsX ands into components and then verifies each com-
ponentz; € X separately by using the corresponding component-cetéficac s.
We say that the commitment scheme(ise)-binding if for all 7-time adversaries
Adv®™(A) < e. For unbounded adversaries, we speak abtatisticale-binding

Note that set and list commitments must explicitly specifg humbem of the
committed elements. Indeed, if the certificates do not feliessize of the commitment,

5Tobe preciseCert should return a vector of certificates for each locatiomofin the list.



a malicious adversary can just hide some committed elenagmtseceivers can never
be sure if the commitment is fully opened. A commitment schaésV-boundedif
Very(c,n, z, s) = false forall n > N.

List commitment schemes that satisfy only the binding prigeare known asne-
way accumulator$l, 3,17]. One-way accumulators that in addition to positiate-
mentsz € X also allow to (compactly) prove negative statementg X are called
undeniable attesterf§]. The commonly used binding requirement for one-way accu
mulators isn-times collision-freenedd], which is equivalent to the binding property
of set commitments.

Time-stamping schemes.Time-stamping protocols process documents in batéhes
Xs, X3,...that we callrounds The rounds correspond to time periods of fixed duration
(one hour, one day, etc.) After thigh period, a short commitment of the correspond-
ing batchX; is published. A document € X; precedes documept if there isj > 0
such thay € X, ;. Obviously, for a fixed commitmenf there must be an efficient way
to prove thatr € X;. However, for documentg ¢ X; such proofs must be infeasible to
create. Note that; can be viewed as a classical set or list commitment to th& send
the corresponding proof af € X; as a certificate. Therefore, time-stamping schemes
share the same functionality and algorithmic descript®the set and list commitment
schemes. Such a structural similarity is indeed remark&kik, careful studies of the
security requirements reveal considerable differencegd®n time-stamping and com-
mitment schemes. Different security definitions exist fora-stamping schemes [7-9,
12]. In this paper, we adapt the stron§esefinition [9] for the non-uniform precise
security framework with minor modifications in notations.

Formal definitions of time-stamping schemes do not reghaetis explicitly given
as an argument to the verification algorithsar, but negative results in [7] suggest
that time-stamping schemes (at least those without additithird parties) must be
bounded, i.es has to be at least implicitly specified.

Intuitively, time-stamping schemes must be secure agdiask-dating” and this it-
self raises a subtle issue: How to model the future? Most 8jpik9] have taken an ap-
proach based on computational entropy. Document geneiiatinodeled as an efficient
randomized procedure and the security guarantees arefgivdacument distributions
with high enough computational entropy. More formally, awersaryA = (A1, As) is
(7, 9)-unpredictabléf for every r-time predictor :

w1 «— 2, pk — Gen, & — MN(pk,w1),
(Cana(b) — Al(pk;wl)a (.T,S) — A2(¢) r=w|

)

Adv¥" (M) = Pr

wherew; denotes the random coins Af and the probability is taken over the coin
tosses of all relevant algorithms. The second stegef the adversary models an effi-
cient document generation (back-dating) procedure.

6 There exist stronger security definitions for time-stargnhemes with additional (auditing)
parties [8]. The main drawback of those schemes is a largeainhed extra communication.



Definition 1 (Entropy based security).A time-stamping scheme (i 7, ¢, €)-secure
if for every(r, d)-unpredictable-timeA :

W1 < Qa pk — Gen7 (Can7¢) — Al([)k,tdl),

Adv®(A) =P
V(A ' (x,8) < As(¢) : Verpi(c,n, z, s) = true

<e. (3

Here,§ quantifies a trivial advantage. Indeed, consider the nesdrsdryA = (A1, As):

— Ai(pk;w1) computesc,d) «— Comp(Z) and the corresponding valid certificate
s « Certp(c, 2) and outputs a tuplé, 1, (2, s)).
— Ax(Z, s) generates a randomso thatz = & with probabilityd, and outputsgz, s).

