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Abstract. Exponent splitting is a classical technique to protect mod-
ular exponentiation against side-channel attacks. Although it is rarely
implemented due to efficiency reasons, it is widely considered as a highly-
secure solution. Therefore it is often used as a reference to benchmark
new countermeasure proposals.
In this paper, we make new observations about the statistical behavior
of the splitting of the exponent. We look at the correlations between the
two shares, and show an important imbalance. Later, we show how to
use this imbalance in higher-order attacks (mostly based on address-bit,
safe-error and fault analysis). We also present experimental results to
estimate their feasibility.

1 Introduction

Modular exponentiation is frequently used by public-key cryptosystems, for ex-
ample RSA [17] or DSA [16]. However, data manipulated during these compu-
tations should generally be kept secret, since any leakage of information (even
only a few bits of secret information) may be useful to an attacker. For example,
during the generation of an RSA signature by a cryptographic device, the secret
exponent is used to transform an input related to the message into a digital
signature via modular exponentiation.

In recent years, many methods have been proposed to attack these algo-
rithms, using a physical source of information, instead of the usual cryptographic
inputs and outputs. The first important result was due to Kocher who suggested
to use timing information to retrieve secret keys manipulated by the crypto-
graphic operations [14]. Another interesting idea was proposed by Boneh et al.
who suggested to modify the physical environment of a cryptographic device to
create a fault during the computations [3]. Faulty results sometimes leak infor-
mation about the secret key.

These attacks, generally called side-channel attacks, may represent an
important threat for systems. Indeed it is often assumed that cryptographic
devices are tamper-resistant, while naive implementations often leak information
about the secrets stored and manipulated by the device. Many attacks, either
passive (like Kocher’s timing attack) or active (like Boneh et al.’s fault attack),
have been studied, and some generic countermeasures were proposed. Among the



possible protection methods, an interesting direction [4], inspired by the well-
known secret sharing techniques [18] consists in splitting the secret data in two
(or more) shares. Then two (or more) separate computations are performed (one
on each share), such that the actual output can be retrieved from the different
results. This idea, initially introduced by Chari et al. in [4] was further developed
by Clavier and Joye in the case of modular exponentiation [6]. Similar methods
also exist for secret-key algorithms [10] and for scalar multiplication on elliptic
curves [19].

For modular exponentiation, it is called the exponent splitting method
and is widely considered as a secure solution to thwart side-channel attacks.
However its inefficiency (it roughly doubles the execution time) is an important
limitation in practice. Recent countermeasures (see [5] for instance) often use
the exponent splitting method as a reference to evaluate the security level they
achieve.

In this paper, we make new observations about the statistical behavior of
the sharing method. As a result, the two separate modular exponentiations have
strong correlations. Later, we exploit these correlations in higher-order side-
channel attacks, i.e. attacks that analyse simultaneously the physical informa-
tion at two different instants in the computation. More precisely, we describe
4 new higher-order attacks against this countermeasure. They work when all
the exponentiation are protected against Simple Power Analysis (SPA), and can
even defeat some extra randomization countermeasures. Three of the four at-
tacks are active attacks, and as such require the injection of faults during the
cryptographic computations.

Our paper is constructed as follows : first, we remind the Exponentiation
Splitting method, as well as several popular side-channel attack techniques in
this context. Then, we describe our new results : we start by our new statistical
observations, and we continue by suggesting three new high-order fault attacks.

2 The Exponent Splitting Countermeasure

The idea to share a secret in several parts was first introduced by Shamir in [18]
for a cryptographic purpose. Later, Chari et al. suggested to split a cryptographic
computation in several shares [4], in such a way that :

– The actual output can be retrieved from the outputs of each partial compu-
tation.

– One needs to attack the scheme as many times as the number of shares in
order to retrieve the secret.

In particular, they argued that this approach was a reasonable countermeasure
against side-channel attacks. For instance, randomizing the splitting algorithm
allows to counter attacks based on statistical analysis.

More specifically in the case of modular exponentiation, Clavier and Joye
introduced the idea of exponent splitting to thwart side-channel attacks [6].
Similar ideas were described in [19] in the case of scalar exponentiation on elliptic



curves. Besides the switching from multiplicative to additive notation, the idea
of both methods is essentially the same.

