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Abstract. We generalize the selective-ID security model for HIBE by
introducing two new security models. Both these models allow the adver-
sary to commit to a set of identities and in the challenge phase choose any
one of the previously committed identities. Two constructions of HIBE
are presented which are secure in the two models. One of the HIBE con-
structions supports an unbounded number of levels, i.e., the maximum
number of levels does not need to be specified during the set-up. Further,
we show that this HIBE can be modified to obtain a multiple receiver
IBE which is secure in the selective-ID model without the random oracle
assumption.

1 Introduction

Identity based encryption (IBE) was introduced by Shamir [16]. This is a public
key encryption protocol where the public key can be any string. The correspond-
ing private key is generated by a private key generator (PKG) and provided to
the user in an offline phase. The notion of IBE can simplify many applications
of public key encryption (PKE) and is currently an active research area.

The notion of the IBE was later extended to hierarchical IBE (HIBE) [14, 15].
In an IBE, the PKG has to generate the private key for any identity. The notion
of the HIBE reduces the workload of the PKG by delegating the private key gen-
eration task to lower level entities, i.e., entities who have already obtained their
private keys. Though a HIBE by itself is an interesting cryptographic primitive,
it can also be used to construct other primitives like forward secure encryption
and broadcast encryption protocols.

The first efficient construction of an IBE was provided by Boneh and Franklin
[9]. This paper also introduced an appropriate security model for IBE. The proof
of security in [9] used the so-called random oracle assumption. This started a
search for constructions which can be proved to be secure without the random
oracle assumption. The first such construction of a HIBE was given in [11].
However, the HIBE in [11] can only be proved to be secure in a weaker model (the
selective-ID model) as opposed to the full model considered in [9]. Later Boneh



and Boyen [4] presented a more efficient construction of HIBE which is also
secure in the selective-ID (sID) model without the random oracle assumption.

The full security model in [9] allows an adversary to adaptively ask the PKG
for private keys of identities of its choosing. (The security model also allows de-
cryption queries, which we ignore for the present.) Then it submits two messages
My, My and an identity v* and is given an encryption of M, under v*, where y
is a randomly chosen bit. The identity v* can be any identity other than those
for which the adversary has already obtained the private key or can easily ob-
tain the private key from the information it has received. The main difficulty in
obtaining an efficient construction of a HIBE which is secure in this model is the
wide flexibility of the adversary in choosing v*.

The sID model attempts to curb the adversary’s flexibility in the following
manner. In the game between the adversary and the simulator, the adversary
has to commit to an identity even before the HIBE protocol is set-up by the
simulator. The simulator then sets up the HIBE. This allows the simulator to
set-up the HIBE based on the identity committed by the adversary. In the actual
game, the adversary cannot ask for the private key of the committed identity
(or of any of its prefix, in the case of HIBE). During the challenge stage, the
adversary submits two messages My, M as usual and is given an encryption of
M., under the previously fixed identity v*. Note that this is significantly more
restrictive than the full model since the adversary has to commit to an identity
even before it sees the public parameters of the HIBE.

Our Contributions: In this paper, we generalize the sID model and introduce
two new models of security for HIBE protocols. The basic idea is to modify the
security game so as to allow the adversary to commit to a set of identities (instead
of one identity in the sID model) before set-up. During the game, the adversary
can execute key extraction queries on any identity not in the committed set.
In the challenge stage, the challenge identity is chosen by the adversary from
among the set that it has previously committed to.

For IBE, this is a strict generalization of the sID model, since we can get the
sID model by enforcing the size of the committed set of identities to be one. On
the other hand, for HIBE, there are two ways to view this generalization leading
to two different security models M, and M.

In M, the adversary commits to a set Z*. It can then ask for the private
key of any identity v = (vi,...,v;) as long as all the v;s are not in Z*. Further,
during the challenge stage, it has to submit an identity all of whose components
are in Z*. If we restrict the adversary to only single component identities (i.e.,
we are considering only the IBE protocols), then this is a clear generalization of
the sID model for IBE. On the other hand, in the case of HIBE, we cannot fix
the parameters of this model to obtain the sID model for HIBE.

The second model, M, is an obvious generalization of the sID model for
HIBE. In this case, the adversary specifies 7 sets Z7,...,Z*. Then it can ask for
private key of any identity v as long as there is an ¢ such that the ith component
of v is not in Z}. In the challenge stage, the adversary has to submit an identity
such that for all 4, the ith component of the identity is in Z7.