For everyr the adversary is (7, §)-unpredictable. However, no matter how the time-
stamping scheme is defined, the advantage™(A) of A is at leasty. Hence, it is
reasonable to assume thak . Moreover, aﬂog% is an upper bound for the compu-
tational Rényi entropy, we implicitly assume that the cemapional Shannon entropy
of the future documents is at ledsg; % w.r.t. the time-bound.

The biggest drawback of the entropy based definition is nafemity. The se-
curity definition is natural in the polynomial model but hasre flaws when adapted
to the exact model. It only offers protection agaifstd)-unpredictable adversaries!
Hence, it does not exclude extremely successful advesstrét are jushot quite so
unpredictable In theory, a time-stamping scheme could be protected ag&ind)-
unpredictable adversaries but still be totally insecumresy(, § +§1°°)-unpredictable
adversaries. This flaw can be fixed by requiring strong umiftyrin the definition:

Definition 2 (Black-box security). A time-stamping scheme (g 7, €)-secure if there
exists ar-time black-box extractor machir#é such that for every-timeA :

W1 <— Q, pk — Gen, :X' — fKA(Pk%wh-)(pk)’
Adv®(A) = Pr | (¢,n,¢) — Ar(pk;wi), (,5) — Ag(¢) : <e., (4
(Verpe(c,n, z,s) = true Az ¢ X) V|X| > n

wherew; denotes random coins 8f, andX gets a black-box accessAq (pk; w1) and
As(9; ). The working time okA(Pk1:7) includes the time needed to execute all oracle
calls. For list commitments, we treatas a list and writer € X iff 2 = X[loc(s)].

Intuitively, we state that malicious time-stamping sesveannot issue valid cer-
tificates for unknown documents, as there exists a well knalgorithm KAPKwi,)
for efficiently reconstructing the list of all valid docuntsrX. This algorithm can be
automatically constructed for everstime adversary.

It is straightforward to see thdt, 7, ¢)-secure time-stamping scheme is always
(t,7,6,e + NJ) secure whereV >| X |, as one can usf in prediction. In Sec. 4,
we prove that every bindingy-bounded list commitment scheme is also a secure time-
stamping scheme. Still, there are quantitative differertmetween these two notions.

Practical constructions based on hash treedMerkle trees [15] and count-certified
hash trees [16] (described below) constructed from coflisiesistant hash functions



are binding but not hiding even if the hash function is models a random oracle—a
release of an element (a leaf node) also reveals one neiglgbelement (the sibling
leaf node). Nevertheless, if we use Merkle trees to compsteoa commitment from
hiding and binding commitments, we get binding and hidisgdind set commitments.

112134) — h(2$12$31) —
h(zi1x2) ‘?@%(I@I4) ~> h(lzlzgl)

Fig. 1. Merkle hash tree fofz1, z2, x3, x4} and a count-certified hash tree for:, x2, x3}.

A Merkle hash treéor a list X is a binary tree the leaves of which are the elements of
X and each non-leaf node is a hash of its two children (Fig ft), Modes with a single
child can be avoided. Hence, every non-leaf node is assuorteale two children.

A count-certified hash tre@-ig. 1, right) is a binary tree which is similar to a Merkle
tree, except that its arcs are labeled vatiunterseach of which equal to the number of
leaves in the corresponding subtree. Each non-leaf verieya hashi(npzxrng),
whereny, andng are the counters of the left- and the right subtree respalgtivhe
counterc of the unique outgoing arc afis the sumn, = ny, + ng.

Each hash tree can be represented as a commitment fuiietloh «— Comp (X),
wherec is the root hash value of the corresponding tree pkdlenotes the public
parameters associated with the collision-resistant hasbtibn 4. By the certificate
Certpk (X, x;) for z; € X we mean the smallest amount of data needed to recompute the
root hash value. For example, in the Merkle hash tree (Filgft) the certificates, for
x9isse = ((x1,-), (1, z34)) which represents a sequence of hashing steps starting from
the leafzrs and ending with the root hash value, wheredsnotes aempty slotvhich
during the verification is filled with the hash of the previgasr. Similarly, in the count-
certified hash tree (Fig. 1, right) the certificate fgris so = ((1,z1, -, 1), (2, _, z3, 1)).