2.1 Definition

Let us consider a secret exponent, noted

d =
n−1∑
i=0

di.2i

In many cryptographic algorithms (RSA for instance), one needs to raise some
input M to the power d, modulo some large number N . The result is noted :

S = Md mod N =
n−1∏
i=0

Mdi.2
i

mod N

The main idea of the splitting technique is to pick a random r (smaller than
d)1 and to compute the value r∗ = d− r. Then, one computes separately (Sr =
Mr mod N) and (Sr∗ = Mr∗ mod N) from which it is easy to recover S by :

S = Sr · Sr∗ = M (r+r∗) mod N = Md mod N

A natural idea is that, since any of the two exponentiations consists in basi-
cally raising M to a random exponent, it is sufficient to protect one of the two
exponentiations against side-channel attacks.

2.2 Alternative solutions

Because r is purely random, it seems that this countermeasure offers a very high
level of security. Alternative protection methods can be grouped in two classes :

– Those based on randomizing the input data (either M or d), prior to the
exponentiation algorithm [7, 14]

– Those based on randomizing the exponentiation algorithm itself (see [5, 11]).

For many of these countermeasures used alone, some problems have been iden-
tified [8]. So it is customary to combine several countermeasures in implementa-
tions, provided it does not affect too badly the performances.

No attack is known against the exponent splitting method, even without
additional countermeasure (some basic SPA-protection is still needed, as shown
in the next Section). However, the exponent splitting is much less efficient than
the alternative propositions, since it doubles the length of the computation. The
goal of some recent proposals (see [5] for instance) is to reach the same level of
security than exponent splitting, at a more reasonable cost.
1 one could think of picking a random r smaller than ϕ(N). Although this does not

totally thwart our attacks, it changes the analysis as pointed out in Section 5.4



3 Some Usual Side-Channel Attacks

In this section, we describe some popular side-channel attacks against modular
exponentiations. In general, one distinguishes between passive attacks where
an attacker observes some physical variable in the environment, and active
attacks where the physical environment is modified by the attacker.

Attacks can also be sorted according to which physical mean is used. As an
example, many papers focus on power attacks, where the source of information
is the power consumption of the cryptographic device. Regarding active attacks
(e.g. fault attacks), it is not always specified which mean is used to inject a fault.
Popular methods used in practice include light and power glitches.

3.1 SPA

Modular exponentiation is generally implemented using a sequence of squaring
and multiplication modulo N . Simple Power Analysis (SPA) [15] is based on the
natural idea that multiplication and squaring may not result in the same power
consumption. It is therefore a passive attack, where one monitors power traces
of a cryptographic device executing a modular exponentiation2. One expects to
retrieve the sequence of squaring and multiplication that was actually executed,
from the power traces.

In a naive implementation of modular exponentiation, the multiplication at
step i is executed if and only if di = 1. Therefore an attacker learns if di = 1
by simply looking if a multiplication was executed at step i. It is quite
simple to thwart SPA by always executing the squaring and the multiplication at
step i. When di = 0, the multiplication is a useless operation, so the “square-and-
multiply always” algorithm, as depicted in Figure 1 is slightly slower than a naive
implementation. It is a very popular algorithm, often implemented in practice

Input: a message M , an n-bit integer d =
Pn−1

i=0 di2
i

Output: Md

Q[0] = 1
for i from n− 1 down to 0

Q[0] = Q[0]2

Q[1] = Q[0]×M
Q[0] = Q[di]

return Q[0]

Fig. 1. “Square-and-multiply always” algorithm, resistant against SPA

(sometimes in addition to other countermeasures). This SPA-protection remains
2 SPA has been primarily developed as a power attack, however it adapts very simply

to other physical sources of information, like electromagnetic radiations



a requirement for the security of Exponent Splitting. Otherwise an attacker can
learn separately r and r∗ by running the SPA twice and then reconstruct

d = r + r∗

However it may seem sufficient to protect only one of the two exponentiations if
one considers only SPA. Indeed, since r is random, an attacker learns basically
nothing about d if he obtains only r or d − r. However, protecting only one of
the two modular exponentiations is not a very natural solution.

3.2 Fault Attacks

Cryptographic devices are often sensitive to perturbations of their environ-
ment [3]. Fault attacks are based on the assumption that the normal execution of
the modular exponentiation can be modified by such physical perturbation. This
goal is generally reached by light or power glitches, or temperature variations.

