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Abstract. We prove in a non-black-box way that every bounded list and set com-
mitment scheme isknowledge-binding. This is a new and rather strong security
condition, which makes the security definitions for time-stamping much more
natural compared to the previous definitions, which assumeunpredictabilityof
adversaries. As a direct consequence, list and set commitment schemes with par-
tial opening property are sufficient for secure time-stamping if the number of
elements has an explicit upper boundN . On the other hand, white-box reduc-
tions are in a sense strictly weaker than black-box reductions. Therefore, we also
extend and generalize the previously known reductions. Thecorresponding new
reductions areΘ(

√
N) times more efficient, which is important for global-scale

time-stamping schemes whereN is very large.

1 Introduction

Commitment schemes are basic building blocks in numerous cryptographic protocols.
The most important properties of commitment schemes are binding and hiding. A com-
mitment is hiding if it reveals no information about the committed message and binding
if it is impossible to change the committed message afterwards without detection. First
such schemes for committing a single bit were proposed by Blum [4] and by Bras-
sardet al [5] and were proven secure under the hardness of factoring assumption. Later
works have significantly improved their efficiency and weakened the underlying com-
plexity theoretic assumptions, see [14, 10] for further references. Here, we study the
so calledpartially releasablecommitments, in which one can compute a commitment
(also calleddigest) for a list X = (x1, . . . , xN ) of bit-strings, so that it is possible to
partially open the commitment for everyxi ∈ X without disclosing the other elements
of X. For openingxi it is sufficient to present a decommitment stringsi (also called
certificate). Achieving the hiding property is somewhat trivial, as onecan always add
another layer of commitments. Hence, our main emphasis is onthe binding property.
List commitments [3, 1, 17] that are only binding are known asone-way accumulators.
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In particular, we analyze the security of atime-stampingprotocol, where clients
send their requestsx1, . . . , xN to a Time-Stamping Server (TSS) who computes the
commitmentc and sends the corresponding certificatess1, . . . , sN back to the clients.
If c is published in an authentic way then everybody can verify that xi was generated
beforec was published. This principle is used in practical time-stamping schemes [12]
wherec is computed as the root of a hash tree. List commitment schemes were be-
lieved to be exactly what one needs for such kind of time-stamping. However, Buldas
et al [7] pointed out a flaw in the security proof of [12]. By giving acarefully crafted
oracle separation they showed that pure collision-resistance is insufficient to prove that
the hash tree time-stamping schemes [12] are secure. In other words, either there are
collision-resistant functions that are still insecure fortime-stamping, or the security of
time-stamping schemes follows from currently unknown complexity-theoretic results.
The key point of this paradoxical result is that the number ofcommitted elements is
potentially unbounded. In Sec. 4, we prove that all list and set commitments, where the
cardinality ofX has an explicit bound|X| ≤ N , are suitable for time-stamping. The
proof is given in the exact security framework and isΘ(

√
N) times more efficient than

the previous reduction [7]. This improvement is especiallyvaluable for global-scale
time-stamping schemes in whichN is very large.

In Sec. 5, we show that all binding bounded list and set commitments areknowledge-
binding. This is a new and extremely strong security requirement inspired from the se-
curity of time-stamping schemes. Its strength is comparable to theplaintext awareness
property, which is defined for public key encryption. The knowledge-binding property
is also much more intuitive requirement for time-stamping schemes than the previous
ones [7, 9], which use unpredictable probability distributions to model the stream of
“new documents” sent to a TSS. Roughly, the knowledge-binding property states that
for every efficient TSS, it is possible (by observing the commitment procedure) to effi-
ciently extract the listX of all documents that can be opened by the TSS in the future.
The dedicated extractor must know only the internal coin tosses of TSS and some pub-
lic parameters. Consequently, even if the TSS is malicious,it mustknowthe whole list
X before the corresponding commitment is published. This allows to prove the security
in the classicalideal vs real worldcomparison framework [11, pp.622–631,697–700].

Moreover, the notion of knowledge-binding commitments canbe useful in other
cryptographic protocols, because the ability to open a commitment does not change in
time and we may skip the proofs of knowledge in the commitmentphase. On the other
hand, the corresponding security proofs are not black box. This means that once we
have an efficient adversaryA that breaks the knowledge-binding conditionwe know
that there existsan efficient adversaryA′ that breaks the binding property of the corre-
sponding commitment scheme. However, we may have no efficient ways to construct
A′. Therefore, in reality the knowledge-binding property canbe violated but the com-
mitment scheme may still be practically binding—the efficient breaking procedure ex-
ists but is not known. Black-box security proofs in turn givean efficient procedure for
constructingA′ fromA. In this sense, Theorems 1–4 give substantially stronger security
guarantees for a fixed hash function (e.g. SHA-1) than Theorems 5 and 6.

In Sec. 6, we briefly discuss about other possible applications of knowledge-binding
such as distributed and fine-grained time-stamping.



Some of the details of this work have been omitted because of space limitations.
The missing details will be published in the IACR ePrint Archive.

2 Preliminaries and Notation

We use a non-uniform model of computations, where each algorithm A is specified as
an input of a universal multi-tape Turing machineU that first copies the code ofA to
its working-tape and then starts to interpret it.A is a t-time algorithmif U performs at
mostt elementary operations to interpret the code ofA independent of the input ofA.

By x ← D we mean thatx is chosen randomly according to a distributionD.
In particular, if A is an algorithm, thenx ← A(y) means thatx is chosen accord-
ing to the output distribution ofA on an inputy. Finite sets are identified with the
corresponding uniform distributions, e.g.,x ← {0, 1}ℓ means thatx is a uniformly
chosenℓ-bit string. If D1, . . . ,Dm are distributions andF (x1, . . . , xm) is a predi-
cate, thenPr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability that
F (x1, . . . , xm) is true after the ordered assignment ofx1, . . . , xm.