Even though M generalizes the sID model for HIBE, we think M, is also
an appropriate model for a HIBE protocol. The adversary would be specifying
a set of “sensitive” keywords to be Z*. It can then ask for the private key of
any identity as long as one component of the identity is not sensitive and in the
challenge stage has to submit an identity all of whose components are sensitive.
The added flexibility in M, is that the adversary can specify different sets of
sensitive keywords for the different levels of HIBE. In practice, this flexibility
might not be required since keywords like root, admin, dba, etcetera will be
sensitive for all levels.

We present two constructions of HIBE denoted by H; and Hs. H; is proved
to be secure in the model M under the DBDH assumption while H is proved to
be secure in the model M also under the DBDH assumption. Our constructions
and proofs of security are very similar to that of the Boneh-Boyen HIBE (BB-
HIBE) [4]. The actual technical novelty in the proofs is the use of a polynomial,
which in the case of the BB-HIBE is of degree one. The use of an appropriate
polynomial of degree greater than one allows us to prove security in the more
general models M and M. However, this flexibility comes at a cost. In the
case of Hs, the number of required scalar multiplications increases linearly with
the size of the committed set of identities.

One interesting feature about 7 is that it can support unbounded number of
levels. In other words, the set-up for H; does not specify the maximum number of
levels of the HIBE. This is an added advantage and to the best of our knowledge
is not present in any of the previous HIBE constructions.

The situation for 7 is also interesting in another aspect. If we consider only
IBE, then the number of scalar multiplications increases with the size of the
committed set of identities. On the other hand, in the case of BB-HIBE, the
number of scalar multiplications increases linearly with the depth of the HIBE.
Since H; can support HIBE of unbounded depth, this feature is not present in
Hi.

Multiple receiver IBE (MR-IBE) is an interesting concept which was intro-
duced by Baek, Safavi-Naini and Susilo [1]. In an MR-IBE, an encryptor can
encrypt a message in such a way that any one of a set of identities can decrypt
the message. A trivial way to achieve this is to separately encrypt the message
several times. It turns out that the efficiency can be improved. A more efficient
construction of MR-IBE was presented in [1]. The proof of security was in the
sID model under the random oracle assumption.

We show that the HIBE #H; when restricted to IBE can be easily modified
to obtain an efficient MR-IBE. Our MR-IBE is proved to be secure in the sID
model without the random oracle assumption and to the best of our knowledge
this is the first of such kind.



2 Security Model for HIBE

2.1 HIBE Protocol

Following [15, 14] a hierarchical identity based encryption (HIBE) scheme is spec-
ified by four algorithms: Setup, Key Generation, Encryption and Decryption.

Setup: It takes input a security parameter and returns the system parameters
together with the master key. The system parameters are publicly known while
the master key is known only to the private key generator (PKG).

The system parameters include a description of the message space, the ci-
phertext space and the identity space. The system parameters may also specify
a positive integer h, which denotes the maximum number of levels that are al-
lowed in the HIBE. If h is not specified, then the HIBE can support an unbounded
number of levels. An identity of depth 7 is a tuple (vq,...,v,), where each v; is
an element of a set Z. From an application point of view, we would like Z to be
the set of all binary strings. On the other hand, for construction purposes, this
is too general and one usually requires Z to have an algebraic structure. The two
requirements are met by assuming that a collision resistant hash function maps
an arbitrary string to the set Z having an algebraic structure.

A special case of a HIBE protocol arises when only single component identi-
ties are allowed. In this case, the protocol is said to be simply an identity based
encryption (IBE) protocol.

Key Generation: The task of this algorithm is to assign a private key D, for an
identity v of depth 7. To this end, it takes as input an identity v = (vyi,...,v;)
of depth 7 and the private key D|,_; corresponding to the identity v,_; =
(vi,...,vz—1) and returns D,. In the case 7 = 1, the private key D|,_; is the
master key of the PKG and the key generation is done by the PKG. In the case
7 > 1, the private key corresponding to v = (vi,...,v,) is done by the entity
whose identity is vj,_; = (vi,...,v,_1) and who has already obtained his/her
private key D, _;.

Encryption: It takes as input the identity v and a message from the message
space and produces a ciphertext in the cipher space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

2.2 Security Model

The security model for HIBE is defined as an interactive game between an ad-
versary and a simulator. Currently, there are two security models for HIBE — the
selective-ID (sID) model and the full model. We will be interested in defining
two new security models. We present the description of the interactive game in



a manner which will help in obtaining a unified view of the sID, full and the new
security models that we define.