For instance, assume that an attacker is able to flip the value of the bit di

during the exponentiation of the input M . Then, instead of the correct result S,
the attacker obtains the “faulty” result :

S′ = S ·M2i

if di = 0 and
S′ = S ·M−2i

if di = 1. Therefore an attacker learns one bit of the secret exponent, by
comparing one correct and one faulty modular exponentiation.

3.3 Safe errors attacks

Safe errors attacks can be viewed as an enhancement of fault attacks, adapted
to thwart some countermeasures. The attacker uses the fact that some of the
operations that are executed can be useless. For instance, in the “square-and-
multiply always” algorithm of Figure 1, the multiplication is useless when di = 0.

If a fault is injected at this step of the computation, the result of the expo-
nentiation will be S′ = S when di = 0 and an invalid value otherwise. Like for a
basic fault attack, comparing one correct and one faulty modular exponentiation
allows an attacker to learn one bit of d. Moreover, the underlying assumptions
are much lighter : it is easier to inject an arbitrary fault, than a fault
that specifically flips one bit of the exponent.

Both faults and safe-error attacks do not apply to exponent splitting, because
learning one bit of r (or r∗) does not provide any information about d.

3.4 Address-bit attacks

The address-bit attack is a specific attack to target algorithms like the “square-
and-multiply always” of Figure 1, where the fact that di is 0 or 1 does not affect



the intermediate values that are computed, but affects instead the addresses
that are manipulated. For instance, when di = 1, Q[1] will be manipulated at
the last stage of round i, while it is Q[0] otherwise.

Power attacks [15] or ElectroMagnetic (EM) analysis [9] are often based on
a correlation between the manipulated data and the physical source of infor-
mation. However, it is also known that addresses of manipulated registers
can affect the power dissipation or the EM radiation. Address-bit attacks have
been developed to take advantage of such properties [12]. Suppose we use EM
as the physical source of information and that our probe is physically closer to
register A than register B. If a group of experiments all read the register A, their
EM signature will be significantly different from a group of experiments reading
register B.

This idea has been used to break the basic “square-and-multiply-always”
algorithm : since there is no extra randomization, the address-bit is always di

at step i. Therefore the EM signature at this stage of the computation depends
on di. However this attack no longer works for the exponent splitting method,
since the address-bits are randomized at each execution.

3.5 Impact on Exponent Splitting

We observed that, taken separately, none of this well-known attack techniques
allows to break the Exponent Splitting protection. Indeed, each exponentiation
uses a random exponent, so attacks requiring some degree of randomization are
not possible.

In addition, provided at least one of the exponentiation is SPA-protected,
SPA does not work against the Exponent Splitting. However, in practice, it is
better to protect both exponentiations against SPA. Otherwise, an at-
tacker could mount a combined attack : apply SPA to the unprotected expo-
nentiation to learn (for instance) r, then attack the remaining SPA-protected
exponentiation by other means.

For instance, one could think of an address-bit attack on Mr∗ , assuming
prior knowledge of r : the attacker repeats several time the computation for
a fixed given M . He makes an assumption about the i Least Significant Bits
(LSB) of the secret d. From this guess and from r, he gets one candidate for the
i LSB’s of r∗ of each computation. Then he looks at the i-th step of Mr∗ and
performs an address-bit attack, as described in Section 3.4. If the guess is right,
he will observe two groups with significantly different EM signatures. Otherwise,
he will just observe some random data. So he learns the i LSB’s of d and it is
straightforward to repeat the process to learn more bits of d.

To summarize, it is recommended to protect both exponentiations against
SPA, in order to thwart combined attacks. With this assumption, no attack is
known against the exponent splitting protection. In particular no additional
countermeasure (like exponent randomization for instance) is needed.



4 New Attacks Against the Exponent Splitting

We focus on some statistical properties of the exponent splitting, at the bit
level. Since r is randomly drawn, it does not leak information about d when
considered alone3. However, the pair (r, r∗) is not uniformly distributed, since it
always satisfies

r + r∗ = d

We explore the statistical impact of this relation at the bit-level. Later, we use
the observed imbalance to mount side-channel attacks.