By a cryptographic primitiveP we mean a set of computable functions associated
with the advantage functionAdvP(·), such that for every adversarial algorithmA, the
advantageAdvP(A) is a positive real number. Mostly,AdvP(A) is defined as the non-
trivial success (scaled probability) in certain gamesec that captures the desired prop-
erties ofP. A primitive P is said to be(t, ε)-secure in terms ofsec if Advsec

P (A) ≤ ε
for everyt-time adversaryA. For example, by a(t, ε)-securecollision-resistant hash
functionwe mean a pairH = (Gen, h) of algorithms such that ifpk ← Gen is an
arbitrary output of the generation function thenh(pk, ·) = hpk(·) is a function of type
{0, 1}ℓ → {0, 1}m whereℓ > m; and for everyt-time adversaryA :

Advcoll
H (A) = Pr [pk←Gen, (x1, x2)←A(pk) : x1 6= x2 ∧ hpk(x1) = hpk(x2)] ≤ ε .

Time-success ratio.Quite often it is suitable for adversaries to find a trade-offbetween
plausible attacking-timet and the corresponding advantageε(t) againstP. If the min-
imum time-success ratiofor P is αP, thenε(t) ≤ t

αP
by definition. Often, we cannot

estimate anything else aboutP thanαP. Now, any black- or white-box reduction intro-
duces achange ratioγ = α1

α0
whereα0 is the time-success ratio of the basic primitive

andα1 is the ratio of the derived primitive, i.e., we have established a new approximate
boundε1(t) ≤ t

γα0
. Therefore, large values ofγ provide better approximating bounds.

Sampling bounds.Our proofs use several standard statistical bounds. LetX1, . . . , Xm

be identically distributed independent zero-one random variables withµ = Pr [Xi = 1]
and letX =

∑m
i=1 Xi. Then for any0 ≤ θ ≤ 1 the Chernoff bounds [13]

Pr [X ≤ (1− θ)µm] ≤ e−θ2mµ/2 , and Pr [X ≥ (1 + θ)µm] ≤ e−θ2mµ/3 .

We also need a Birthday bound to determine the collision probability. LetY1, . . . , Ym be
identically but arbitrarily distributed independent random variables with possible values

{1, . . . , N}. Then the probabilityp that allYi-s are different satisfiesp ≤ e−
m(m−1)

2N . In
particular, ifm ≥ 1.5

√
N andN ≥ 9 thenp ≤ 1

2 .



3 Partially Releasable Commitment Schemes

Set and list commitments. Most commitment schemes forℓ-bit strings facilitate only
complete disclosure of the committed input. In the context of time-stamping, the com-
plete input can be several gigabytes long whereas we actually need to disclose only a
few hundred bits. Therefore, we study commitment schemes that facilitate partial dis-
closure of inputs.List commitmentsare order-preserving: committed strings are ordered
tuples.Set commitmentsin turn do not provide any ordering. Like ordinary commit-
ment schemes, these commitments are specified by four basic algorithms:Gen, Com,
Cert andVer. Initialization algorithmGen generates public parameterspk. Elements
(m1, . . . , mn) are committed by computing(c, d) ← Compk(m1, . . . , mn), where the
commitmentc is sent to the receiver andd is kept by the sender for later use. To prove
thatmi was indeed used to compute the commitmentc, the sender generates a certifi-
cate5 s← Certpk(d, mi) the validity of which can be tested with theVer algorithm.

The commitment scheme isfunctionalif for any (c, d)← Compk(m1, . . . , mn) and
s← Certpk(d, mi), the verification resultVerpk(c, n, mi, s) = true with overwhelming
probability. For list commitments, the certificates contains also the exact locationi of
the decommitted element, denoted asloc(s) = i. We explicitly assume that a decom-
mitment certificate for a setX = {x1, . . . , xr} is a union of the corresponding element
certificatess1, . . . , sr denoted bys1 ∪ . . .∪ sr. Consequently, certificates can be freely
joined together and split into sub-certificates. For many commitment schemes such lists
can further be compressed but this is only an implementationdetail.

We omit the formal definition of the hiding property, since westudy only the fea-
tures related to the binding property. The binding propertyis different for set and list
commitments. For list commitments, the binding property isviolated if an adversary
can open thei-th element in two different ways:

Advbind(A) = Pr







pk← Gen, (c, n, x0, s0, x1, s1)← A(pk) :

x0 6= x1 ∧ loc(s0) = loc(s1)

∧ Verpk(c, n, x0, s0) = Verpk(c, n, x1, s1) = true






, (1)

where the probability is taken over the coin tosses of all relevant algorithms. Since
certificates are closed under union and there is no ordering for set commitments, the
only way to misbehave is to exceed the size ofX:

Advbind(A) = Pr

[

pk← Gen, (c, n, X, s)← A(pk) :

Verpk(c, n, X, s) = true ∧ |X| > n

]

, (2)

whereVerpk(c, n, X, s) first splitsX ands into components and then verifies each com-
ponentxi ∈ X separately by using the corresponding component-certificate si ∈ s.
We say that the commitment scheme is(τ, ε)-binding if for all τ -time adversaries
Advbind(A) ≤ ε. For unbounded adversaries, we speak aboutstatisticalε-binding.

Note that set and list commitments must explicitly specify the numbern of the
committed elements. Indeed, if the certificates do not reveal the size of the commitment,

5 To be precise,Cert should return a vector of certificates for each location ofmi in the list.



a malicious adversary can just hide some committed elementsand receivers can never
be sure if the commitment is fully opened. A commitment scheme is N -boundedif
Verpk(c, n, x, s) = false for all n > N .