In the game, the adversary is allowed to query two oracles — a decryption
oracle O4 and a key-extraction oracle O. The game has several stages.

Adversary’s Commitment: In this stage, the adversary commits to two sets Sy
and S, of identities. The commitment has the following two consequences as we
will define later.

1. The adversary is not allowed to query Oy on any identity in S;.
2. In the challenge stage, the adversary has to choose one of the identitites from
the set Ss.

There is a bit of technical difficulty here. Note that the adversary has to commit
to a set of identities even before the HIBE protocol has been set-up. On the
other hand, the identity space is specified by the set-up algorithm of the HIBE
protocol. In effect, this means that the adversary has to commit to identities
even before it knows the set of identities. Clearly, this is not possible.

One possible way out is to allow the adversary to commit to binary strings
and later when the set-up program has been executed, these binary strings are
mapped to identities using a collision resistant hash functions. Another solution
is to run the set-up program in two phases. In the first phase, the identity space
is specified and is made available to the adversary; then the adversary commits
to S1 and Ss; and after obtaining S; and S, the rest of the set-up program is
executed.

The above two approaches are not necessarily equivalent and may have dif-
ferent security consequences. On the other hand, note that if S; = ) and S5 is
the set of all identities (as is true in the full model), then this technical difficulty
does not arise.

Set-Up: The simulator sets up the HIBE protocol and provides the public pa-
rameters to the adversary and keeps the master key to itself. Note that at this
stage, the simulator knows S, S2 and could possibly set-up the HIBE based on
this knowledge. However, while doing this, the simulator must ensure that the
probability distribution of the public parameters remains the same as in the
specification of the actual HIBE protocol.

Phase 1: The adversary makes a finite number of queries where each query is
addressed either to Q4 or to Oy. In a query to Oy, it provides the ciphertext as
well as the identity under which it wants the decryption. The simulator has to
provide a proper decryption. Similarly, in a query to Oy, it asks for the private
key of the identity it provides. This identity cannot be an element of S;. Further,
the adversary is allowed to make these queries adaptively, i.e., any query may
depend on the previous queries as well as their answers.

Certain queries are useless and we will assume that the adversary does not
make such queries. For example, if an adversary has queried Oy on any identity,
then it is not allowed to present the same identity to O as part of a decryption



query. The rationale is that since the adversary already has the private key, it
can itself decrypt the required ciphertext.

Challenge: The adversary chooses an identity v* € Sy with the restriction that
it has not queried Oy for the private key of v* or any of its prefixes and two
messages My, M; and provides these to the simulator. The simulator randomly
chooses a v € {0,1} and returns the encryption of M, under v* to the adversary.

Phase 2: The adversary issues additional queries just as in Phase 1, with the
(obvious) restriction that it cannot ask Oy for the decryption of C* under v*
nor Oy, for the private key of any prefix of v*.

Guess: The adversary outputs a guess 7' of 7.

Adversary’s Success: The adversary wins the game if it can successfully guess 7,
i.e., if ¥ = 7. The advantage of an adversary A in attacking the HIBE scheme
is defined as:

AdV{®E = 2|Pr(y = )] - 1/2|
The quantity AdvM'BE (¢, gip, gc) denotes the maximum of Adv'{'®E where the max-
imum is taken over all adversaries running in time at most ¢t and making at most
gc queries to Oy and at most gp queries to O.

A HIBE protocol is said to be secure if Adv©'"BE(¢, gip, qc) is negligible. Any
HIBE protocol secure against such an adversary is said to be secure against
chosen ciphertext attack (CCA). A weaker version of security does not allow the
adversary to make decryption queries, i.e., the adversary is not given access to
Og4. A HIBE protocol secure against such a weaker adversary is said to be secure
against chosen plaintext attack (CPA). AdvH'BE(¢, ¢) in this context denotes the
maximum advantage where the maximum is taken over all adversaries running
in time at most ¢ and making at most ¢ queries to the key-extraction oracle.
There are several generic as well as non-generic methods for converting a CPA-
secure HIBE into a CCA-secure HIBE. Hence, in this paper, we will only consider
construction of CPA-secure HIBE.

2.3  Full Model

Suppose S; = () and Ss is the set of all identities. By the rules of the game, the
adversary is not allowed to query Oy on any identity in S;. Since &; is empty,
this means that the adversary is actually allowed to query O on any identity.
Further, since S is the set of all identities, in the challenge stage the adversary is
allowed to choose any identity. In effect, this means that the adversary does not
really commit to anything before set-up and hence in this case, the commitment
stage can be done away with. This particular choice of §; and Ss is called the
full model and is currently believed to be the most general notion of security for
HIBE.

