
Higher Order Universal One-Way Hash
Functions from the Subset Sum Assumption

Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons,josef,hwang}@comp.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. Universal One-Way Hash Functions (UOWHFs) may be used
in place of collision-resistant functions in many public-key cryptographic
applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the
stronger security notion of higher order UOWHFs to allow construction
of long-input UOWHFs using the Merkle-Damg̊ard domain extender.
However, they did not provide any provably secure constructions for
higher order UOWHFs.
We show that the subset sum hash function is a kth order Universal One-
Way Hash Function (hashing n bits to m < n bits) under the Subset Sum
assumption for k = O(log m). Therefore we strengthen a previous result
of Impagliazzo and Naor, who showed that the subset sum hash function
is a UOWHF under the Subset Sum assumption. We believe our result is
of theoretical interest; as far as we are aware, it is the first example of a
natural and computationally efficient UOWHF which is also a provably
secure higher order UOWHF under the same well-known cryptographic
assumption, whereas this assumption does not seem sufficient to prove its
collision-resistance. A consequence of our result is that one can apply the
Merkle-Damg̊ard extender to the subset sum compression function with
‘extension factor’ k + 1, while losing (at most) about k bits of UOWHF
security relative to the UOWHF security of the compression function.
The method also leads to a saving of up to m log(k + 1) bits in key
length relative to the Shoup XOR-Mask domain extender applied to the
subset sum compression function.
Keywords: hash function, provable security, subset sum

1 Introduction

Motivation. Universal One-Way Hash Functions (UOWHFs), introduced by
Naor and Yung [14] (also known as ‘Target Collision Resistant’ functions),
achieve weaker security than collision-resistant hash functions, but still suffice
for important cryptographic applications – in particular they suffice for hashing
long messages prior to signing with a digital signature scheme [14, 3, 16] (and
even can be used to construct digital signature schemes).

A common methodology for designing hash functions consists of two stages.
In the first stage, one designs an (efficient) compression function f which hashes
a (relatively short) n-bit string to a shorter m-bit string (e.g. a compression

function may hash a n = 600 bit input to a m = 400 bit output, compressing
by n − m = 200 bits). The compression function f is designed to achieve some
well defined security property (such as UOWHF security). Then in the second
stage, one specifies a domain extender algorithm, which uses the compression
function f to build a hash function f ′ hashing !-bit inputs (for ! > n) to an
m-bit output. The domain extender is designed to ensure that if f satisfies its
security property, then the extended function f ′ will satisfy the desired security
property (e.g. UOWHF security).

The simplest and most natural domain extender is the well-known Merkle-
Damg̊ard (MD) extender [11, 5]. It was shown in [11, 5] that the MD extender
preserves the collision-resistance security of the compression function, i.e. the
MD extended function f ′ is collision-resistant if the compression function f
is collision-resistant. However, as pointed out in [3], efficient collision-resistant
compression functions seem difficult to design, and weakening the security re-
quirement on the compression function is desirable.

A typical example that we focus on in this paper is the subset sum com-
pression function, a computationally efficient function which was shown in [9] to
achieve UOWHF security under the well known subset sum assumption (while
the collision-resistance of this function depends on a less known and potentially
much easier ‘weighted knapsack’ problem). It is natural to attempt to apply
the MD extender to the subset sum compression function, and hope that the
resulting function also achieves UOWHF security. Unfortunately, it was shown
in [3] that the MD extender is not guaranteed to preserve UOWHF security of
a compression function. Thus the result of [9] does not guarantee the security
of the MD extended subset sum hash function, even assuming the subset sum
assumption. Although other domain extenders exist [14, 3, 16] which do preserve
the UOWHF property of the compression function, they are less simple than the
MD extender and also (at least slightly) increase the length of the hash function
key depending on the extension input length !.

A possible way to use the MD extender for building UOWHF functions was
proposed at Asiacrypt 2004 by Hong, Preneel and Lee [7]. They defined a stronger
security property for compression functions called higher order UOWHF secu-
rity. The 0th order UOWHF property is just the normal UOWHF property, but
for k > 0, a kth order UOWHF is a stronger requirement than UOWHF. They
showed that if a compression function f has the stronger kth order UOWHF
property, then the MD extended function f ′ is guaranteed to have the UOWHF
property, as long as the MD ‘extension factor’ is at most k + 1. However, it is
known that there exist UOWHFs which are not kth order UOWHFs for any
k > 0, so it is dangerous in general to simply take an UOWHF and assume that
it is also a higher order UOWHF - in particular, the security loss as a function
of k is unknown. Motivated by this concern in applying this result to the MD
extended subset sum function, we were led to the following natural questions:
Does the subset sum compression function satisfy the kth order UOWHF prop-
erty for some k > 0, assuming only the subset sum assumption? If so, can we
give an upper bound on the security lost as a function of k?

2

Our Results. We show that the subset sum hash function is a kth order
UOWHF family (hashing n bits to m < n bits) under the Subset Sum as-
sumption for k = O(log m). Thus our result strengthens the one of Impagliazzo
and Naor [9], who showed that the subset sum hash function is a UOWHF (i.e.
UOWHF of order k = 0) under the Subset Sum assumption. Concretely, we
show that the function’s security as a kth order UOWHF deteriorates by (at
most) about k bits (relative to the UOWHF case k = 0). Combined with the
result of [7], we conclude that one can apply the MD extension to the subset sum
compression function with ‘extension factor’ k + 1, while losing (at most) about
k bits of UOWHF security relative to the UOWHF security of the compression
function (which is almost equivalent to the subset sum problem). We believe our
result is of theoretical interest; in particular, as far as we are aware, our result
is the first example of a natural UOWHF which is also a provably secure higher
order UOWHF under the same well-known cryptographic assumption (while this
assumption does not seem sufficient to prove its collision-resistance). In addition
to showing that the natural MD extender can be applied to the subset sum com-
pression function for small extension factors, our result also allows to shorten the
key length of the extended hash function (compared with the total key length
of the most efficient known UOWHF domain extender due to Shoup [16]).
Organization. The paper is organized as follows. In Section 2, we recall the
definition of hash function security properties (in particular UOWHFs and higher
order UOWHFs), and the construction of the subset sum compression function.
Section 3 contains our main result on the kth order UOWHF security of the
subset sum function. In Section 4, we discuss the application of our result to
the extended subset sum function. Section 5 concludes the paper. Due to page
limits, proofs of some claims in the paper were omitted – they can be found in
the full version of the paper, available on the authors’ web page.