List commitment schemes that satisfy only the binding properties are known asone-
way accumulators[1, 3, 17]. One-way accumulators that in addition to positive state-
mentsx ∈ X also allow to (compactly) prove negative statementsx 6∈ X are called
undeniable attesters[6]. The commonly used binding requirement for one-way accu-
mulators isn-times collision-freeness[1], which is equivalent to the binding property
of set commitments.

Time-stamping schemes.Time-stamping protocols process documents in batchesX1,
X2, X3, . . . that we callrounds. The rounds correspond to time periods of fixed duration
(one hour, one day, etc.) After thei-th period, a short commitmentci of the correspond-
ing batchXi is published. A documentx ∈ Xi precedes documenty, if there isj > 0
such thaty ∈ Xi+j . Obviously, for a fixed commitmentci there must be an efficient way
to prove thatx ∈ Xi. However, for documentsy 6∈ Xi such proofs must be infeasible to
create. Note thatci can be viewed as a classical set or list commitment to the setXi and
the corresponding proof ofx ∈ Xi as a certificate. Therefore, time-stamping schemes
share the same functionality and algorithmic description as the set and list commitment
schemes. Such a structural similarity is indeed remarkable. Still, careful studies of the
security requirements reveal considerable differences between time-stamping and com-
mitment schemes. Different security definitions exist for time-stamping schemes [7–9,
12]. In this paper, we adapt the strongest6 definition [9] for the non-uniform precise
security framework with minor modifications in notations.

Formal definitions of time-stamping schemes do not require thatn is explicitly given
as an argument to the verification algorithmVer, but negative results in [7] suggest
that time-stamping schemes (at least those without additional third parties) must be
bounded, i.e.,n has to be at least implicitly specified.

Intuitively, time-stamping schemes must be secure against“back-dating” and this it-
self raises a subtle issue: How to model the future? Most works [7–9] have taken an ap-
proach based on computational entropy. Document generation is modeled as an efficient
randomized procedure and the security guarantees are givenfor document distributions
with high enough computational entropy. More formally, an adversaryA = (A1, A2) is
(τ, δ)-unpredictableif for everyτ -time predictorΠ :

Advupr

A (Π) = Pr

[

ω1 ← Ω, pk← Gen, x̂← Π(pk, ω1),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ) : x̂ = x

]

≤ δ ,

whereω1 denotes the random coins ofA1 and the probability is taken over the coin
tosses of all relevant algorithms. The second stageA2 of the adversary models an effi-
cient document generation (back-dating) procedure.

6 There exist stronger security definitions for time-stamping schemes with additional (auditing)
parties [8]. The main drawback of those schemes is a large amount of extra communication.



Definition 1 (Entropy based security).A time-stamping scheme is(t, τ, δ, ε)-secure
if for every(τ, δ)-unpredictablet-timeA :

Advts(A) = Pr

[

ω1 ← Ω, pk← Gen, (c, n, φ)← A1(pk; ω1),

(x, s)← A2(φ) : Verpk(c, n, x, s) = true

]

≤ ε . (3)

Here,δ quantifies a trivial advantage. Indeed, consider the next adversaryA = (A1, A2):

– A1(pk; ω1) computes(c, d) ← Compk(x̂) and the corresponding valid certificate
s← Certpk(c, x̂) and outputs a tuple(c, 1, (x̂, s)).

– A2(x̂, s) generates a randomx so thatx = x̂ with probabilityδ, and outputs(x, s).

For everyτ the adversaryA is (τ, δ)-unpredictable. However, no matter how the time-
stamping scheme is defined, the advantageAdvts(A) of A is at leastδ. Hence, it is
reasonable to assume thatδ ≪ ε. Moreover, aslog 1

δ is an upper bound for the compu-
tational Rényi entropy, we implicitly assume that the computational Shannon entropy
of the future documents is at leastlog 1

δ w.r.t. the time-boundτ .
The biggest drawback of the entropy based definition is non-uniformity. The se-

curity definition is natural in the polynomial model but has some flaws when adapted
to the exact model. It only offers protection against(τ, δ)-unpredictable adversaries!
Hence, it does not exclude extremely successful adversaries that are justnot quite so
unpredictable. In theory, a time-stamping scheme could be protected against (τ, δ)-
unpredictable adversaries but still be totally insecure against(τ, δ+δ100)-unpredictable
adversaries. This flaw can be fixed by requiring strong uniformity in the definition:

Definition 2 (Black-box security).A time-stamping scheme is(t, τ, ε)-secure if there
exists aτ -time black-box extractor machineK such that for everyt-timeA :

Advts(A) = Pr







ω1 ← Ω, pk← Gen, X̂← K
A(pk;ω1,·)(pk),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ) :

(Verpk(c, n, x, s) = true ∧ x 6∈ X̂) ∨ |X̂| > n






≤ ε , (4)

whereω1 denotes random coins ofA1 andK gets a black-box access toA1(pk; ω1) and
A2(φ; ·). The working time ofKA(pk;ω1,·) includes the time needed to execute all oracle
calls. For list commitments, we treatX̂ as a list and writex ∈ X̂ iff x = X̂[loc(s)].

Intuitively, we state that malicious time-stamping servers cannot issue valid cer-
tificates for unknown documents, as there exists a well knownalgorithmKA(pk;ω1,·)

for efficiently reconstructing the list of all valid documents X̂. This algorithm can be
automatically constructed for everyt-time adversary.

It is straightforward to see that(t, τ, ε)-secure time-stamping scheme is always
(t, τ, δ, ε + Nδ) secure whereN ≥| X |, as one can useK in prediction. In Sec. 4,
we prove that every bindingN -bounded list commitment scheme is also a secure time-
stamping scheme. Still, there are quantitative differences between these two notions.