Note that the other restriction that the adversary has not asked for the
private key for any prefix of the challenge identity as well as the restriction in
Phase 2 still applies.



2.4 Selective-ID Model

Let §; = &2 be a singleton set. This means that the adversary commits to one
particular identity; never asks for its private key; and in the challenge phase is
given the encryption of M, under this particular identity. This model is signifi-
cantly weaker than the full model and is called the selective-ID model.

2.5 New Security Models

We introduce two new security models by suitably defining the sets S; and Ss.
In our new models, (as well as the sID model), we have S = S». (Note that in
the full model, S; = S».)

Model M1 : Let T* be a set. We define S; = Sy to be the set of all tuples
(vi,...,vz), (1 > 1), such that each v; € Z*. First consider the case of IBE, i.e.,
where only single component identities are allowed. Then, we have §; = S, = Z*.
Let |Z*| = n. If we put n = 1, then we obtain the sID model for IBE as discussed
in Section 2.4. In other words, for IBE protocol, M is a strict generalization of
sID model.

Let us now see what this means. In the commit phase, the adversary commits
to the set of identities Z*; never asks for the private key of any of these identities;
and during the challenge phase presents one of these identities to the simulator.
This is the generalization of the sID model, where instead of a single identity,
the adversary may choose one from a set of identities.

In the case of HIBE, the situation is different. Model M is no longer a
strict generalization of the usual sID model for HIBE. We cannot restrict the
parameters of the model M in any manner and obtain the sID model for HIBE.
Thus, in this case, M must be considered to be a new model. We later discuss
the interpretation of this model as well as the other ones.

Model M: Let I7,...,Z; be sets and |Z;| = n; for 1 < j < 7. We set
81282 :If X---XI_:.

This model is a strict generalization of the sID model for HIBE. This can be
seen by setting ny =---=n, =1, ie, If,...,Z* to be singleton sets.

3 Interpreting Security Models

The full security model is currently believed to provide the most general security
model for HIBE. In other words, it provides any entity (having any particular
identity) in the HIBE with the most satisfactory security assurance that the
entity can hope for. The notion of security based on indistinguishability is de-
rived from the corresponding notion for public key encryption and the security
assurance provided in that setting also applies to the HIBE setting.

The additional consideration is that of identity and the key extraction queries
to Or. We may consider the identity present during the challenge stage to be



a target identity. In other words, the adversary wishes to break the security
of the corresponding entity. In the full model, the target identity can be any
identity, with the usual restriction that the adversary does not know the private
key corresponding to this identity or one of its prefixes.

From the viewpoint of an individual entity e in the HIBE structure, the
adversary’s behaviour appears to be the following. The adversary can possibly
corrupt any entity in the structure, but as long as it is not able to corrupt that
particular entity e or one of its ancestors, then it will not be able to succeed in
an attack where the target identity is that of e. In other words, obtaining the
private keys corresponding to the other identities does not help the adversary.
Intuitively, that is the maximum protection that any entity e can expect from
the system.

Let’s reflect on the sID model. In this model, the adversary commits to an
identity even before the set-up of the HIBE is done. The actual set-up can depend
on the identity in question. Now consider the security assurance obtained by an
individual entity e. Entity e can be convinced that if the adversary had targeted
its identity and then the HIBE structure was set-up, in that case the adversary
will not be successful in attacking it. Alternatively, e can be convinced that
the HIBE structure can be set-up so as to protect it. Inherently, the sID model
assures that the HIBE structure can be set-up to protect any identity, but only
one.

Suppose that a HIBE structure which is secure in the sID model has already
been set-up. It has possibly been set-up to protect one particular identity. The
question now is what protection does it offer to entities with other identities?
The model does not assure that other identities will be protected. Of course, this
does not mean that other identities are vulnerable. The model simply does not
say anything about these identities.

The system designer’s point of view also needs to be considered. While setting
up the HIBE structure, the designer needs to ensure security. The HIBE is known
to be secure in the sID model and hence has a proof of security. The designer will
play the role of the simulator in the security game. In the game, the adversary
commits to an identity and then the HIBE is set-up so as to protect this identity.
However, since the actual set-up has not been done, there is no real adversary and
hence no real target identity. Thus, the designer has to assume that the adversary
will probably be targetting some sensitive identity like root. The designer can
then set-up the HIBE so as to protect this identity. However, once the HIBE
has been set-up, the designer cannot say anything about the security of other
possible sensitive identities like sysadmin. This is a serious limitation of the sID
model.