The verification functioer (¢, n, , s) simply recomputes the root hash value by us-
ing s and compares it with. It also checks whether < N. The verification algorithm
for count-certified trees also recomputes the intermediatmter values to verify the
certificates, in particular if the counter of the root vertexiis

Collision-Extraction Property. For hash trees with a fixed shape and count-certified
hash trees there is a straight and precise reduction oftikérigj property to the collision-
resistance of because of the following property: iy # 21, Very(c, n, zo, s0) =
Verp(c,n,z1,51) = true, andloc(syp) = loc(s1), then the internak-calls of these
two verifications comprise a collision fér. Moreover, if the tree is balanced, then the
collision can be extracted iQ(|so| + |s1]) = O(log, N) time.



1. Executé; in a black-box way and store, n, ¢) «— A1 (pk;w1).
2. Generaten independent sampl€s1, s1) < A2(®), ..., (Tm, Sm) — A2(P).
3. Output(c, n) and a set of valid pair¥ = {(z;, s;) : Verpk(c n, T, ;) = true}.

Fig. 2. Black-box certificate extractdk2,.. (m).

4 Bounded Commitments are Sufficient for Time-Stamping

In this section, we prove that bounded commitment schem#spaitial opening are
sufficient to construct secure time-stamping schemes. €hesecurity reductions use
a simple black-box certificate extractor (Fig. 2) and in theqgis we just show that a
big enough set of valid decommitmentsallows to break the binding property.

Our proofs do not only generalize the existing ones [7] bataso more efficient.
Presented theorems together with the previous separasoitts [7, 9] provide a clear
border between the well studied classical binding proeetike collision-freeness and
the properties needed for time-stamping. For bounded ctmmenit schemes the binding
property implies time-stamping security. Otherwise, ¢hastions are independent—
binding properties are not necessary [9] nor sufficient [7].

To clarify the presentation, we have omitted a sn@@(lV log N + t) term that
counts the computational effort needed to manage th& It valid decommitments,
as the contribution to the total working time is irrelevamt &ll reasonable values of
To be absolutely precise, one has to increase the time-lsdonthe binding property
by O(Nlog N + t) in Theorems 1-4.

Theorem 1 (Entropy based securlty)Every(ﬁt‘F ¢ )-binding andN-bounded list

commitment scheme is alsqiat -secure time-stamping scheme fér> 9.

’432N’ )

Proof. Let A = (Al,Ag) be at-time adversary that violate, ¢, =5, €)-security
promise, i.e.Adv"™(A) > ¢ andA, is sufficiently unpredictable (even for itself):

pk — Gen? (Cv n, ¢) — Al(pka w)a 53
Pr [Coll] := < .
(0, 80) «— A2(d), (1,81) «— A2(9) : ®g = 1 432N
If m = G\ﬁ then the black-box certificate extract§f, , (m) runs in tlmeﬁt‘ﬁ and

provides enough certificates to reveal a double opemngﬁbh‘e’i denote that two equal
messages; = x; are produced internally b§¢2, , (m). Then by the union bound

Pr(Coll"] < ) Prpk,w] ( =V p, [Coll|pk, w1]
pk,w1
m(m—1) m? & €
: <— —— < — .
ST g Prlells o N S w
Next, we estimate the number of valid document-certificatesgereated bycA, ., (m).
Let epkw, = Adv™(Alpk,w;) denote the probability that is successful for fixegk



andw;. As Pr [pk — Gen,wy < 2 : epew, = 5| > 5, we apply the Chernoff bound
for these(pk, w1 ) pairs withd = % andX; indicating(z;, s;) € V, and get

Pr (V] < 1.5V N|epwn > 5] <e "5 < 1/3 .