Practical constructions based on hash trees.Merkle trees [15] and count-certified
hash trees [16] (described below) constructed from collision-resistant hash functions



are binding but not hiding even if the hash function is modeled as a random oracle—a
release of an element (a leaf node) also reveals one neighboring element (the sibling
leaf node). Nevertheless, if we use Merkle trees to compute ashort commitment from
hiding and binding commitments, we get binding and hiding list and set commitments.

x1 x3x2 x4

x12

x14

x34h(x1x2) →

h(x12x34) →

h(x3x4) →

x1 x2

x12 x3

1

12

1

h(1x1x21) →

h(2x12x31) → x13

Fig. 1.Merkle hash tree for{x1, x2, x3, x4} and a count-certified hash tree for{x1, x2, x3}.

A Merkle hash treefor a listX is a binary tree the leaves of which are the elements of
X and each non-leaf node is a hash of its two children (Fig. 1, left). Nodes with a single
child can be avoided. Hence, every non-leaf node is assumed to have two children.

A count-certified hash tree(Fig. 1, right) is a binary tree which is similar to a Merkle
tree, except that its arcs are labeled withcounterseach of which equal to the number of
leaves in the corresponding subtree. Each non-leaf vertexv is a hashh(nLxLxRnR),
wherenL andnR are the counters of the left- and the right subtree respectively. The
counterc of the unique outgoing arc ofv is the sumnv = nL + nR.

Each hash tree can be represented as a commitment function(c, X) ← Compk(X),
wherec is the root hash value of the corresponding tree andpk denotes the public
parameters associated with the collision-resistant hash functionh. By the certificate
Certpk(X, xi) for xi ∈ X we mean the smallest amount of data needed to recompute the
root hash value. For example, in the Merkle hash tree (Fig. 1,left) the certificates2 for
x2 is s2 = ((x1, ), ( , x34)) which represents a sequence of hashing steps starting from
the leafx2 and ending with the root hash value, whereasdenotes anempty slotwhich
during the verification is filled with the hash of the previouspair. Similarly, in the count-
certified hash tree (Fig. 1, right) the certificate forx2 is s2 = ((1, x1, , 1), (2, , x3, 1)).
The verification functionVerpk(c, n, x, s) simply recomputes the root hash value by us-
ing s and compares it withc. It also checks whethern ≤ N . The verification algorithm
for count-certified trees also recomputes the intermediatecounter values to verify the
certificates, in particular if the counter of the root vertex isn.

Collision-Extraction Property. For hash trees with a fixed shape and count-certified
hash trees there is a straight and precise reduction of the binding property to the collision-
resistance ofh because of the following property: Ifx0 6= x1, Verpk(c, n, x0, s0) =
Verpk(c, n, x1, s1) = true, and loc(s0) = loc(s1), then the internalh-calls of these
two verifications comprise a collision forh. Moreover, if the tree is balanced, then the
collision can be extracted inO(|s0|+ |s1|) = O(log2 N) time.



1. ExecuteA1 in a black-box way and store(c, n, φ)← A1(pk; ω1).
2. Generatem independent samples(x1, s1)← A2(φ), . . . , (xm, sm)← A2(φ).
3. Output(c, n) and a set of valid pairsV = {(xi, si) : Verpk(c, n, xi, si) = true}.

Fig. 2. Black-box certificate extractorKA
cert(m).

4 Bounded Commitments are Sufficient for Time-Stamping

In this section, we prove that bounded commitment schemes with partial opening are
sufficient to construct secure time-stamping schemes. The new security reductions use
a simple black-box certificate extractor (Fig. 2) and in the proofs we just show that a
big enough set of valid decommitmentsV allows to break the binding property.

Our proofs do not only generalize the existing ones [7] but are also more efficient.
Presented theorems together with the previous separation results [7, 9] provide a clear
border between the well studied classical binding properties like collision-freeness and
the properties needed for time-stamping. For bounded commitment schemes the binding
property implies time-stamping security. Otherwise, these notions are independent—
binding properties are not necessary [9] nor sufficient [7].

To clarify the presentation, we have omitted a smallO(N log N + t) term that
counts the computational effort needed to manage the listV of valid decommitments,
as the contribution to the total working time is irrelevant for all reasonable values ofε.
To be absolutely precise, one has to increase the time-bounds for the binding property
by O(N log N + t) in Theorems 1–4.

Theorem 1 (Entropy based security).Every
(

6t
√

N
ε , ε

8

)

-binding andN -bounded list

commitment scheme is also a
(

t, t, ε3

432·N , ε
)

-secure time-stamping scheme forN ≥ 9.

Proof. Let A = (A1, A2) be at-time adversary that violates
(

t, t, ε3

432·N , ε
)

-security
promise, i.e.,Advts(A) ≥ ε andA2 is sufficiently unpredictable (even for itself):

Pr [Coll] := Pr

[

pk← Gen, (c, n, φ)← A1(pk; ω),

(x0, s0)← A2(φ), (x1, s1)← A2(φ) : x0 = x1

]

≤ ε3

432N
.

If m = 6
√

N
ε then the black-box certificate extractorKA

cert(m) runs in time6t
√

N
ε and

provides enough certificates to reveal a double opening. LetColl∗ denote that two equal
messagesxi = xj are produced internally byKA

cert(m). Then by the union bound

Pr [Coll∗] ≤
∑

pk,ω1

Pr [pk, ω1] ·
m(m− 1)

2
· Pr [Coll|pk, ω1]

≤ m(m− 1)

2
· Pr [Coll] ≤ m2

2
· ε3

432N
≤ ε

24
.