4.1 Statistical properties of the exponent splitting

Although each bit of r and r∗ takes the values 0 or 1 with probability 0.5,
there is a bias in the distribution of the i-th bits of the pair (r, r∗). We denote
respectively by ri, r∗i and di the i-th bits of r, r∗ and d. Besides, the i-th carry
bit in the addition r + r∗ = d is noted ci. At the bit level, the following relation
is satisfied :

ci + ri + r∗i = di + 2.ci+1 (1)

In particular, we have
ci ⊕ ri ⊕ r∗i = di (2)

Let also pi denote the probability that ci = 0. The probability is taken over all
the possible choices of r and r∗. Initially, p0 = 1.

Suppose that di = 0. Since ri is drawn at random, when ci = 0, we get from
(2) that :

(ri, r
∗
i ) = (0, 0)

with probability 0.5 and
(ri, r

∗
i ) = (1, 1)

with probability 0.5. In the first case, we obtain from (1) that ci+1 = 0, while in
the second case ci+1 = 1.

Similarily, when ci = 1, it is equaly likely that (ri, r
∗
i ) is equal to (0, 1) or

(1, 0). In both cases, we get ci+1 = 1. Therefore, the transition rule for these
probabilities can be summarized as in Table 1. In the case di = 1, we obtain
another rule for probability transitions which is given in Table 2.

From these equations, we can observe that the two bits (ri, r
∗
i ) are not uni-

formly distributed (unless pi = 0.5) and that the imbalance depends on the
value of the bits from 0 to i of the secret exponent. Acutally, what we have is
a Markov chain where the bit-level probabilities of step i can be derived from
those of step i− 1 using one of the two previous probability transition rules.

3 Actually, it is not true : r is generally drawn at random in the interval [0, d] which is
not exactly equivalent to drawing at random an n-bit integer. This results in (small)
imbalances that have already been used for cryptanalysis purpose [1]



Pr[(ri, r
∗
i ) = (0, 0)] = 0.5× pi

Pr[(ri, r
∗
i ) = (0, 1)] = 0.5× (1− pi)

Pr[(ri, r
∗
i ) = (1, 0)] = 0.5× (1− pi)

Pr[(ri, r
∗
i ) = (1, 1)] = 0.5× pi

pi+1 = 0.5× pi

Table 1. Probability transition when di = 0

Pr[(ri, r
∗
i ) = (0, 0)] = 0.5× (1− pi)

Pr[(ri, r
∗
i ) = (0, 1)] = 0.5× pi

Pr[(ri, r
∗
i ) = (1, 0)] = 0.5× pi

Pr[(ri, r
∗
i ) = (1, 1)] = 0.5× (1− pi)

pi+1 = (0.5× (1− pi)) + pi = 0.5× (1 + pi)

Table 2. Probability transition when di = 1

4.2 An example

To illustrate our ideas, we have drawn at random an exponent d of length 24
bits and repeated the splitting method a large number of times. We computed
experimentally the probability distribution of (ri, r

∗
i ) for all steps i. Table 3

summarizes these results.

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23
(ri, r∗i ) 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1
(0, 0) 50 25 38 31 35 33 34 16 8 4 2 1 50 25 13 45 28 14 8 47 23 11 5 2
(1, 0) 0 25 12 19 15 17 16 34 41 46 48 49 0 25 37 5 22 36 42 3 27 39 45 48
(0, 1) 0 25 13 18 15 17 16 33 42 46 49 49 0 25 36 6 22 36 43 4 28 40 46 49
(1, 1) 50 25 37 32 35 33 34 17 9 4 1 1 50 25 14 44 28 14 7 46 22 10 4 1

Table 3. An example of bit-level imbalance for a 24-bit secret d

Intuitively, when the secret exponent has a long run of bits equal to 0 or 1, it is
very likely that the bits of r and r∗ are different. In the case of a run of 0’s, we can
see that pi becomes very close to 0, so there is generally no carry bit. However,
after a long run of 1’s, pi gets close to 1, so a carry bit is likely to propagate. In the
next section, we show applications of these bit-level observations to mount safe-
error attacks, fault attacks and address-bit attacks. We assume that an attacker
can infer the value of the bits of d from the probability distribution



of (ri, r
∗
i ). This problem (called the Hidden Markov Problem) has already been

handled by Karlof and Wagner in [13]. We also mention that the paper [8] deals
with a similar problem to break the Ha-Moon countermeasure [11].