SinceV consists of identically distributed independent variablee apply the Birthday
bound. If|V| > 1.5v/N thenloc(s;) = loc(s;) for somei, j with probability> . Let
C be an adversary that rufi&, . (m) and then tries to find a double openinginThen

bind € ( _LVN) 1 y e € €
> — . — [ - - — —
Adv™"™(C) 5 1—e 8 5 Pr [Coll*] > 6§ 21=3
for N > 9 and we have obtained a desired contradiction. O

Theorem 2 (Entropy based security).Every (4—M é)-binding and N-bounded set

e 78
3

commitment scheme is(a t, giNT > 5) -secure time-stamping scheme fér> 6.

Proof. Similarly to the previous proof, leh = (A;,As) be at-time adversary that
violates a(t, t, %, s)—time—stamping security promise. In other words}v™(A) >

e andPr [Coll] < m. Fix m = 2&. Then the black-box certificate extractor
C := K., (m) then runs in timet2 . The Chernoff bound witht = 1 yields
Pr[|V] < Nlepkey > 5] <e T <1/2

]
Again, Pr [pk — Gen,wy «— 2 gpw > %} z

3
tion: Adv"™(C) > < - (1 - e*%) —Pr[Coll"] > & —m2. £ _ ¢ 0

Theorem 3 (Uniform security). Every(2¥ | £)-binding andN-bounded list commit-

e 72

ment scheme is algo, 22X, ¢)-black-box secure time-stamping scheme.
Proof. For the proof we have to fix a canonical black-box extractochmeeX*:

1. First runA; and storgc, n, ¢) < A (pk;w:) and sef([i] = L fori € {1,...,n}.
2. Fixm = 2X and fork € {1,...,m} do

— Compute an independent sampig:, si) < Az(¢). )

— If Verpi(c,n, xx, si) = true andX[loc(sy )] = L then set([loc(sk)] = @i
3. Output the last snapshot &f

Clearly, for everyt-time adversanA = (A1, A,), the extraction algorithrk” runs in
time @ and the extractdK is valid for the definition.

For the sake of contradiction, assume thatiane adversanA = (A;, As) violates
the security promise (4) w.rX. Let a pair(zy, si.) berevealingif z; # X[loc(sy)] in
Step 2 of KA. Then the probability thatzy., s ) is revealing must be larger tharfor
everyk € {1,...,m}, since the previous state difcan be viewed as a partial output of
KA. Let X}, be the corresponding zero-one indicator variable, Xg.= 1 if (zy, s%)

is revealing. Them;, = E[X;] > ¢ and the average &, = >/, X) is

E[S,]=EXi1+ - +Xn]=ec1+ - €n>me=2N .



On the other handE[S,,] < N + Pr[S,, > N] - 2& and thusPr [S,, > N| > £.
Therefore, with probability strictly more thanthere areV + 1 revealing pairgzy, s)
computed byK”. As the commitment scheme é-bounded, revealing pairs exist only
if n < N.Hence, atleast one slot must be overwritten if there\arel revealing pairs

and we have found a double opening with probability striotigre thans. a
Theorem 4 (Uniform security guarantee).Every(%, 5)-binding N-bounded set

commitment scheme is al %7 ¢)-black-box secure time-stamping scheme.

Proof. The construction given above is also valid for set commitisien a

Comparison with previous results.Our reductions are not completely novel. A similar
proof with a different reduction was given in [7] for hashdse Therefore, we compare
the time-success ratios. Recall that the minimal time-ssecatiax impliese(t) < £
and hence large ratios= oL lead to better security bounds.

In Thm. 1 we constructed a double opener with running tije @ and with
advantage, ~ ¢, based on a back-dating adversary with running tina@d advan-
tagee. Thus the change ratio ts ~ 48% for our reduction. If we adapt the reduction
presented in [7] for the exact security model we obtain arati 55, which is sig-
nificantly smaller forN > 600. In global-scaleime-stamping servicesy can be very
large (say millions or even billions) and our new reductigrfdr supersedes the previ-
ous one [7].