Next, we estimate the number of valid document-certificate pairs created byKA
cert(m).

Let εpk,ω1 = Advts(A|pk, ω1) denote the probability thatA is successful for fixedpk



andω1. As Pr
[

pk← Gen, ω1 ← Ω : εpk,ω1 ≥ ε
2

]

≥ ε
2 , we apply the Chernoff bound

for these(pk, ω1) pairs withθ = 1
2 andXi indicating(xi, si) ∈ V, and get

Pr [|V| ≤ 1.5
√

N |εpk,ω1 ≥ ε
2 ] ≤ e−

3
√

N

8 < 1/3 .

SinceV consists of identically distributed independent variables, we apply the Birthday
bound. If|V| ≥ 1.5

√
N thenloc(si) = loc(sj) for somei, j with probability> 1

2 . Let
C be an adversary that runsKA

cert(m) and then tries to find a double opening inV. Then

Advbind(C) ≥ ε

2
·
(

1− e−
3
√

N

8

)

· 1
2
− Pr [Coll∗] >

ε

6
− ε

24
=

ε

8

for N ≥ 9 and we have obtained a desired contradiction. ⊓⊔

Theorem 2 (Entropy based security).Every
(

4Nt
ε , ε

8

)

-binding andN -bounded set

commitment scheme is a
(

t, t, ε3

64N2 , ε
)

-secure time-stamping scheme forN ≥ 6.

Proof. Similarly to the previous proof, letA = (A1, A2) be at-time adversary that
violates a

(

t, t, ε3

64N2 , ε
)

-time-stamping security promise. In other words,Advts(A) ≥
ε andPr [Coll] ≤ ε3

64(N+1)2 . Fix m = 4N
ε . Then the black-box certificate extractor

C := K
A
cert(m) then runs in time4Nt

ε . The Chernoff bound withθ = 1
2 yields

Pr
[

|V| ≤ N |εpk,ω1 ≥ ε
2

]

≤ e−
N

4 < 1/2 .

Again, Pr
[

pk← Gen, ω1 ← Ω : εpk;ω ≥ ε
2

]

≥ ε
2 and we have obtained a contradic-

tion: Advbind(C) ≥ ε
2 ·

(

1− e−
N

4

)

− Pr [Coll∗] > ε
4 − m2

2 · ε3

64N2 = ε
8 . ⊓⊔

Theorem 3 (Uniform security). Every(2Nt
ε , ε

2 )-binding andN -bounded list commit-
ment scheme is also(t, 2Nt

ε , ε)-black-box secure time-stamping scheme.

Proof. For the proof we have to fix a canonical black-box extractor machineKA:

1. First runA1 and store(c, n, φ)← A1(pk; ω1) and set̂X[i] = ⊥ for i ∈ {1, . . . , n}.
2. Fix m = 2N

ε and fork ∈ {1, . . . , m} do
– Compute an independent sample(xk, sk)← A2(φ).
– If Verpk(c, n, xk, sk) = true andX̂[loc(sk)] = ⊥ then set̂X[loc(sk)] = xk.

3. Output the last snapshot ofX̂.

Clearly, for everyt-time adversaryA = (A1, A2), the extraction algorithmKA runs in
time 2Nt

ε and the extractorK is valid for the definition.
For the sake of contradiction, assume that at-time adversaryA = (A1, A2) violates

the security promise (4) w.r.t.K. Let a pair(xk, sk) berevealingif xk 6= X̂[loc(sk)] in
Step 2 ofKA. Then the probability that(xk, sk) is revealing must be larger thanε for
everyk ∈ {1, . . . , m}, since the previous state ofX̂ can be viewed as a partial output of
KA. Let Xk be the corresponding zero-one indicator variable, i.e.,Xk = 1 if (xk, sk)
is revealing. Thenεk = E[Xk] > ε and the average ofSm =

∑m
k=1 Xk is

E[Sm] = E [X1 + · · ·+ Xm] = ε1 + · · · εm > mε = 2N .



On the other hand,E[Sm] ≤ N + Pr [Sm > N ] · 2N
ε and thusPr [Sm > N ] > ε

2 .
Therefore, with probability strictly more thanε2 there areN +1 revealing pairs(xk, sk)
computed byKA. As the commitment scheme isN -bounded, revealing pairs exist only
if n ≤ N . Hence, at least one slot must be overwritten if there areN +1 revealing pairs
and we have found a double opening with probability strictlymore thanε

2 . ⊓⊔

Theorem 4 (Uniform security guarantee).Every (2Nt
ε , ε

2 )-binding N -bounded set
commitment scheme is also(t, 2Nt

ε , ε)-black-box secure time-stamping scheme.

Proof. The construction given above is also valid for set commitments. ⊓⊔

Comparison with previous results.Our reductions are not completely novel. A similar
proof with a different reduction was given in [7] for hash trees. Therefore, we compare
the time-success ratios. Recall that the minimal time-success ratioα impliesε(t) ≤ t

α
and hence large ratiosγ = α1

α0
lead to better security bounds.

In Thm. 1 we constructed a double opener with running timet0 ≈ 6t
√

N
ε and with

advantageε0 ≈ ε
8 , based on a back-dating adversary with running timet and advan-

tageε. Thus the change ratio isγ ≈ ε
48

√
N

for our reduction. If we adapt the reduction
presented in [7] for the exact security model we obtain a ratio γ ≈ ε

2N , which is sig-
nificantly smaller forN ≥ 600. In global-scaletime-stamping services,N can be very
large (say millions or even billions) and our new reduction by far supersedes the previ-
ous one [7].