2 Preliminaries

Collision-Resistant Hash Functions (CRHFs). Ideally, we would like a
hash function to satisfy the strong security notion of collision-resistance, which
is defined as follows.

Definition 1 (CRHFs). A (t, ε) Collision-Resistant Hash Function (CRHF)
family is a collection F of functions fK : {0, 1}n → {0, 1}m indexed by a key
K ∈ K (where K denotes the key space), and such that any attack algorithm A
running in time t has success probability at most ε in the following game:

– Key Sampling. A uniformly random key K ∈ K is chosen and revealed to
A.

– A Collides. A runs (on input K) and outputs a pair of hash function inputs
s1, s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK , i.e.
if s1 $= s2 but fK(s1) = fK(s2).

3

Universal One-Way Hash Functions (UOWHFs). Naor and Yung [14]
(see also [3]) showed that for several important cryptographic applications (such
as hashing prior to signing a message with a digital signature scheme) one can
weaken the collision-resistance requirement on a hash function, to a notion called
Universal One-Way Hash Function (UOWHF), which is defined as follows.

Definition 2 (UOWHFs). A (t, ε) Universal One-Way Hash Function
(UOWHF) family [14] is a collection F of functions fK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the
following game:

– Key Sampling. A uniformly random key K ∈ K is chosen (but not yet
revealed to A).

– A Commits. A runs (with no input) and outputs a hash function input
s1 ∈ {0, 1}n.

– Key Revealed: The key K is given to A.
– A Collides. A continues running and outputs a second hash function input

s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK , i.e.
if s1 $= s2 but fK(s1) = fK(s2).

Higher Order UOWHFs. Hong, Preneel and Song [7] strengthened the def-
inition of UOWHFs (while still being weaker than the CRHF requirement) by
allowing the attacker to query an oracle for the hash function k times before
commiting to the first input. A function that is secure even under this stronger
attack is called a kth order UOWHF.

Definition 3 (kth Order UOWHFs). A (t, ε) kth order Universal One-Way
Hash Function family [7] is a collection F of functions fK : {0, 1}n → {0, 1}m

indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the
following game:

– Key Sampling. A uniformly random key K ∈ K is chosen (but not yet
revealed to A).

– Oracle Queries. A runs (with no input) and makes k adaptive queries
q1, . . . , qk (with qi ∈ {0, 1}n for i = 1, . . . , k) to an oracle for fK(·), receiving
answers y1, . . . , yk (where yi = fK(qi) for i = 1, . . . , k).

– A Commits. A outputs a hash function input s1 ∈ {0, 1}n.
– Key Revealed: The key K is given to A.
– A Collides. A continues running and outputs a second hash function input

s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK , i.e.
if s1 $= s2 but fK(s1) = fK(s2).

4

Note that a 0th order UOWHF is just a UOWHF, and a kth order UOWHF
is also a rth order UOWHF for any r ≤ k, but a UOWHF is not necessarily
a higher order UOWHF; indeed, there exist UOWHFs which are not even first
order UOWHFs [3].
The Subset-Sum Problem. This is defined as follows.

Definition 4 (Subset Sum Problem SubSum(n,m, p)). Let n and m < n be
positive integers, and let p denote a positive integer satisfying 2m−1 < p ≤ 2m.
The SubSum(n,m, p) problem is the following: Given p, a vector of n uniformly
random integers a = (a[1], . . . ,a[n]) ∈R ZZn

p and an independent uniform target
integer T ∈R ZZp, find a subset s = (s[1], . . . , s[n]) with s[i] ∈ {0, 1} for i =
1, . . . , n such that

∑n
i=1 s[i] · a[i] ≡ T (mod p).

We say that problem SubSum(n,m, p) is (t, ε)-hard if, any algorithm A for
SubSum(n,m, p) having run-time at most t has success probability at most ε,
where the probability is over the uniformly random choice of a ∈ ZZn

p , T ∈ ZZp

and the random coins of A.

A related, but possibly easier problem than Subset Sum is the Weighted
Knapsack problem.

Definition 5 (Weighted Knapsack Problem WKnap(n,m, p)). Let n and
m < n be positive integers, and let p denote a positive integer satisfying 2m−1 <
p ≤ 2m. The WKnap(n,m, p) problem is the following: Given p, a vector of
n uniformly random integers a = (a[1], . . . ,a[n]) ∈R ZZn

p and an independent
uniform target integer T ∈R ZZp, find a weight vector s = (s[1], . . . , s[n]) with
s[i] ∈ {−1, 0, 1} for i = 1, . . . , n such that

∑n
i=1 s[i] · a[i] ≡ T (mod p).

We say that problem WKnap(n,m, p) is (t, ε)-hard if, any algorithm A for
WKnap(n,m, p) having run-time at most t has success probability at most ε,
where the probability is over the uniformly random choice of a ∈ ZZn

p , T ∈ ZZp

and the random coins of A.