This brings us to the generalization of the sID model that we have introduced.
First consider the model M as it applies to IBE. In this model, the designer
can assume that the adversary will possibly attack one out of a set of sensitive
identities like {root,admin, dba, sysadmin}. It can then set-up the IBE so as to
protect this set of identities. This offers a strictly better security than the sID
model.



Now consider the model M as it applies to HIBE. In this case, the set Z* can
be taken to be a set of sensitive keywords such as {root,admin, dba, sysadmin}.
The adversary is not allowed to obtain private keys corresponding to identities
all of whose components lie in Z*. For the above example, the adversary cannot
obtain the private key of (root, root), or (admin, root, dba). On the other hand,
it is allowed to obtain keys corresponding to identities like (root, abracadabra).
Thus, some of the components of the identities (on which key extraction query
is made) may be in Z*; as long as all of them are not in Z*, the adversary can
obtain the private key. On the other hand, all the components of the target
identity have to be sensitive keywords, i.e., elements of Z*. Clearly, model M
provides an acceptable security notion for HIBE. Intuitively, it provides better
security than the sID model for HIBE, though we cannot fix the parameters of
M so that it collapses to the sID model for HIBE.

The model M. is a clear generalization of the usual sID model for HIBE.
The adversary fixes the sensitive keywords for each level of the HIBE upto the
level it wishes to attack. It cannot make a key extraction query on an identity
of depth 7, such that for 1 < ¢ < 7, the ith component of the identity is among
the pre-specified sensitive keywords for the ith level of the HIBE. Further, the
target identity must be such that each of its component is a sensitive keyword
for the corresponding HIBE level. As mentioned earlier, by fixing exactly one
keyword for each level of the HIBE, we obtain the sID model.

The difference between models M; and M is that from a technical point of
view, in M, for each level of the HIBE, the adversary is allowed to indepedently
choose the set of possible values which the corresponding component of the target
identity may take. In M, the set of possible values for all components are the
same. It is due to this difference, that we cannot collapse M to the sID model.
On the other hand, in practical applications, the sensitive keywords for all levels
are likely to be the same. In such a situation, M provides a more cleaner notion
of security. Of course, this is still much less comprehensive than the full security
model.

4 Constructions

We present two HIBE protocols #; and H,. The HIBE H; can be proved to be
secure in model M, whereas the HIBE 7, can be proved to be secure in model

M.

4.1 Cryptographic Bilinear Map

Let G; and G2 be cyclic groups of same prime order p and G; = (P), where we
write (G; additively and G2 multiplicatively. A mapping e : G; x G; — G5 is
called a cryptographic bilinear map if it satisfies the following properties:

— Bilinearity : e(aP,bQ) = e(P, Q)% for all P,Q € G; and a,b € Z,,.
— Non-degeneracy : If Gi = (P), then G2 = (e(P, P)).



— Computability : There exists an efficient algorithm to compute e(P, Q) for
all P,Q € Gy.

Since e(aP,bP) = e(P,P)® = e(bP,aP), e() also satisfies the symmetry prop-
erty. Modified Weil pairing [8] and Tate pairing [2,13] are examples of crypto-
graphic bilinear maps.

4.2 HIBE H,

Set-Up: The identity space consists of all tuples (v1,...,v;), where each v; € Z,,.
Note that we do not fix a upper bound on 7. The message space is Gs. (In
practical applications, the protocol will be converted into a hybrid encryption
scheme where the message can be any binary string.) The ciphertext correspond-
ing to an identity (vi,...,v;) is a tuple (4, B,C4,...,C;), where A € G2 and
B,Cy,...,C. € Gy.

Randomly choose z € Z, and set P, = xzP. Randomly choose P>, Ps,
Q1,-..,Q, from G where n is a parameter of the model. The public parame-
ters are (P, Py, Py, P3,Q1,...,Q,) and the master secret key is zP>. Note that,
the public parameter size does not depend on the levels of the HIBE. In other
words, potentially ; can support unbounded number of levels. Since, P, P> are
not directly required in Encryption or Decryption, we may replace them in the
public parameters by e(P;, P»). This will save the pairing computation during
the encryption.