Similarly, one can verify thatγ ≈ ε
4N for Thm. 3 and Thm. 4 but the security

guarantees are much stronger. To break the black-box security an adversary can produce
valid document-certificate pairs with low computational R´enyi entropy, which makes it
impossible to use the birthday paradox. It is easy to see thatthe extractor must work in
timeΘ(Nt

ε ) and
√

N in the denominator is not achievable.

5 All Bounded Commitment Schemes are Knowledge-Binding

Both security definitions for time-stamping (Def. 1,2) are based on heuristic assump-
tions. Namely, the future is modeled as acomputationally efficient stochastic process.
Such an assumption has two major drawbacks. Firstly, it is philosophically questionable
and causes practical problems in the classical framework ofsecure computations [11]:
due to the non-uniform nature of such model, future documents may have arbitrary dis-
tributions. Secondly, the success of back-dating adversaries is computed as an average
over the distribution of future documents and it might stillbe easy to “backdate” a fixed
document. To overcome these problems, we propose a new security notion where the
future is modeled as an advice string that is independent ofpk. The independence as-
sumption is essential. Otherwise, no computationally binding commitment scheme can
be secure, since the advice may contain explicit double-openings.



Definition 3. A commitment scheme is(t, τ, ε)-knowledge-binding if for everyt-time
adversaryA = (A1, A2) there exist a dedicatedτ -time extractor machineKA such that

Advk-bind(A) = max
adv

Pr







pk← Gen, ω1 ← Ω, X̂← KA(pk; ω1),

(c, n, φ)← A1(pk; ω1), (x, s)← A2(φ, adv) :

(Verpk(c, n, x, s) = true ∧ x 6∈ X̂) ∨ |X̂| > n






≤ ε ,

whereadv varies over all advices of lengtht and the probability is taken over the coins
of Gen, A1 andA2. For list commitments,̂X is a list and writex ∈ X̂ iff x = X̂[loc(s)].

The new definition explicitly states that there exists an efficientextraction strategy
KA that is able (by observing the internal computations of the committing algorithmA1)
to predict any bit-stringx that is later ”back-dated” byA2. I.e, in some sensex already
existed before the commitment and no real back-dating attacks were performed.

But there is an even more intuitive interpretation. When an adversary publishes a
commitmentc, he implicitly fixes his level of knowledge about the commitment and
no future actions can change it. As the level of knowledge does not change in time, a
successful opening “proves” that the adversary already “knew” the committed element
when the commitment was created. Hence, we can omit proofs ofknowledge at the
commitment stage and reduce the number of rounds in various protocols. Thus, the new
notion is very similar to plaintext-awareness of public-key encryption schemes.

Finally, note that knowledge-binding is a necessary condition for the multi-party
security of time-stamping schemes. In the ideal implementation, TSS gives a listX to a
trusted party who will later serve partial release queriesx ∈ X? Hence, there must be
an efficient way to extract all documents that TSS can potentially open as a response
for any future message that is independent ofpk, i.e., the extractor machineKA must
exist. To get multi-party security in the malicious model, we must also protect a honest
TSS against malicious clients. This can be done in an obviousway by using digital
signatures, but due to the space limitations we defer the discussion to follow-up articles.

Clearly, the knowledge-binding property can be established only by using white-
box reductions. In other words, we cannot efficiently construct the code ofKA given
only the code ofA, althoughKA itself is an efficient algorithm. Such reductions provide
substantially weaker security guarantees forfixed hash functionslike SHA-1, since we
knowa priori that efficient collision finders must exist for SHA-1. Therefore, the claims
of existence without efficient construction strategies provide no new information. As a
result, we can only talk about the security of hash function families, i.e., we have to
consider SHA-1 as a “typical” representative of a collision-free hash function family.

The proofs consist of two main steps. First we analyze the behavior of A and con-
struct a dedicated knowledge extractorKA. Next we show thatKA is efficient and
Advk-bind(A) is sufficiently small. To constructKA, we runA on all possible inputs and
find suitable triggering messagesadv that forceA to reveal most of the valid certificates.
Next, we constructKA from A and the triggering messages. As the knowledge-binding
condition only requires theexistenceof KA, the construction time is not an issue.

Theorem 5. For everyt > 0 andδ > 0, there existsτ = (N
δ +1) ·O(t) such that every

(τ, ε)-binding list commitment scheme is(t, τ, ε + δ)-knowledge binding.



Proof. Fix a t-time adversaryA and consider a giant status matrixW[pk, ω1; adv, ω2]
the rows of which are indexed by public keyspk and random coinsω1 of A1, whereas
the columns are indexed byt-bit advicesadv and random coinsω2 of A2. Define

W[pk, ω1; adv, ω2] =

{

0, if Verpk(c, n, x, s) = false ,

loc(s), if Verpk(c, n, x, s) = true ,

where(c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Note that few columns
of W cover most of the rows containing non-zero elements. Namely, Lemma 1 from
App. A assures the existence ofI =

{

(adv1, ω
1
2), . . . , (advk, ωk

2 )
}

such that|I| ≤ N
δ

and for any fixed advice-randomness pair(adv, ω2):

Pr [(pk, ω1) : 0 6= W[pk, ω1; adv, ω2] 6∈ L[pk, ω1] ∧ |L[pk, ω1]| < N ] ≤ δ , (5)

whereL[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed locations.
Now the construction7 of KA is evident:

1. Given(pk, ω1) store(c, n, φ)← A1(pk; ω1) and set̂X[i] = ⊥ for i ∈ {1, . . . , n}.
2. For each(adv, ω2) ∈ I do

– Compute(x, s)← A2(φ, adv; ω2).

– If Verpk(c, n, x, s) = true then set̂X[loc(s)]← x.