Similarly, one can verify thaty ~ ;5 for Thm. 3 and Thm. 4 but the security
guarantees are much stronger. To break the black-box seanradversary can produce
valid document-certificate pairs with low computationaiii entropy, which makes it
impossible to use the birthday paradox. It is easy to sedlibatxtractor must work in
time ©(£%) andv/N in the denominator is not achievable.

5 All Bounded Commitment Schemes are Knowledge-Binding

Both security definitions for time-stamping (Def. 1,2) agséd on heuristic assump-
tions. Namely, the future is modeled as@mputationally efficient stochastic process
Such an assumption has two major drawbacks. Firstly, itiisgtphically questionable
and causes practical problems in the classical framewoskaire computations [11]:
due to the non-uniform nature of such model, future docuseraty have arbitrary dis-
tributions. Secondly, the success of back-dating adviesses computed as an average
over the distribution of future documents and it might &tédleasy to “backdate” a fixed
document. To overcome these problems, we propose a newtgamtion where the
future is modeled as an advice string that is independepk.ofhe independence as-
sumption is essential. Otherwise, no computationally ibigdommitment scheme can
be secure, since the advice may contain explicit doubleriogs.



Definition 3. A commitment scheme (& 7, ¢)-knowledge-binding if for evergtime
adversaryA = (A1, Ay) there exist a dedicatecttime extractor machiné(, such that

pk « Gen, wy « 2, X« Ka(pk;wi),
AdvPM(A) = max Pr | (¢,n,0) — Ai(pkiwi), (z,5) — Az(¢,adv) :| <
aav ~ ~
(Verpk(e,n,z,8) =true Az € X) V [X| >n

whereadv varies over all advices of lengthand the probability is taken over the coins
of Gen, A; andA.. For list commitmentsY is a list and writez € X iff x = X[loc(s)].

The new definition explicitly states that there exists arciffitextraction strategy
XK thatis able (by observing the internal computations of tramitting algorithmA, )
to predict any bit-string: that is later "back-dated” bj.. I.e, in some sense already
existed before the commitment and no real back-datingksttaere performed.

But there is an even more intuitive interpretation. When dwvessary publishes a
commitmente, he implicitly fixes his level of knowledge about the comnéim and
no future actions can change it. As the level of knowledgesdae change in time, a
successful opening “proves” that the adversary alreadgvikrihe committed element
when the commitment was created. Hence, we can omit prodks@fledge at the
commitment stage and reduce the number of rounds in vari@tsgols. Thus, the new
notion is very similar to plaintext-awareness of publigtke@acryption schemes.

Finally, note that knowledge-binding is a necessary caomditor the multi-party
security of time-stamping schemes. In the ideal implententaTSS gives a lisX to a
trusted party who will later serve partial release queries X7 Hence, there must be
an efficient way to extract all documents that TSS can palynipen as a response
for any future message that is independenglgfi.e., the extractor machirf€, must
exist. To get multi-party security in the malicious modeg must also protect a honest
TSS against malicious clients. This can be done in an obwasby using digital
signatures, but due to the space limitations we defer tlwaiggson to follow-up articles.

Clearly, the knowledge-binding property can be estabtishrely by using white-
box reductions. In other words, we cannot efficiently cardtthe code ofKa given
only the code oA\, althoughK, itself is an efficient algorithm. Such reductions provide
substantially weaker security guaranteesfifoed hash functionkke SHA-1, since we
knowa priori that efficient collision finders must exist for SHA-1. Thexed, the claims
of existence without efficient construction strategiesvte no new information. As a
result, we can only talk about the security of hash functamifies, i.e., we have to
consider SHA-1 as a “typical” representative of a collisfoee hash function family.

The proofs consist of two main steps. First we analyze thawehof A and con-
struct a dedicated knowledge extractiig. Next we show thafK, is efficient and
Adv*P"(A) is sufficiently small. To construdta, we runA on all possible inputs and
find suitable triggering messagsd that forceA to reveal most of the valid certificates.
Next, we construcKa from A and the triggering messages. As the knowledge-binding
condition only requires thexistenceof I, the construction time is not an issue.