Key Generation: Let v = (vi,...,v;) be an identity. For any y € Z,, define
V{y) =y"Qn+ - +yQ1.
Let V; = P; + V(v;). The private key d, corresponding to v is defined to be
(P +rVi+...+7. Vo, P...,r.P) = (do, ds,...,d;)

where ri,...,r, are random elements of Z,. It is standard [4] to verify that
the knowledge of a random private key corresponding to the tuple (vy,...,v,_1)
allows the generation of a random private key corresponding to v.

Encryption: Suppose a message M is to be encrypted under the identity v =
(vi,...,v;). Choose arandom t € Z,. The ciphertext is (A4, B,C},...,C;), where

A=M xe(P,P)"; B=tP; Ci=tV;, for1<i<r.

Decryption: Suppose (A, B,C1,...,C;) is to be decrypted using the private key
(do,d1,...,d;) corresponding to the identity v = (v1,...,v,). Compute

[1;_, e(d;, Cy)
A @0 B)

Again, it is standard to verify that the above computation yields M.



4.3 HIBE H.

The description of s is similar to that of H;. The only differences are in the
specification of the maximum depth of the HIBE, the public parameters and the
definition of V}’s.

1. Define the maximum depth of the HIBE to be h. Additionally, a tuple
(n1,-..,ny) of positive integers is required.

2. Replace P in H;p, by the tuple (P51, ..., Ps ) where each Ps ; is an element
of G1. Also the points @;’s (1 < i < n) are replaced by the points @ ;’s,
where 1 <i < hand 1<j <n,;.

3. Define V(i,y) = y™Qin; + --. + yQi1. Given an identity v = (vi,...,v.),
define V; = P ; + V (i, v;).

With these differences, the rest of set-up, key generation, encryption and de-
cryption algorithms remain the same.

5 Security Reduction

In this section, we show that the breaking of #; amounts to solving the DBDH
problem and similarly for #s.

5.1 Hardness Assumption

Agsume the bilinear map notation from Section 4.1. The DBDH problem in
G1,Gs,e() [9] is as follows: Given a tuple (P,aP,bP,cP,Z), where Z € Ga,
decide whether Z = e(P, P)**® which we denote as Z is real or Z is random.
The advantage of a probabilistic algorithm B, which takes as input a tuple
(P,aP,bP,cP, Z) and outputs a bit, in solving the DBDH problem is defined
as

AdvBBPH — |Pr[B(P,aP,bP,cP, Z) = 1|7 is real|
—Pr[B(P,aP,bP,cP,Z) = 1| Z is random]|

where the probability is calculated over the random choice of a, b, c € Z, as well
as the random bits used by B. The quantity AdvPBPH(#) denotes the maximum
of AdvRBPH where the maximum is taken over all adversaries running in time at
most ¢.

5.2 Security Reduction for #;

The security reduction is to show that if there is an adversary which can break
‘H, then one obtains an algorithm to solve DBDH. The heart of such an algo-
rithm is a simulator which is constructed as follows. On given an instance of
DBDH as input, the simulator plays the security game with an adversary for
H1. The adversary executes the commitment stage; then the simulator sets up



the HIBE based on the adversary’s commitment as well as the DBDH instance.
The simulator gives the public parameters to the adversary and continues the
game by answering all queries made by the adversary. In the process it guesses
the bit v and encrypts M, using the DBDH instance provided as input. Finally,
the adversary outputs +'. Based on the value of v and 4/, the simulator decides
whether the instance it received is real or random. Intuitively, if the adversary
has an advantage in breaking the HIBE protocol, the simulator also has a good
advantage in distinguishing between real and random instances. This leads to an
upper bound on the advantage of the adversary in terms of the advantage of the
simulator in solving DBDH. The details of the reduction are given below.

DBDH Instance: The simulator receives an instance (P, P, = aP, P, = bP,Q =
cP,Z) € G} x G5 of DBDH. It has to decide whether Z = e(P, P)%¢ (i.e., Z is
real) or whether Z is random. Note that it does not know a, b, c.

The simulator now starts the security game for model M. This consists
of several stages which we describe below. We will consider security against
chosen plaintext attacks and hence the adversary will only have access to the
key extraction oracle Oy.

Adversary’s Commitment: The adversary commits to a set Z*. We will assume
that the elements of Z* are elements of Z,. Alternatively, if these are bit strings,
then (as is standard) they will be hashed using a collision resistant hash function
into elements of Z,. We write Z* = {v},...,v} }.