A decision variant of the subset sum problem was one of the first problems to
be proven NP Complete [10]. The problem is well known in cryptography (also
known as the knapsack problem) due to its role in the early history of public-key
cryptosystems. The security of the Merkle-Hellman public key cryptosystem [12]
was intended to based on the hardness of subset sum, but was later broken [15]
due to the special non-random choice of the knapsack integers a[1], . . . ,a[n].
Later attacks based on lattice reduction work even for random knapsack integers,
but only when m is sufficiently larger than n (i.e. when the function is used in
expansion mode). According to [9], the best known provable lattice attack of this
type [4] succeeds with high probability over a random choice of a[1], . . . ,a[n],
assuming a perfect lattice shortest vector oracle is available, whenever m >
1.0629 · n.

Let us make a few other remarks:

– We use m < n in our hash functions, which avoids the above-mentioned di-
rect lattice attacks. However, one can still pick the (say) first n′ ≤ m/1.0629

5

integers a[1], . . . ,a[n′] and try to use the method of [4] to find a solution
involving only those integers (i.e. set the n − n′ remaining weights to zero).
A solution involving only the first n′ integers is expected to exist with proba-
bility 1/2m−n′

, so to make this probability at most 2−δ we need m−n′ ≥ δ.
It follows that we need m ≥ (1.0629/0.0629)δ, e.g. for δ = 80, we need
m ≥ 1352 bit.

– A series of papers, starting from [1, 6] and up to the recent [13] have given
reductions showing that the average-case weighted knapsack problem is as
hard as various worst-case lattice problems, such as SVP approximation
problems with a small polynomial approximation factor. However, although
the average-case to worst-case connections exhibited in these papers are the-
oretically impressive, the concrete complexity of these ‘polynomial approxi-
mation factor’ lattice problems (even in the worst case) is currently unknown,
and they may turn out to be substantially easier than subset sum due to the
good performance of lattice reduction algorithms in practice.

– The Weighted knapsack problem may also be easier than the subset sum
problem (see [2] for more discussion). Hence the subset sum hash function
may not be as secure a collision-resistant function as it is as a UOWHF (or
as we show, as a higher order UOWHF).

The Subset Sum Hash Function.

Definition 6 (Subset Sum Hash Function Family FSS(n,m, p)). Let n
and m < n be positive integers, and let p denote a positive integer satisfying
2m−1 < p ≤ 2m. The subset sum hash function family FSS(n,m, p) is defined as
follows. The key space is K = ZZn

p . Given a key a = (a[1], . . . ,a[n]) ∈ ZZn
p , the

associated hash function fa : {0, 1}n → {0, 1}m is defined by fa(s) =
∑n

i=1 s[i] ·
a[i] mod p ∈ {0, 1}m for s = (s[1], . . . , s[n]) ∈ {0, 1}n.

We observe that that the subset sum hash function is a public coin function
(see [8]), since the key consists of uniformly random integers in ZZp.

3 The Security of the Subset Sum Hash Function

It is easy to see that the subset sum hash function family FSS(n,m, p) is a CRHF
family assuming the hardness of the weighted knapsack problem WKnap(n,m, p).
However, as discussed above, the problem WKnap(n,m, p) may be easier than
the subset sum problem SubSum(n,m, p). It is therefore desirable to have a
hash family whose security relies only on the hardness of SubSum(n,m, p).
With this motivation, Impagliazzo and Naor [9] relaxed their requirement from
CRHF to a UOWHF, and showed that the subset sum hash function family
FSS(n,m, p) is a UOWHF assuming only the hardness of the subset sum prob-
lem SubSum(n,m, p). When translated to our concrete notation, the result of [9]
can be stated as follows.

Theorem 1 (Impagliazzo-Naor). If the Subset Sum problem SubSum(n,m, p)
is (t, ε)-hard, then the the Subset Sum hash function family FSS(n,m, p) is a

6

(t′, ε′) Universal One-Way Hash Function (UOWHF) family, where:

t′ = t − O(m · n) and ε′ = 2n · ε.

In this section we strengthen Theorem 1 by showing that the subset sum
hash function family FSS(n,m, p) is actually a kth order UOWHF for small
k = O(log m), still assuming only the hardness of the subset sum problem
SubSum(n,m, p). More concretely, we bound the way the security of FSS(n,m, p)
as a kth order UOWHF deteriorates with increasing k.

To begin with, we observe that for k ≥ m+2, the security of FSS(n,m, p) as
a kth order UOWHF already deteriorates to the hardness of a weighted knapsack
problem, i.e. the collision resistance of a related subset sum function.

Proposition 1. For k ≥ m+2, if the subset sum hash family FSS(n,m, p) is a
(t, ε) kth order UOWHF then the weighted knapsack problem WKnap(min(k, n)−
1,m, p) is (t′, ε′) hard, where:

t′ = t − O(n) and ε′ = ε.

Proof. Let A′ be an attacker for weighted knapsack problem WKnap(n′,m, p) for
n′ = min(k, n)−1 with run-time/succ. prob. (t′, ε′). Consider attacker A against
the kth order UOWHF notion of the subset sum hash family FSS(n,m, p) which
runs as follows.