4.3 Application to safe error attack

In this section, we assume that an attacker is able to create faults with enough
precision to target a specific step in the “square-and-multiply always” algorithm.
We consider a second-order safe-error attack, i.e. the attacker injects two
faults during the same computation and observes if the result remains valid or
not.

Suppose the attacker injects a fault during the multiplication at step i of
the exponentiation Mr, and a fault during the multiplication at step i of the
exponentiation Mr∗ . These two faults have no effect on the final computation,
as long as (ri, r

∗
i ) = (0, 0).

By repeating the process, the attacker obtains an estimation of the prob-
ability Pr[(ri, r

∗
i ) = (0, 0)] for the positions i of his choice. We have seen in

Section 4.1 that, this probability is strongly correlated with the value of the bits
di (see Table 3 for a concrete example). This observation allows the attacker to
learn the secret exponent (refer to Section 5 for further analysis).

4.4 Application to fault attacks

In this section, we use an idea similar to the previous attack, although we are
not specifically focusing on safe-errors, i.e. faults which will keep the output of
the exponentiation unchanged. We suppose that an attacker is able to “flip” the
value of the bit ri by fault injection, like in the usual fault attack (see Section 3.2).

Depending on the value of the bit ri, the output can be modified to S ·M2i

(if
ri = 0) or S ·M−2i

(if ri = 1). Since ri is random, this provides no information
about d. However, suppose that we consider a second-order fault attack where
we simultaneously flip the bit ri and the bit r∗i . Depending on the value of these
two bits, the observed result can take 4 values :

if (ri, r
∗
i ) = (0, 0) then we get S ·M2i+1

if (ri, r
∗
i ) = (0, 1) then we get S

if (ri, r
∗
i ) = (1, 0) then we get S

if (ri, r
∗
i ) = (1, 1) then we get S ·M−2i+1

Like in the previous section, we obtain a safe-error in 2 of the 4 cases. This
allows us to tell when ri 6= r∗i , although we cannot tell between the two cases
(0, 1) and (1, 0). In addition, we can also detect here the case (0, 0) and (1, 1)
because we obtained specific faults in the output of the modular exponentiation.

By repeating the process over several experiments, we get much more infor-
mation than in the previous section, since we learn estimates for

– Pr[(ri, r
∗
i ) = (0, 0)]



– Pr[(ri, r
∗
i ) = (1, 1)]

– Pr[(ri, r
∗
i ) = (0, 1) or (1, 0)]

This information makes the analysis of the Hidden Markov Model [13] easier,
however the injected faults need to specifically flip one bit of the exponent. This
is more difficult to obtain in practice than an arbitrary fault on the multiplica-
tion. Therefore it is not clear that our second-order fault attack will require less
messages than the second-order safe-error attack, although it provides a better
statistical information.

4.5 Application to address-bit attack

In this section, we suggest to mount a statistical address-bit attack. The
idea is similar to the usual address-bit attacks, although here we only know
probabistically if the two address-bits are equal or not.

Suppose that we already know the i − 1 less significant bits of d. Therefore
we know that the carry bit ci is equal to 0 with a probability pi, that can be
computed using the rules given in Section 4.1.

If di = 0 then ri = r∗i with probability pi.
If di = 1 then ri = r∗i with probability 1− pi.

This observation allows us to learn the bit di (using EM radiations for instance,
as described in Section 3.4), by comparing the addresses manipulated at stage
i of both modular exponentiations. Suppose, for example, that pi > 0.5. Then
the address-bits should be equal more often if and only if di = 0. Clearly, the
“bad case” here is when pi = 0.5, since we are unable to determine the value
of di. However, such bad cases remain unlikely, as illustrated in Table 3. The
advantage of this address-bit attack is that it is a passive attack. See Section 5
for more details about implementation of this attack.

4.6 Combining safe-error and address-bit attacks

The efficiency of the previous safe-error attack can be improved, by combining it
with fault attacks. We want to improve the prediction of the carry bit ci, so we
inject one fault at step i−1, while we simultaneously monitor the EM radiations
of step i. This might look complicated, but it is not necessarily more difficult
than injecting two faults during the same cryptographic computation.

In order to predict the carry bit ci, we need some information about the step
i − 1. So, we inject an arbitrary fault during the multiplication at round i − 1,
for any one of the two modular exponentiations. If the result remains valid, we
learn that ri−1 = 0. Otherwise ri−1 = 1.