Set-Up: Define a polynomial in Z,[z] by

Fz) = (z =vi)---(z = vp) (1)

=z"+a,_ 12" 4+ +axz+ag (2)

where the coefficients a;’s are in Z, and are obtained from the values {vj,...,v}}.
(Since F(z) is a polynomial of degree n over Z, and vy, ...,v} are its n distinct

roots, we have F(v) # 0 for any v € Z, \ {v],...,v:}.) Note that, these coeffi-
cients depend on the adversary’s input and one cannot assume any distribution
on these values. For notational convenience, we define a,, = 1. Randomly choose
bo,...,b, from Z, and define another polynomial

J(x) = bpx™ 4+ by 12" 4 bz + by (3)

Define P3 = agP> + bpP and for 1 < i < n, define Q; = a; P> + b; P. Note that,
();s are random elements of GG;. Now note that for y € Z,,

V(y) =P +yQ1 +¥* Q2+ -+ y"Qn
=F(y)P> + J(y)P.

The public parameters are (P, Py, P>, P3,Q1,...,Q,) which has the same distri-
bution as the public parameters in the protocol specification. These are given to
the adversary. The master secret is aP», which is not known to the simulator.



Phase 1: In this stage, the adversary can make queries to Oy, all of which have to
be answered by the simulator. Suppose the adversary queries Oy, on an identity
v = (vi,...,v;). By the constraint of model M, all the v;’s cannot be in Z*.
Suppose ¢ is such that v, is not in Z*. Then F(v,) # 0.

As in the protocol, define V; = P5 4+ V(v;). Choose 71, ..., "y—1, T}, Tig1y- -
rr randomly from Z,. Define W = ZZ:M 2, 7iVi. The first component do of the

secret key for v = (vq,...,v,) is computed in the following manner.
J (v,
do = — W) b (B0 Py + T(0)P) + W,
F(v,)

The following computation shows that dy is a properly formed.

o J(v,) '
do = :I:aPz — F(’l}l)Pl + Tl(F(’U,)PQ + J(’U,)P) + W
=aPy + () - F(C;Z))(F(W)P2 +J(0,)P) + W

= CLPQ + ZT‘@V;
i=1

where r, = r, — a/F(v,). Since r} is random, so is r,. The quantities dy,...,d,
are computed in the following manner.

di:T‘iP ].SZ'ST,Z'#Z;
:r;P—ﬁPl =r,Pi=1.
This technique is based on the algebraic techniques introduced by Boneh and
Boyen [4]. The generalization is in the definition of F() and J(). Here we take
these to be polynomials, which allows us to tackle the case of adversary commit-
ting to more than one identity. In case the polynomials are of degree one, then
we get exactly the Boneh-Boyen HIBE [4].

Challenge Generation: The adversary submits messages My, M; and an identity
v = (vi,...,v;). By the rules of model M, each v; € Z* and so F(v;) = 0 for
1 <i < 7. Consequently, V; = F(v;)P2 + J(v;)P = J(v;)P and ¢V; = ¢J(v;)P =
J(v;)(eP) = J(v;)Q = W; (say), where Q = ¢P was supplied as part of the
DBDH instance. Note that it is possible to compute cV; even without knowing
c. The simulator now randomly chooses a bit v and returns

(M’Y XZ7Q7W17"'7WT)

to the adversary. This is a proper encryption of M, under the identity v.

Phase 2: The key extraction queries in this stage are handled as in Phase 1.



Guess: The adversary outputs a guess 7. The simulator outputs 1 if v = «/,
else it outputs 0.

If Z = e(P, P)**¢, then the simulator provides a perfect simulation of the M
game. On the other hand, if Z is random, the adversary receives no information

about the message M, from the challenge ciphertext. Formalizing this argument
in the standard manner shows that Adv’{*(t,q) < AdeDBDH(t + O(ongq)) where
o is the time for scalar multiplication in GG; and ¢ is the maximun number of

queries allowed to the adversary.

5.3 Security Reduction for #o

The security reduction for Hs in model M is similar to that of H; in model
M. We mention only the differences.

Adversary’s Commitment: Following model M, the adversary commits to sets
If,...,IF, where |Zf| = n;.

Set-Up: The simulator defines polynomials Fi (z), ..., F-(x), and Ji (), ..., J-(z)
where

veTL;
i i—1 .
:Zlﬁn +ai7ni_1m" +---+ai,1m+ai,0,
i i—1
Jz(x) = bi,nimn + bi,m—lmn + -+ bi71$ + bi70

where b; ;’s are random elements of Z,. For notational convenience, we define
Ajn; = l.For1 <:<r, define P3,i = ai,0P2 + bi’op and Qi,j = aiJ'PQ + bi’jP,
1<j5<n,.