Theorem 5. For everyt > 0 andé > 0, there exists = (& +1)- O(t) such that every
(7, €)-binding list commitment scheme(is 7, ¢ + §)-knowledge binding.



Proof. Fix a¢-time adversanA and consider a giant status matpk, w1 ; adv, ws]
the rows of which are indexed by public keyis and random coins; of A;, whereas
the columns are indexed liybit advicesadv and random coing, of As. Define

W[pk w1 adv. w ] _ O, if Verpk(C,TL,x’S) — false ,
y W1, y W2 |OC(S), if Verpk(c,n,x,s) = true 5

where (¢, n, ¢) — Ai(pk;wi) and (z,s) «— As(¢,adv;ws). Note that few columns
of W cover most of the rows containing non-zero elements. Naneljnma 1 from
App. A assures the existenceDf= {(advi,w3), ..., (advg,wh)} such thaZ| < &
and for any fixed advice-randomness gaitv, w»):

Pr [(pk,W1) :0 7é W[pk7w17 adv,wg] g E[pkawl] A |£[pkawl]| < N] <9 ) (5)

whereL[pk,w1] = {W]pk,ws;adv,ws] : (adv,ws2) € T} is a set of revealed locations.
Now the constructiohof K, is evident:

1. Given(pk,w: ) store(c,n, ¢) — A (pk;w;) and setC[i] = L fori € {1,...,n}.
2. For eachadv,wy) € Z do

— Compute(z, s) «— Ax(¢, adv; ws).

— If Verpi(c, n, z, s) = true then setX[loc(s)] — z.
3. Output the last snapshot &f

To analyze the advantage &, we fix a pair(adv, ws). Let (¢, n, ¢) — A;(pk;wy)

and (z,s) < As(¢,adv;w2) as before. For valid decommitment valsgthe entry
X[loc(s)] = L only if |£[pk,w:]| < N and thus the inequality (5) given above yields
Pr[(pk,w1) : Verp(c,n,z, s) = true A X[loc(s)] = L] < 4. Alternatively, X can fail

if Verp(c,n,z,s) = true but X[loc(s)] # =. However, we can naturally combine
A1, Ay andX, into an adversar that outputs these double openings and performs

(& +1) - O(t) elementary operations. Consequentlyly®™(B) < ¢ and thus
Pr[(pk,w:) : Verpe(c,n, z, s) = true Az # X[loc(s)] # 1] <e .

As a result, we have obtained that for any gattv, w»):
Pr[(pk,w1) : Verp(c,n, x, s) = true A x # X[loc(s)] < 6 + ¢

and the claim follows. O

Theorem 6. For everyt > 0 ands > 0, there exists = (& +1)- O(t) such that every
(7,e)-binding set commitment scheméiisr, ¢ + ¢)-knowledge-binding.

" Note that all elements of the sBtare hardwired as explicit constants into the cod&af i.e.,
K a does notcomputeZ. As K a runs on a universal Turing machine, it must rewind the code
of A2 and thusKa performs at mosf(¢) extra steps to complete the loop of Step 2.



Proof. Fix at-time adversary and consider a status matii¥[pk, wy; adv, wo] that is
indexed identically to the previous proof but the entriesdefined differently:

if Vi = fal
Wipk, wi: adv, ws] = 0, | erpk(c,m, x, s) = false ,
x, if Verpk(e,n,x, s) = true ,

where (¢,n,¢) «— Ai(pk;wi) and (z,s) «— Az(¢,adv;ws). Then Lemma 1 from
App. A assures the existenceDf= {(advy,w}), ..., (advy,wh)} such thatZ| < &
and for every fixed advice-randomness faiv, ws):

Pr[(pk,w1) : 0 # W[pk, wy;adv, ws] & Lpk,w1] A |L[pk,w1]] < N] <6d, (6)

whereL[pk, w;] = {W[pk,w1;adv,ws] : (adv,ws) € T} is a set of revealed elements.
Now the construction aK, is straightforward:

1. Given(pk,w:) store(c, n, ¢) — Ay (pk;w;) and sefl «— 0.
2. For eachadv,wy) € Z do

— Compute(z, s) — Ax(¢, adv; ws).