After a random key a = (a[1], . . . ,a[n]) ∈ ZZn
p is chosen, A queries to fa(.) the

min(k, n) singleton subsets qi for i = 1, . . . , n′ + 1, where qi[j] = 1 if j = i and
qi[j] = 0 for j $= i. Thus A obtains answers yi = a[i] for i = 1, . . . , n′ + 1. Now
A runs A′ on input modulus p, knapsack vector a′ = (a[1], . . . ,a[n′]) and target
T = a[n′+1]. After time t and with probability ε, A′ returns s = (s[1], . . . , s[n′]) ∈
{−1, 0, 1}n′

satisfying
∑n′

i=1 s[i] · a[i] ≡ a[n′ + 1] (mod p). So A has a collision
fa(s1) = fa(s2), where for i = 1, . . . , n′ − 1, s1[i] = 1 if and only if s[i] = 0,
s2[i] = 1 if and only if s[i] = −1, (s1[n′], s2[n′]) = (0, 1) (so s1 $= s2) and for
i ≥ n′ + 1 we set s1[i] = s2[i] = 0. A outputs s1 and then s2 as his collision pair
and breaks kth order UOWHF notion of FSS(n,m, p). The attacker A has run-
time t = t′ + O(n) and success probability ε = ε′. The proposition follows. ()

For k ≤ m + 1, the reduction of Proposition 1 continues to hold, but in
this case the associated weighted knapsack instance WKnap(k − 1,m, p) has
a solution with probability at most 3k−1/p ≤ 3k−1/2m−1, which for fixed m
decreases exponentially as k decreases towards 0. Thus for k sufficiently smaller
than m we may hope that the subset sum hash family FSS(n,m, p) is secure
as a kth order UOWHF even if the weighted knapsack problem is easy to solve
when a solution exists. Indeed, we next show that for k = O(log m) the subset
sum hash function is a kth order UOWHF assuming only the hardness of subset
sum. For technical reasons we also restrict in this result the modulus p to be
prime.

7

Theorem 2. Let n and m < n be positive integers, let p denote a prime
satisfying 2m−1 < p ≤ 2m, and k < log3(p) − 1. If the Subset Sum prob-
lem SubSum(n,m, p) is (t, ε)-hard, then the Subset Sum hash function family
FSS(n,m, p) is a (t′, ε′) kth order Universal One-Way Hash Function (UOWHF)
family, where:

t′ = t − O(k2nTM (p)) and ε′ = 2k+1 · (n − k) · ε +
3k+1

2m
,

and TM (p) denotes the time to perform a multiplication modulo p.

Proof. Let A′ be a kth order UOWHF attacker against the subset sum hash
function family FSS(n,m, p) with run-time/succ. prob. (t′, ε′). We show how to
use A′ to construct an attacker A against subset sum problem SubSum(n,m, p)
with run time t = t′ + O(k2nTM (p)) and succ. prob. ε ≥ 1

2k+1·(n−k) · (ε
′ − 3k+1

2m),
which establishes the claimed result.

The basic idea of the reduction at a high level and its relation to the one
in [9] is as follows. Given its subset sum instance (a, T), A runs A′, answering its
oracle queries using key a to obtain the first colliding input s1, but then reveals
a different key a′ ≡p a+d to A′. The new key a′ is chosen by A based on s1 and
the target sum T . In the reduction of [9], d is chosen to have Hamming weight
1 (in a random bit position) and such that

∑
i s1[i] · a′[i] ≡p T . This implies

that a successful colliding s2 will be a solution to subset sum instance (a, T) if
s2 has a zero in the position where d is non-zero. The authors in [9] are able to
argue that such a zero position in s2 will exist (and equal the randomly chosen
non-zero position in d with probability 1/n). In our case, however, a′ must also
be consistent with the k earlier oracle query answers. This implies that d is
restricted to be a solution of a linear system of rank k + 1, so the minimum
allowable Hamming weight of d increases to k + 1, and the proof of [9] seems
difficult to extend – we need that certain k + 1 bits of s2 are zero (e.g. such
bits may not exist). Instead, we use an alternative approach which only requires
guessing the values (whatever they are) of the k +1 bits of s2 in positions where
d is non-zero (hence we succeed with probability 1/2k+1). To do this, we choose
d of weight k + 1 such that

∑
i s1[i] · (a[i] +d[i]) ≡p T +

∑
i ŝ2[i] ·d[i] (where we

use our guesses ŝ2 for the k +1 bits of s2 on the right hand side) – note that this
requirement is equivalent to equation (4) in the proof below. Then a colliding
s2 gives

∑
i s2[i] · (a[i] + d[i]) ≡p T +

∑
i ŝ2[i] · d[i] which implies that s2 is a

solution to instance (a, T) if our guesses of k + 1 bits of s2 were right (note the
simplified discussion above ignores some other issues handled by the proof).

We now present the detailed reduction game.

1. Subset Sum Instance Generation. A random subset sum instance (a, T)
(where a ∈R ZZn

p and T ∈R ZZp) is generated and given to A.
2. Oracle Queries. A runs A′ with no input. When A′ makes its ith oracle

query qi ∈ {0, 1}n, A responds with answer yi = fa(qi) =
∑n

j=1 qi[j] ·
a[j] mod p (for i = 1, . . . , k). A also stores the queries q1, . . . ,qk for later
use.

8

3. A′ Commits. A′ outputs hash function input s1 ∈ {0, 1}n.
4. Key Revealed. A samples a difference vector d ∈ ZZn

p (using the algorithm
detailed below) and gives A′ the key a′ = a+d mod p. The difference vector
d is sampled by A as follows:
(a) A uses the stored queries of A′ to build a k×n matrix Q having qi as its

ith row for i = 1, . . . , k. Remark : The difference vector d will satisfy the
matrix equation Q · d ≡ 0 (mod p), which implies that Q · a′ ≡ Q · a
(mod p), i.e. a′ is consistent with the answers to queries q1, . . . ,qk.

(b) A performs Gaussian elimination on the matrix Q (by performing O(k2)
elementary row operations over the field ZZp and O(k) column swapping
operations). Let Q̂ be the resulting k × n matrix (with entries in ZZp)
which is in reduced row echelon form:

Q̂ =





1 0 · · · 0 q′
1[k + 1] · · · q′

1[n]
0 1 · · · 0 q′

2[k + 1] · · · q′
2[n]

...
...

. . .
...

... · · ·
...