Key Extraction Query: Suppose the private key of v = (vy,...,v,) is required.
According to model M, there is at least one i such that v; ¢ Z}. Then this i
can be used to generate the private key in a manner similar to the key generation
by the simulator for #; in model M.

Challenge Generation: Suppose the challenge identity is v* = (vj,...,v). Then
by the constraint of M for each i, vi € Z} and consequently F;(v}) = 0. This
allows the generation of a proper ciphertext as in the simulation of H; in model
M.

Finally, we obtain the following result.

h
Adv'i2(t,q) < AdvEPPR(t 4+ 0(0 S nig)).
=1



6 Multi-Receiver IBE

A multi-receiver IBE (MR-IBE) is an extension of the IBE, which allows a sender
to encrypt a message in such a way that it can be decrypted by any one of a
particular set of identities. In other words, there is one encryptor but more than
one valid receivers. In IBE, the number of valid receivers is one. One trivial way
to realize an MR-IBE from an IBE is to encrypt the same message several times.
A non-trivial construction attempts to reduce the cost of encryption.

This notion was introduced in [1] and a non-trivial construction based on the
Boneh-Franklin IBE (BF-IBE) was provided. The construction was proved to be
secure in the selective-ID model under the random oracle assumption. Note that
the BF-IBE is secure in the full model under the random oracle assumption.

We show that H; restricted to IBE can be modified to obtain an MR-IBE.
The required modifications to the protocol are as follows.

1. The encryption is converted into a hybrid scheme. Instead of multiplying the
message with the “mask” Z = e(Py, P»)?, the value Z is provided as input to
a pseudorandom generator and the message (considered to be a bit string)
is XORed with the resulting keystream.

2. The private key corresponding to an identity v is dy = (P> +7V,, rP), where
Vi, = P54+ V(v) as defined in in Section 4.2.

3. Suppose the intended set of receivers is {vi,...,v;}. Then the ciphertext
consists of the encryption of the message as mentioned above plus a header
of the form (¢P,¢Vi,...,tV;), where V; is as defined in the construction of
H, in Section 4.2 and ¢ is a random element of Z,.

4. The receiver possessing the secret key d,, (1 < i < 7) can compute e(P;, P»)?
in the standard manner and hence obtain the input to the pseudorandom
generator. Thus it can decrypt the message.

The MR-IBE described above can be proved to be secure in the selective-ID
model without the random oracle assumption. The security model for MR-IBE
is the following. In the commitment stage, the adversary commits to a set of
identities; does not ask for the private key of these identities in the key extraction
queries and finally asks for the encryption under this set of identities. Note that
this is very similar to the model M restricted to IBE. The only difference is that
during the generation of the challenge ciphertext, in M, the adversary supplies
only one identity out of the set of identities it had previously committed to,
whereas in the model for MR-IBE, the adversary asks for the encryption under
the whole set of these identities.

This difference is easily tackled in our proof in Section 5.2 which shows that
‘H; is secure in model M. Recall that the construction of the polynomial F(z)
is such that F'(v) =0 for all v € 7*, where Z* is the set of committed identities.
In the challenge stage of the security proof for 7{; as an IBE, we use this fact for
only one identity (the identity given by the adversary). In the proof for MR-IBE,
we will need to generate cV; for all v € Z*. Since F(v) = 0 for any such v, this
can be done in the standard fashion.



The above argument does not provide any security degradation. Hence, we
obtain an MR-IBE which can be proved to be secure in the selective-ID model
without the random oracle assumption.

7 Conclusion

In this paper, we have generalized the notion of selective-ID secure HIBE. Two
new security models M; and M, have been introduced. In the security game,
both these models allow an adversary to commit to a set of identities (as opposed
to a single identity in the sID model) before the set-up. During the challenge
stage, the adversary can choose any one of the previously committed identities
as a challenge identity. We provide two HIBE constructions #; and H> which
are secure in the models M; and M respectively. Interestingly, the HIBE H;
allows delegation of an unbounded number of levels, i.e., the maximum number
of delegation levels is not fixed during the protocol set-up. Further, we also show
that 7{; can be modified to obtain an MR-IBE protocol which is secure in the
sID model without random oracles. The only previous construction of MR-IBE
is secure in the sID model under the random oracle assumption.
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