— If Verp(c, n, x, s) = true then addr to X.
3. Output the last snapshotﬁif

To analyze the advantage®f, fix (adv, wz). Let(c, n, @) «— A1 (pk;w;) and(z, s) «—

Az (¢, adv, w,) as before. A& [pk, w1] = L]pk, w;] by the construction (see Lemma 1),
the inequality (6) yield®r [Veryy (¢, n,x,s) = true Az ¢ X A |X| < n < N] < 4. The
extractorXa can also fail whetVery (¢, n,x,s) = true butz ¢ X and 1X| > n.
Again, we can naturally combirfg , A, andX, into an adversar with running-time
(% +1)-0O(t) that runs all algorithms and extracts all valid openingsis&gjuently, the
restrictionAdv®™(B) < ¢ yieldsPr [Verp(c,n,z,s) = true Az ¢ X A|X| >n] <e
and we have obtained that for any p@dv, ws):

Pr [Verpk(e,n,z,s) =true Az ¢ §C] <d+e

and the claim follows. O

Efficiency of the new reduction. Again, we compute time-success ratios to compare
the efficiency of the new white-box reduction to the previblack-box ones. To have

a fair comparison we také ~ . Then Theorems 5 and 6 provide attacks against the
binding property with parameterg ~ (% + 1)t andey = ¢, provided that there
exist at-time adversary achieving+ § success. As a result, we obtain a change ratio
7= (Z+1)7t- =55 = 3y, which is better than the change ratio~ 5
provided by Thm. 3 and Thm. 4. The difference is not esserdtéler it comes from
slightly loose success boundsin Thm. 3 and Thm. 4.

6 Applications of Knowledge-Binding Commitments

Here, we briefly describe how knowledge-binding countiiedhash trees can be used
and why knowledge-binding property is important. Knowledgnding property can be



viewed as an indifference against outside advices. Sirtdléine plaintext-awareness,
the knowledge-binding property allows one to combine commants with other cryp-

tographic primitives without a fear of unwanted interfezenSuch interference often
makes it hard or impossible to prove the security of new acaosbns. If the secret or

public parameters of other primitives are independent efdbmmitment parameters
pk, then the rest of the protocol can be interpreted as an ettadvice. Hence, one can
use the standard hybrid argument technique even if the firémiare used concurrently.

Distributed and fine-grain time-stamping. Knowledge-binding commitments give
rise to a secure time-stamping service where a central $ba®ping authority (TSS)
computes and publishes the round commitnient) and distributes the respective cer-
tificates s; to the clients. But such service is susceptible to deniaden¥ice attacks.
Hence, it is more natural to consider a distributed servicerek independent servers
compute sub-commitments;, n;) and at the end of the round the master commitment
(¢,n) is compiled. Therefore, it is advantageous to use knowlddigging commit-
ments that facilitate fast merging of sub-commitments andtiy local certificate com-
putations. Count-certified hash trees have the followingartant property: every root
node(c;, n;) of a hash subtree forms a correct commitment. Moreoverngiwe root
nodes(c,,nr) and(cgr,ng) it is straightforward to compute the commitment of the
merged tree and update the corresponding certificates.

In a way, a set commitment scheme provides a really coaaa-gime-stamping
service. It is impossible to order the events inside the daXinList commitment pro-
vides only a partial solution, as clients have to trust thatfSS orders documents cor-
rectly in a single round. Tree-shaped list commitmentsphegerve knowledge-binding
w.r.t. the root of each subtree allow also fine-grained tgtanping even if the TSS acts
maliciously. Essentially, TSS has to send to a Client alt mmmmitmentsc;, n;) of
all preceding computations, then the Client has strongagueaes that after submitting
his query the TSS cannot insert any messages in the prefixedisthwithout getting
caught. Hence, count-certified hash trees could be used#sgfiain time-stamping.