3. Output the last snapshot ofX̂.

To analyze the advantage ofKA, we fix a pair(adv, ω2). Let (c, n, φ) ← A1(pk; ω1)
and (x, s) ← A2(φ, adv; ω2) as before. For valid decommitment values, the entry
X̂[loc(s)] = ⊥ only if |L[pk, ω1]| < N and thus the inequality (5) given above yields
Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ X̂[loc(s)] = ⊥] ≤ δ. Alternatively,KA can fail
if Verpk(c, n, x, s) = true but X̂[loc(s)] 6= x. However, we can naturally combine
A1, A2 andKA into an adversaryB that outputs these double openings and performs
(N

δ + 1) ·O(t) elementary operations. Consequently,Advbind(B) ≤ ε and thus

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x 6= X̂[loc(s)] 6= ⊥] ≤ ε .

As a result, we have obtained that for any pair(adv, ω2):

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x 6= X̂[loc(s)]] ≤ δ + ε

and the claim follows. ⊓⊔

Theorem 6. For everyt > 0 andδ > 0, there existsτ = (N
δ +1) ·O(t) such that every

(τ, ε)-binding set commitment scheme is(t, τ, ε + δ)-knowledge-binding.

7 Note that all elements of the setI are hardwired as explicit constants into the code ofKA, i.e.,
KA does notcomputeI. As KA runs on a universal Turing machine, it must rewind the code
of A2 and thusKA performs at mostO(t) extra steps to complete the loop of Step 2.



Proof. Fix a t-time adversaryA and consider a status matrixW[pk, ω1; adv, ω2] that is
indexed identically to the previous proof but the entries are defined differently:

W[pk, ω1; adv, ω2] =

{

0, if Verpk(c, n, x, s) = false ,

x, if Verpk(c, n, x, s) = true ,

where (c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Then Lemma 1 from
App. A assures the existence ofI =

{

(adv1, ω
1
2), . . . , (advk, ωk

2 )
}

such that|I| ≤ N
δ

and for every fixed advice-randomness pair(adv, ω2):

Pr [(pk, ω1) : 0 6= W[pk, ω1; adv, ω2] 6∈ L[pk, ω1] ∧ |L[pk, ω1]| < N ] ≤ δ , (6)

whereL[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed elements.
Now the construction ofKA is straightforward:

1. Given(pk, ω1) store(c, n, φ)← A1(pk; ω1) and set̂X← ∅.
2. For each(adv, ω2) ∈ I do

– Compute(x, s)← A2(φ, adv; ω2).
– If Verpk(c, n, x, s) = true then addx to X̂.

3. Output the last snapshot ofX̂.

To analyze the advantage ofKA, fix (adv, ω2). Let (c, n, φ)← A1(pk; ω1) and(x, s)←
A2(φ, adv, ω2) as before. AŝX[pk, ω1] = L[pk, ω1] by the construction (see Lemma 1),
the inequality (6) yieldsPr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| < n ≤ N ] ≤ δ. The
extractorKA can also fail whenVerpk(c, n, x, s) = true but x /∈ X̂ and |X̂| ≥ n.
Again, we can naturally combineA1, A2 andKA into an adversaryB with running-time
(N

δ +1)·O(t) that runs all algorithms and extracts all valid openings. Consequently, the
restrictionAdvbind(B) ≤ ε yieldsPr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| ≥ n] ≤ ε
and we have obtained that for any pair(adv, ω2):

Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂] ≤ δ + ε

and the claim follows. ⊓⊔

Efficiency of the new reduction. Again, we compute time-success ratios to compare
the efficiency of the new white-box reduction to the previousblack-box ones. To have
a fair comparison we takeδ ≈ ε. Then Theorems 5 and 6 provide attacks against the
binding property with parameterst0 ≈ (N

δ + 1)t and ε0 = ε, provided that there
exist at-time adversary achievingε + δ success. As a result, we obtain a change ratio
γ = α1

α0
≈ (N

δ + 1)−1 · ε
ε+δ ≈ ε

2N , which is better than the change ratioγ ≈ ε
4N

provided by Thm. 3 and Thm. 4. The difference is not essentialrather it comes from
slightly loose success bounds in Thm. 3 and Thm. 4.

6 Applications of Knowledge-Binding Commitments

Here, we briefly describe how knowledge-bindingcount-certified hash trees can be used
and why knowledge-binding property is important. Knowledge-binding property can be



viewed as an indifference against outside advices. Similarto the plaintext-awareness,
the knowledge-binding property allows one to combine commitments with other cryp-
tographic primitives without a fear of unwanted interference. Such interference often
makes it hard or impossible to prove the security of new constructions. If the secret or
public parameters of other primitives are independent of the commitment parameters
pk, then the rest of the protocol can be interpreted as an external advice. Hence, one can
use the standard hybrid argument technique even if the primitives are used concurrently.

Distributed and fine-grain time-stamping. Knowledge-binding commitments give
rise to a secure time-stamping service where a central time-stamping authority (TSS)
computes and publishes the round commitment(c, n) and distributes the respective cer-
tificatessi to the clients. But such service is susceptible to denial-of-service attacks.
Hence, it is more natural to consider a distributed service wherek independent servers
compute sub-commitments(ci, ni) and at the end of the round the master commitment
(c, n) is compiled. Therefore, it is advantageous to use knowledge-binding commit-
ments that facilitate fast merging of sub-commitments and mostly local certificate com-
putations. Count-certified hash trees have the following important property: every root
node(ci, ni) of a hash subtree forms a correct commitment. Moreover, given two root
nodes(cL, nL) and(cR, nR) it is straightforward to compute the commitment of the
merged tree and update the corresponding certificates.