0 0 . . . 1 q′
k[k + 1] · · · q′

k[n]




. (1)

A also keeps track of the column swapping operations to compute
the corresponding column permutation π : {1, . . . , n} → {1, . . . , n}
such that d ∈ ZZn

p satisfies Qd ≡ 0 (mod p) if and only if d̂ =
(d[π(1)], . . . ,d[π(n)])T satisfies Q̂d̂ ≡ 0 (mod p). Remark : We assume,
without loss of generality, that the k query vectors q1, . . . ,qk are lin-
early independent over ZZp – If some query vector qi of A′ is a linear
combination of the i − 1 previous query vectors (the linear combination
coefficients can be efficiently computed by Gaussian elimination over
ZZp), A′ can itself answer the query by the same linear combination of
the i − 1 previous query answers. Hence we can always modify A′ so
that it always makes k linearly independent queries, without affecting
the success probability of A′.

(c) A picks a uniformly random integer ! ∈R {k + 1, . . . , n}, and k + 1
independent uniformly random bits (ŝ[1], . . . , ŝ[k]) ∈ {0, 1}k and ŝ[!] ∈
{0, 1}. A defines ŝ[j] = 0 for j $∈ {1, . . . , k} ∪ {!} and computes (as
detailed later) the unique vector d ∈ ZZn

p (if it exists) satisfying

d[π(j)] = 0 for j ∈ {k + 1, . . . , n} \ {!}. (2)

and
Q · d ≡ 0 (mod p) (3)

and
n∑

j=1

(ŝ[j] − s1[π(j)]) · d[π(j)] ≡ T ′ − T (mod p), (4)

where T ′ =
∑n

j=1 s1[j] · a[j] mod p. If no solution d ∈ ZZn
p satisfying (2),

(3) and (4) exists or if the solution exists but is not unique (because
T ′ − T ≡ 0 (mod p)), then A sets d = 0.

9

5. A′ Collides. A′ continues running and outputs a second hash function input
s2 ∈ {0, 1}n.

6. A Output. A outputs s2 as its solution to the subset sum instance (a, T).

This completes the description of A. For clarity, and also for reference in
later analysis, we now give more details on how A efficiently computes a unique
d ∈ ZZn

p satisfying (2), (3) and (4) (or determines that such d does not exist or
is not unique). Using (1), the conditions (3) and (4) are equivalent to requiring
that d̂ = (d[π(1)], . . . ,d[π(n)])T satisfies the (k + 1) × n linear system

Q̂′ · d̂ ≡ t (mod p), (5)

where Q̂′ is the (k + 1) × n matrix having Q̂ as its first k rows and the row
vector s′ = (ŝ[1] − s1[π(1)], . . . , ŝ[n] − s1[π(n)]) as the (k + 1)th row, and t =
(0, 0, . . . , 0, T ′ − T)T . By adding the multiple −(ŝ[j] − s1[π(j)]) of row j to row
k+1 for j = 1, . . . , k, A transforms the linear system (5) to the equivalent system

Q̂′′ · d̂ ≡ t (mod p), (6)

where Q̂′′ is a (k + 1)× n matrix having Q̂ as its first k rows and its last row s′′
has its first k entries equal to 0 (i.e. s′′[j] = 0 for j = 1, . . . , k). Now there are
two cases. In the case s′′[!] ≡ 0 (mod p), clearly either there are no solutions
to (6) satisfying (2) (if T ′ − T $≡ 0 (mod p)), or the solution is not unique (if
T ′ − T ≡ 0 (mod p)), so A sets d = 0. In the second case s′′[!] $≡ 0 (mod p),
A uses back substitution to compute the unique solution d to (6) satisfying (2),
i.e from the (k + 1)th row of (6):

d[π(!)] = s′′[!]−1 · (T ′ − T) mod p (7)

and from the first k rows:

d[π(j)] = −q′
j [!] · d[π(!)] mod p for j = 1, . . . , k. (8)

The running-time of A is t = t′ + O(k2nTM (p)) as claimed. Now we analyse
the success probability ε of A. Let us define several events in the above game:

1. SucA′: A′ succeeds, i.e. s2 − s1 $= 0 and
n∑

i=1

(s2[i] − s1[i]) · a′[i] ≡ 0 (mod p). (9)

2. SucA′
1: SucA′ occurs and s2 − s1 is linearly independent of {q1, . . . ,qk} over

ZZp.
3. SucA′

2: SucA′ occurs and s2 − s1 is a linear combination of {q1, . . . ,qk} over
ZZp.

Notice that events SucA′
1 and SucA′

2 partition the event SucA′ so

Pr[SucA′] = Pr[SucA′
1] + Pr[SucA′

2]. (10)

10

Claim 1. If event SucA′
1 occurs then there exist ‘good’ values (!∗, ŝ∗, ŝ∗[!∗]) ∈

{k+1, . . . , n}×{0, 1}k×{0, 1} such that if A correctly guessed those values when
choosing its random variables (!, ŝ, ŝ[!]) (i.e. if (!, ŝ, ŝ[!]) = (!∗, ŝ∗, ŝ∗[!∗])) then A
succeeds in solving its subset sum instance (i.e.

∑n
i=1 s2[i] · a[i] ≡ T (mod p)).

Proof. If SucA′
1 occurs, then substituting a′ ≡ a+d (mod p) and the definition

of T ′ in (9) we obtain
n∑

i=1

s2[i] · a[i] − T ′ ≡
n∑

i=1

−(s2[i] − s1[i]) · d[i].