Non-malleable partially releasable commitmentsTo show that knowledge-binding
commitments have other applications outside of the domfdime-stamping, we give
a construction of partially releasable non-malleable caments form non-malleable
string commitments and knowledge-binding commitments. jitst an informal exam-
ple, we do not formalize the claim due to the lack of space.

Recall that a commitment scheme is non-malleable if givenramitmentc it is
infeasible to construct a new commitment=# ¢ such that after seeing a certificate
s for z it is infeasible to output a valid certificaté for 2’ such thatz andz’ are re-
lated. LetZ = {cy, ..., ¢, } be alist of non-malleable commitments fer, . . ., z,, and
(C, D) « Comp(L) is computed by using a knowledge-binding commitment scheme
Then the resulting commitment scheme is non-malleablenfhe knowledge-binding
property it follows that after seeing a proof thatwas computed by using;, ad-
versary’s ability to output certificate, s) such thatPr [Ver(C,n, ¢, s) = true] does
not increase. Hence, the adversary knows all valid comnnitroertificate pairgc;, s;)
essentially before any commitment is opened. Therefore,malleability directly fol-
lows from the non-malleability of the lower-level commitnte
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A Combinatorial Extraction Lemma

Consider a finite matrixV[r; | the rows of which are indexed by € R and the
columns are indexed by € C. Moreover, assume that a certain probability measure
Pr [-] is defined over the row indicé8. Then it is straightforward to state and prove a
combinatorial lemma that we used for proving the knowletneling property.

Lemma 1. Foranyd > 0 and N € N, there exist a set of column indicésC Z C C
such thao < |Z| < & and for every column € C :

Prr—R:Wr;c] Z0AW]r;c] ¢ L[r] AN |L]r]] < N] <6,

wherel[r] = {W[r,c] : ¢ € T} \ {0} is the set of nonzero elements revealed by



Proof. Consider following iterative procedure:

1. SetZ = () and initialise row countersnt[r] = N forr € R.
2. While existsc € C such thafPr [r : W[r; ¢] # 0] > ¢ do
(a) Choose: such thafPr [ : W[r; ] # 0] > ¢ and insert into Z.
(b) For each row € R such thatW|r; ] # 0 do
— Storew «— W(r;c].
— Removew entries from the row.
If W[r; '] = wthenW([r,c'] < 0forc € C.
— Decrease countent[r] « cnt[r] — 1.
(c) Zero all rows wherent|[r] = 0.
— If ent[r] =0, setW[r; '] — 0for ¢’ € C.

Let V' = {r : 3W[r; ] # 0} denote nonzero rows and,4, N, denote the value of
N before and after update at Step 2. Let

uN] = Z Pr [r] cnt[r]

reN

be the average counter value. Then by the construgfidfyc.,] < u[No4] — § after a
single iteration of Step 2. As initiallg[N] < N, then afterf N/¢ | iterationsPr [N] <

u[N] < &. Note that the algorithm nullifies the elemei§r, ¢ only if they already
belong toL[r] or |£[r]] > N. In the end, each columncontains at most a-fraction
of elements that satisfy the predic&r; c] # 0 A W([r;c] ¢ L[r] A |L[r]] < N and

the claim follows. Note thaf can be empty. a
=19 L 7={1} L T={1,3} L T={1,3} L
12011 0 [02000]{1} [0200 0] {1} 1201 1] {1}
10302 ¢ (00302 {1} |0000O0O{1,3 |1030 2[{1,3}
20123 P=|00103|{2}=[(00000/{2,1} |20123[{1,2}
00010 0 00010 0 00010| 0 00010 0
00002 0 00002 0 00002 0 00002 0

Fig. 3. lllustration of Lemma 1. The first three sub-figures show hbe ¢olumns are selected
for the uniform distribution over the rows and for paramet@uesN = 2, § = 0.3, boldface
symbols denote the changed values. The last sub-figure ghedisal result. Boldface symbols
denote the revealed entries. Underlined symbols denotertiies that satisfy the predicate.