– In the case di−1 = 1. We inject a fault at the (i − 1)-th step until we
find an exponentiation where ri−1 = 0. Then from relation (1) we see that
necessarily, ci = 0. Therefore the address bits ri and r∗i are equal if and only
if di = 0. This allows to apply the usual address-bit attack, as described in
Section 3.4.



– In the case di−1 = 0, we inject a fault until we find an exponentiation where
ri−1 = 1. Then, we see that necessarily, ci = 1. Therefore the address bits ri

and r∗i are equal if and only if di = 1.

The advantage of this combined attack is that it no longer requires any Markov
model analysis, so the number of required message is much smaller.

4.7 Summary

We proposed a variety of attacks against the exponent splitting countermeasure,
based on statistical properties of the sharing method, at the bit-level. We pro-
posed a passive attack based on statistical address-bit analysis and several
active attacks, either based on faults or safe-errors. See Table 4 for a summary
of our proposed attacks.

Type of attack Needs Markov analysis ? Active ? Number of Faults

Safe-error yes yes 2

Fault yes yes 2

Address-bit yes no 0

Combined no yes 1

Table 4. Summary of our proposed attacks. The number of faults is given per sample.

5 Experimental results

In this Section, we implemented software simulations for the safe-error attack and
the statistical address-bit attack. Both are based on a Markov model analysis,
where one wants to retrieve di from partial information about the distribution
of (ri, r

∗
i ). We want to obtain a more accurate estimation of the real cost of this

analysis. As we have seen previously, some problem will arise. For instance, when
pi = 0.5, it is impossible to tell whether di is equal to 0 or 1. In particular, such
problems happen after a long run of consecutive 0’s or 1’s. We want to estimate
the impact of this “difficult” positions.

Besides, we did not implement the fault attack, since it relies essentially on
the same principle than the safe-error attack, although the underlying assump-
tions are much stronger (we need the ability to inject faults that specifically flip
the value of some exponent bits). We did not implement the combined attack
either, since it is an improvement of the statistical address-bit attack. Besides,
there is no Markov model analysis in this attack (see Table 4), so its complexity
depends on the quality of our address-bit observations : in theory, 2 observations
per bit of the secret exponent should be sufficient.



5.1 Safe-error attack

Let qi = Pr[(ri, r
∗
i ) = (0, 0)]. From the probability transition rules of Table 1

and 2, we obtain :

if di−1 = di = 0 then qi = 0.5 · qi−1

if di−1 = di = 1 then qi = 0.5 · qi−1

if di−1 = 0 and di = 1 then qi = 0.5 · (1− qi−1)
if di−1 = 1 and di = 0 then qi = 0.5 · (1− qi−1)

Then, we adopt a recursive approach : we learn di from di−1, by testing
whether the probability qi is closer to 0.5 · qi−1 or from 0.5 · (1− qi−1). Clearly,
the only problem arises when qi−1 ' 0.5 where it is very difficult to make a
decision. The following Table 5 summarizes our experimental results, where L
denotes the exponent length and D the number of experiments, i.e. the number
of fault injections here. Besides, this process must be repeated for each bit of
the scalar, so the number of experiments is about L × D in total. Actually,
the parameter D was chosen such that we could derive the value of the most
“difficult” bits. For many positions, the value of di is easy to determine with
much less than D faults. This was not taken into account in our evaluation of
the cost. To average these figures, we repeated the attack several hundred times,
for randomly chosen exponents. To conclude, if one wants to remove most errors

L D Errors Unable to decide

40 20 3.93 5.21

40 100 2.22 2.40

160 100 8.48 6.79

160 300 6.06 1.81

160 1000 3.58 1.22

1024 100 52.25 39.90

1024 1000 7.26 37.48

Table 5. Experimental results for the safe-error attacks

and “no decision” cases, one needs about 100 faults for a 160-bit scalar, and
1000 faults for a 1024-bit scalar.