Hence if d satisfies
n∑

i=1

(s2[i] − s1[i]) · d[i] ≡ T ′ − T (mod p) (11)

then
∑n

i=1 s2[i] · a[i] ≡ T (mod p) and A succeeds as claimed.
Now consider the equations (2),(3) and (4) and suppose for a moment that

we had ŝ[i] = s2[π(i)] for all i = 1, . . . , n (i.e. A correctly guessed all the n
bits of s2). Because s2 − s1 is linearly independent of {q1, . . . ,qk} over ZZp, we
know that the last row s′′ of the reduced matrix Q̂′′ in (6) has a non-zero entry
s′′[!∗] $≡ 0 (mod p) where !∗ ∈ {k+1, . . . , n}, so if ! = !∗ then a unique solution
d = d∗ satisfying (2),(3) and (4) exists. Now observe that because of (2), the
solution d∗ depends only on !∗ and a subset of k + 1 bits of s2, namely the bits
s2[π(1)], . . . , s2[π(k)] and s2[π(!∗)]. So if A correctly guesses just those values
(i.e. ! = !∗ and ŝ[i] = s2[π(i)] for i ∈ {1, . . . , k} ∪ {!∗} with ŝ[i] = 0 for all other
values of i) then d = d∗ is still a unique solution satisfying (2),(3) and (4) which
is computed by A′ (using (7) and (8)), so from (2) and (4) we conclude that (11)
is satisfied and A succeeds as claimed. This completes the proof of the claim. ()

Claim 2. In the above game, A perfectly simulates the distribution of the view
of A′ as in the real kth order UOWHF attack game. Furthermore, the simulated
view of A′ is statistically independent of the random choices (!, ŝ, ŝ[!]) made by
A.

Proof. See full version of the paper.
From the above Claims we obtain the following lower bound on the success

probability ε of A:

ε ≥ Pr[SucA′
1 ∧ (!, ŝ, ŝ[!]) = (!∗, ŝ∗, ŝ∗[!∗])] using Claim 1

≥ 1
(n − k)2k+1

· Pr[SucA′
1] using independence Claim 2

≥ 1
(n − k)2k+1

· (ε′ − Pr[SucA′
2]) using (10) and Claim 2. (12)

The following claim therefore completes the proof of the theorem’s lower bound
on the success probability of A. It is obtained by an information theoretic ar-
gument based on the fact that the answers yi to the oracle queries of A′ are
independent and uniformly random in ZZp (over the random choice of a).

11

Claim 3. Pr[SucA′
2] ≤ 3k+1

2m .

Proof. See full version of the paper.
Plugging the bound of Claim 3 in (12) establishes the claimed lower bound

ε ≥ 1
(n−k)2k+1 ·

(
ε′ − 3k+1

2m

)
on A’s success probability, completing the proof of

the theorem.
()

4 Application to Construction of Long-Input UOWHFs

In this section we discuss the application of our result to constructing UOWHFs
used to hash long messages using a subset-sum compression function, in con-
junction with the results of [7].

Let us suppose we wish to use the compression function family FSS(n,m, p)
(hashing n bits to m < n bits) to construct a hash function family F ′

SS(!,m)
hashing a long l-bit message to m bits, where ! could be much larger than n. We
want to ensure that F ′

SS(!,m) is a UOWHF family, assuming that the underlying
family FSS(n,m, p) is a UOWHF family (or a higher order UOWHF family).
A well-known and natural ‘domain-extension’ method is the Merkle-Damg̊ard
(MD) transform [11, 5], which works as follows. We assume for simplicity that
! = m + L · (n − m) for a positive integer L. Then the MD family F ′

SS(!,m) is
defined as follows. A key a ∈ ZZn

p of F ′
SS(!,m) is just a uniformly random key of

FSS(n,m, p). An input message M ∈ {0, 1}" is hashed using f ′
a as follows:

1. Split M ∈ {0, 1}" into one m-bit block x0 ∈ {0, 1}m and L = (!−m)/(n−m)
(n − m)-bit blocks (M [0], . . . , M [L − 1]).

2. For i = 0, . . . ,L − 1, compute xi+1 = fa(xi,M [i]). Return xL ∈ {0, 1}m.

It has been proved in [11, 5] that if the compression family FSS(n,m, p)
is collision-resistant, then so is the MD family F ′

SS(!,m). However, as dis-
cussed above, the collision-resistance of FSS(n,m, p) relies on the hardness of the
weighted knapsack problem WKnap(n,m, p), which may be substantially easier
than the subset sum problem SubSum(n,m, p). So, using the fact that UOWHF
security is enough for many hashing applications, and in order to rely only on
the hardness of SubSum(n,m, p), one could hope to use Theorem 1, which shows
that FSS(n,m, p) is a (0th order) UOWHF family assuming only the hardness
of SubSum(n,m, p). Unfortunately, as shown in [3], the MD construction does
not preserve the UOWHF property in general, i.e. the fact that FSS(n,m, p) is
a UOWHF family does not imply that F ′

SS(!,m) is a UOWHF family.
However, Hong, Preneel and Lee [7] have shown that if FSS(n,m, p) is a (t, ε)
kth order UOWHF for some k > 0 and L ≤ k+1, then the MD family F ′

SS(!,m)
is approximately a (t,L · ε) UOWHF. Combined with our result (Theorem 2),
we conclude that for k = O(log m), the MD family F ′

SS(!,m) is a UOWHF for
L ≤ k + 1, assuming only the hardness of SubSum(n,m, p). More precisely, if
subset sum problem SubSum(n,m, p) is (t, ε)-hard for some large time bound

12

t, then F ′
SS(!,m) is approximately a (t, 2k+1(n − k)L · ε)-UOWHF. Compar-

ing with Theorem 1, we see that the proven kth order UOWHF security of
FSS(n,m, p) (defined as the log of attacker’s run-time/success probability ra-
tio) is at most about k + log(L) bits lower than the proven UOWHF security
of FSS(n,m, p) (which in turn, by Theorem 1, is essentially equivalent to the
hardness of SubSum(n,m, p)).