In a way, a set commitment scheme provides a really coarse-grain time-stamping
service. It is impossible to order the events inside the round X. List commitment pro-
vides only a partial solution, as clients have to trust that the TSS orders documents cor-
rectly in a single round. Tree-shaped list commitments thatpreserve knowledge-binding
w.r.t. the root of each subtree allow also fine-grained time-stamping even if the TSS acts
maliciously. Essentially, TSS has to send to a Client all root commitments(ci, ni) of
all preceding computations, then the Client has strong guarantees that after submitting
his query the TSS cannot insert any messages in the prefix of the list without getting
caught. Hence, count-certified hash trees could be used for fine-grain time-stamping.

Non-malleable partially releasable commitments.To show that knowledge-binding
commitments have other applications outside of the domain of time-stamping, we give
a construction of partially releasable non-malleable commitments form non-malleable
string commitments and knowledge-binding commitments. Itis just an informal exam-
ple, we do not formalize the claim due to the lack of space.

Recall that a commitment scheme is non-malleable if given a commitmentc it is
infeasible to construct a new commitmentc′ 6= c such that after seeing a certificate
s for x it is infeasible to output a valid certificates′ for x′ such thatx andx′ are re-
lated. LetL = {c1, . . . , cn} be a list of non-malleable commitments forx1, . . . , xn and
(C, D)← Compk(L) is computed by using a knowledge-binding commitment scheme.
Then the resulting commitment scheme is non-malleable. From the knowledge-binding
property it follows that after seeing a proof thatci was computed by usingxi, ad-
versary’s ability to output certificates(c, s) such thatPr [Ver(C, n, c, s) = true] does
not increase. Hence, the adversary knows all valid commitment-certificate pairs(ci, si)
essentially before any commitment is opened. Therefore, non-malleability directly fol-
lows from the non-malleability of the lower-level commitment.
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5. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.JCSS,
vol.37, pages 156–189, 1988.

6. A. Buldas, P. Laud, H. Lipmaa. Eliminating counterevidence with applications to account-
able certificate management.Journal of Computer Security, 10(3), pages 273–296, 2002.

7. A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In Proc. ofASI-
ACRYPT 2004, LNCS 3329, pages 500–514, 2004.

8. A. Buldas, P. Laud, M. Saarepera, and J. Willemson. Universally composable time-stamping
schemes with audit. InISC05, LNCS 3650, pages 359–373, 2005.

9. A. Buldas, S. Laur. Do broken hash functions affect the security of time-stamping schemes?
In Proc. ofACNS’06, LNCS 3989, pages 50–65, 2006.
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A Combinatorial Extraction Lemma

Consider a finite matrixW[r; c] the rows of which are indexed byr ∈ R and the
columns are indexed byc ∈ C. Moreover, assume that a certain probability measure
Pr [·] is defined over the row indicesR. Then it is straightforward to state and prove a
combinatorial lemma that we used for proving the knowledge-binding property.

Lemma 1. For anyδ > 0 andN ∈ N, there exist a set of column indices∅ ⊆ I ⊆ C
such that0 ≤ |I| ≤ N

δ and for every columnc ∈ C :

Pr [r ←R : W[r; c] 6= 0 ∧W[r; c] /∈ L[r] ∧ |L[r]| < N ] ≤ δ ,

whereL[r] = {W[r, c] : c ∈ I} \ {0} is the set of nonzero elements revealed byI.



Proof. Consider following iterative procedure:

1. SetI = ∅ and initialise row counterscnt[r] = N for r ∈ R.
2. While existsc ∈ C such thatPr [r : W[r; c] 6= 0] ≥ δ do

(a) Choosec such thatPr [r : W[r; c] 6= 0] ≥ δ and insertc into I.
(b) For each rowr ∈ R such thatW[r; c] 6= 0 do

– Storew ←W[r; c].
– Removew entries from the row.

If W[r; c′] = w thenW[r, c′]← 0 for c′ ∈ C.
– Decrease countercnt[r]← cnt[r]− 1.

(c) Zero all rows wherecnt[r] = 0.
– If cnt[r] = 0, setW[r; c′]← 0 for c′ ∈ C.

LetN = {r : ∃W[r; c] 6= 0} denote nonzero rows andNold,Nnew denote the value of
N before and after update at Step 2. Let

µ[N ] =
∑

r∈N
Pr [r] cnt[r]

be the average counter value. Then by the constructionµ[Nnew ] ≤ µ[Nold] − δ after a
single iteration of Step 2. As initiallyµ[N ] ≤ N , then after⌊N/δ⌋ iterationsPr [N ] ≤
µ[N ] < δ. Note that the algorithm nullifies the elementsW[r, c′] only if they already
belong toL[r] or |L[r]| ≥ N . In the end, each columnc contains at most aδ-fraction
of elements that satisfy the predicateW[r; c] 6= 0 ∧W[r; c] /∈ L[r] ∧ |L[r]| < N and
the claim follows. Note thatI can be empty. ⊓⊔

I = ∅ L I = {1} L I = {1, 3} L I = {1, 3} L
1 2 0 1 1 ∅
1 0 3 0 2 ∅
2 0 1 2 3 ∅
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 3 0 2 {1}
0 0 1 0 3 {2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 0 0 0 {1, 3}
0 0 0 0 0 {2, 1}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

1 2 0 1 1 {1}
1 0 3 0 2 {1, 3}
2 0 1 2 3 {1, 2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

Fig. 3. Illustration of Lemma 1. The first three sub-figures show how the columns are selected
for the uniform distribution over the rows and for parametervaluesN = 2, δ = 0.3, boldface
symbols denote the changed values. The last sub-figure showsthe final result. Boldface symbols
denote the revealed entries. Underlined symbols denote theentries that satisfy the predicate.