5.2 Statistical address-bit attack

We implemented the statistical address-bit attack. We suppose that the i LSB’s
of the scalar are known and try to determine if the next bit is 0 or 1 by looking at
the equality of the address-bits ri and r∗i . The results are summarized in Table 6.
We observe that these figures are slightly better than those of Table 5. Besides,



l D Errors Unable to decide

40 20 2.57 1.83

40 100 1.65 0.40

160 100 5.78 1.64

160 300 3.82 0.49

160 1000 2.35 0.12

1024 100 35.90 9.52

1024 1000 12.49 1.10

Table 6. Experimental results for the statistical address-bit attack

the attack does not need to be repeated for each bit of the scalar, since we can
monitor the N steps of the exponentiation algorithm. So this attack is actually
much more efficient than the safe-error attack. However, these two attacks rely
on different physical assumptions : the safe-error attack is active, although the
underlying assumption is much weaker than for fault attacks (where one bit of
the exponent needs specifically to be flipped). On the other hand, the address-bit
attack is passive.

5.3 Dealing with Errors and the ”Unable to decide” case

In the previous statistical attacks, it occured that we were unable to make a
decision between di = 0 and di = 1. In particular, this occurs after long runs of
0 or 1’s, where the statistical behavior is quite special.

Actually, it is not necessarily a problem if some bits of the secret scalar
remain unknown at the end of the attack. Indeed, there are some mathematical
solutions to deal with it. First, if the number of unknowns is small, we can simply
guess these bits. Secondly, there exist some algorithms to take advantage of (even
relatively small) partial key exposure for an RSA exponent (see the paper by
Blömer and May, for instance [2]). Therefore, we may retrieve the “missing” bits
by mathematical means, once several bits have been leaked using side-channels.

5.4 Additional countermeasures

A natural question is to tell whether such attacks can be thwarted by putting
more countermeasures (in addition to the SPA countermeasures).

– Countermeasures based on randomizing the message will not work here.
Indeed, our attacks do not exploit the actual values that are manipulated
during the exponentiations. So it does not matter that the message is initially
randomized.

– There is another way to initially split the secret exponent : draw at
random r in the interval [0, ϕ(N)], then compute r∗ = d−r mod ϕ(N). This



is not likely to be implemented, because ϕ(N) is not always known by the
device (although it could be recomputed from d and e). The problem with
this alternative splitting is that we could face two possible targets instead of
one :

r + r∗ = d and r + r∗ = d′ = d + ϕ(N)

It is better if d is far from ϕ(N)
2 , because one of the two targets is over-

represented, and the other one just acts as noise. So we would recover, either
d or d + ϕ(N), but in both cases this is equivalent to the secret key. The
tricky case is when d ' ϕ(N)

2 , because d and d′ occur equally often. An open
problem is to propose a dedicated analysis, in order to recover two such
exponents simultaneously.

– However, as soon as the device knows ϕ(N), it is very likely that the expo-
nent randomization would be implemented. The idea of this countermea-
sure is to draw a random x for each exponentiation, and to perform each
exponentiation with exponent d+x ·ϕ(N) instead of the actual exponent d.
Implementing this protection apparently thwarts our attacks.

– Countermeasures based on randomizing the exponentiation algorithm
itself (see [5] for a nice example) seem also to thwart our attacks.

6 Conclusion

Contrarily to a widespread belief, the exponent splitting countermeasure does
not offer, by itself, a satisfying level of security against side-channel attacks.
Although analyzing a single modular exponentiation is useless, attacks become
possible as soon as one considers both exponentiations together.

We described statistical weaknesses of the countermeasure at the bit-level,
which show that the i-th stages of both modular exponentiations are strongly
correlated. We showed a variety of attacks that break the exponent splitting
countermeasure (safe-error, fault, address-bit, combined attacks). All of them
are higher-order attacks, i.e. they require to exploit simultaneously both expo-
nentiations. There are some technical difficulties to realize second-order attacks
(like injecting two faults in the same cryptographic computations), however it
is unreasonable for the security to rely on this difficulty only. Therefore, we
recommand not to use the exponent splitting protection alone. One should ei-
ther combine it with additional countermeasures like the randomization of the
exponent, or use some of the recent alternative, like [5], which has the advantage
of being much more efficient.
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C. Paar, editors, Cryptographic Hardware and Embedded Systems (CHES) – 2002,
volume 2523 of Lectures Notes in Computer Science, pages 129–143. Springer, 2002.

13. C. Karlof and D. Wagner. Hidden Markov Model Cryptanalysis. In C. Walter, Ç.
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