4.1 Comparison with Shoup XOR-Mask UOWHF Domain Extender

Besides the basic MD construction, several other domain extenders for UOWHF
hash families are known [14, 3, 16] which do preserve the UOWHF security of the
underlying compression family; however, unlike the MD extension above, they all
have the property that the length of key increases with the length of the message.
The most efficient (in terms of key length) known extender of this type is the
Shoup XOR-Mask variant of MD [16]. Let us denote this construction (hashing
! = m + L · (n − m) bits to m bits for a positive integer L) by = F ′′

SS(!,m). It
is built from the compression family FSS(n,m, p) as follows. A key for family
F ′′

SS(!,m) consists of a key a ∈ ZZn
p for FSS(n,m, p) and -log(L). + 1 random

‘masks’ K∗ = (K∗[0], . . . , K∗[-log(L).]), where K∗[i] ∈ {0, 1}m for all i and
L = (! − m)/(n − m). To hash an input message M ∈ {0, 1}" using f ′′

a,K∗ ,

1. Split M ∈ {0, 1}" into one m-bit block x0 ∈ {0, 1}m and L = (!−m)/(n−m)
blocks of (n − m)-bit each, (M [0], . . . , M [L − 1]).

2. For i = 0, . . . ,L−1, compute xi+1 = fa(xi⊕K∗[ν2(i+1)],M [i]), where ν2(i)
denotes the largest integer ν such that 2ν divides i. Return xL ∈ {0, 1}m.

Hence, for L ≤ k + 1, the key length for the Shoup XOR-Mask extension
F ′′

SS(!,m) is lenF ′′ = n · m + (-log(L). + 1) · m compared to lenF ′ = n · m
for the MD extension discussed above, so the MD extension achieves a saving of
up to (-log(k + 1).+ 1) ·m bits by taking advantage of our result (Theorem 2).
The MD extension method is also simpler. On the other hand, because the key
length n ·m for the compression family FSS(n,m, p) dominates, the relative sav-
ing in total key length is small, and is only about ($log(k+1)%+1)

n . However, as we
explain in the next section, the total key length is not so important in applica-
tions and more significant relative savings in per use key length can be achieved
in certain cases by combining our result with the ‘XOR Mask Transform’.
Hashing Longer Messages. One can also take advantage of our result for
hashing longer messages of arbitrary length ! > (k + 1) · (n − m). To do so
(still assuming only the kth order UOWHF security of the compression family
FSS(n,m, p)), it is possible to combine the MD extension with the Shoup ex-
tension. Namely, first apply the MD extension to FSS(n,m, p) to construct the
UOWHF family F ′

SS((k+1)·(n−m)+m,m) (hashing (k+1)·(n−m)+m bits to
m bits), then apply the Shoup XOR-Mask extension to the compression family
F ′

SS(!,m) to hash ! bits to m bits. Compared to applying the Shoup extension
directly to FSS(n,m, p), this ‘combined’ method reduces the number of blocks
in the Shoup extension by a factor of k + 1, leading to a saving in key length by
an additive amount of log(k + 1) · m bits.

13

4.2 Using the ‘Semi Public-Key’ XOR Mask Transform

In this section we show that more significant relative savings in UOWHF key
length can be achieved in certain cases by combining our result with the ‘Semi
Public-Key XOR Mask Transform’.

The Semi-Public Key XOR Mask Transform. As remarked in [9],
UOWHF hash families have the following useful property, namely that the
UOWHF property is preserved by what we call the ‘Semi-Public Key XOR-
Mask Transform’. First, let us define the ‘XOR-Mask Transform’.

Definition 7 (‘XOR-Mask Transform’). Let F(n,m) be a hash family (hash-
ing n bits to m bits). Define the XOR-Mask Ttransform hash family F ′(n,m)
(hashing n bits to m bits) as follows. A key of F ′(n,m) consists of a key a of
F(n,m) and a random ‘mask’ K ∈ {0, 1}n. An input M ∈ {0, 1}n is hashed
using key (a,K) as follows f ′

a,K(M) = fa(M ⊕ K).

We call the XOR-Mask Transform a ‘Semi-Public Key’ transform, if the
portion a of the key (a,K) of f ′

a,K is published before the attacker commits to
its first collision input. Then we have the following simple but useful result.

Lemma 1. [‘Semi-Public Key XOR-Mask Transform’ Preserves UOWHF Se-
curity] Let F(n,m) be a hash family (hashing n bits to m bits), and let F ′(n,m)
denote the corresponding XOR-Mask transform of F(n,m). If F(n,m) is a (0th
order) UOWHF family, then F ′(n,m) is a (0th order) UOWHF family, even
against ‘Semi-Public Key’ UOWHF attacks on F ′(n,m), in which the random
key a of F(n,m) is given to the attacker before committing to the first colliding
input s1 ∈ {0, 1}n (i.e. only the ‘XOR-Mask’ K ∈ {0, 1}n is kept hidden from
the attacker until he commits to s1).

As remarked in [9], the practical implication of Lemma 1 for hash function
applications (e.g. hashing a message prior to signing with a digital signature
scheme) is that one can publish the long key a of F(n,m) once and for all (e.g.
in the public key of a signature scheme, or in a hashing standard document),
and then each use of the hash function (e.g. hashing and signing a message)
only requires appending (to the signature) a relatively short fresh ‘mask key’
K ∈ {0, 1}n.

Key Savings with the XOR Mask Transform. To construct a long
!-bit input UOWHF function (with ! = m + L · (n − m) for integer L) from
the subset sum compression family F(n,m, p) using the XOR Mask Transform,
the standard method is to apply the Semi-Public Key XOR-Mask transform
to F(n,m, p) (with mask key length n bit) and then the Shoup XOR-Mask
domain extender from the previous section. Note that an m-bit part of the XOR
transform mask key K can be ‘absorbed’ into the Shoup mask keys. Hence the
result is a UOWHF family F ′(!,m) mapping {0, 1}l to {0, 1}m with ‘per-use’ key
length l′ = (-log(L).+ 1) ·m + (n−m) = n + -log(L). ·m. In terms of provable
security, combining the reduction in [16] with Theorem 1, we obtain that if subset
sum problem SubSum(n,m, p) is (t, ε)-hard, then F ′(!,m) is approximately a
(t, 2nL · ε) UOWHF.

14

We now show that one can shorten the ‘per use’ key length of the standard
method using our result, if the compression ratio τ = n/m of the building block
subset sum compression function family F(n,m, p) is close to 1 (the relative sav-
ing increases as τ gets close to 1 and decreases with increasing message length).
We remark that the hardness of subset sum can only improve as τ gets close
to 1, and indeed some efficient attacks are known which exploit a large value of
τ > 1 (see [9]); therefore the use of τ close to 1 may be necessary to achieve
sufficient security.

Assume that k + 1 is a divisor of L so L = L′ · (k + 1) for positive integer
L′. We first apply the MD extender with extension factor k + 1 to F(n,m, p) to
obtain a UOWHF family F2 mapping {0, 1}m+(k+1)·(n−m) to {0, 1}m. Next we
apply the Semi-Public XOR Mask Transform to F2 to obtain UOWHF F3 with
same domain and range and XOR mask key length m + (k + 1) · (n − m) bit.
Finally we apply the Shoup XOR-Mask extender with L′ blocks to F3 obtain
UOWHF F ′′(!,m) mapping {0, 1}"=m+L·(n−m) to {0, 1}m, with ‘per-use’ key
length l′′ = (-log(L′).+1) ·m+(k +1) · (n−m) = n+ -log(L′). ·m+k · (n−m).
In terms of provable security, we combine the reductions in [16] and [7] with our
Theorem 2 to obtain that if subset sum problem SubSum(n,m, p) is (t, ε)-hard
then F ′′(!,m) is approximately a (t, 2k+1(n−k)L · ε) UOWHF, so our method’s
provable security is about 2k times lower than the standard method.

The relative saving S(k) def= (l′ − l′′)/l′ in ‘per use’ key length of our method
over the standard method is

S(k) =
(-log(L′ · (k + 1)). − -log(L′).) · m − k · (n − m)

n + -log(L). · m . (13)

Dropping the floor functions and using τ = n/m, we obtain the continuous
approximation

S(k) ≈ log(k + 1) − (τ − 1) · k
log(L) + τ

.

It is clear that for fixed L and τ close to 1, there is an optimum choice ko for k
which maximises S(k). Using the continuous approximation for S(k) above it is
easy to show that the optimum values are given by

ko ≈ 1
ln(2)(τ − 1)

− 1, S(ko) ≈
log(1

ln(2)(τ−1)) + τ − 1 − 1/ ln(2)

log(L′

ln(2)(τ−1)) + τ
, (14)

corresponding to an absolute additive saving in ‘per use’ key length of l′ − l′′ ≈
(log(1

ln(2)(τ−1))+τ−1−1/ ln(2))·m bits. Because the total ‘per use’ key length l′

of the Shoup method increases only logarithmically with the message length, this
constant additive saving remains significant even for quite long message lengths.
On the other hand, the above comparison does not take into account that the
proven security of our method is lower than the standard method by a factor of
about 2k relative to the subset sum problem. Let T (τ,m) denote the security (run
time to success probability ratio) of subset sum problem SubSum(τ ·m,m, p). To
compare the key length at equal proven security level, we may assume a larger

15

modulus length m′ > m in our method (but same compression ratio τ = n′/m′ =
n/m) chosen such that T (τ,m′) = 2k · T (τ,m). Assuming T (τ,m) = C(τ) · 2c·m

for some function C(τ) and constant c > 0 (e.g. c = 0.0629/(1.0629) ≈ 0.059
may be reasonable as discussed in Section 2), we obtain m′ = m + k/c. This
leads to a reduced relative key length saving (for equal length messages)

S′(k) ≥
(

1 +
k/c

m

)
S(k) − k/c

m
. (15)

This relative saving is still significant for short messages when m is sufficiently
large compared to k/c, although the saving decreases (and actually becomes
negative) for very long messages. Table 1 shows an example of the achievable
savings.

Msg Len (kbit) Key Len std (kbit) Key Len our (kbit)) Savings (%)
5.6 10.1 5.6 45.2
8.8 12.1 7.9 35.1
15.3 14.1 10.2 27.8
106 20.1 17.2 14.8
1661 28.1 26.5 6.0
6637 32.1 31.1 3.3

Table 1. Example of savings in ‘per use’ key length using our method combined with
the Shoup method (‘our’ column), compared to the Shoup method alone (‘std’ column).
The savings have been corrected for equal provable security as explained in the text,
assuming parameter values m = 2000, τ = 1.07, k = 19, c = 0.059, m′ = 2321.

One could obtain slightly greater savings with our method if Lemma 1 could
be generalized to higher order UOWHFs. However we point out that this is not
true in general, and in particular, the kth order UOWHF property of the subset
sum function is not preserved by the ‘Semi-Public Key XOR-Mask Transform‘
– we refer the reader to the full version of the paper for more details.

5 Conclusion

We have shown that the subset sum hash function is a kth order UOWHF
for k = O(log m). Concretely, we have shown that its security as a kth order
UOWHF is at most about k bits lower than its security as a (0th order) UOWHF
(which in turn is almost equivalent to the subset sum problem), and showed an
application of this result to shortening the key length of long-input UOWHFs
built from the subset sum compression function using the Shoup XOR-mask
domain extender. An interesting research problem is to find other applications
for higher order UOWHFs (for which UOWHFs are not sufficient).

Acknowledgements. This work was supported by Australian Research
Council Discovery Grants DP0345366 and DP0451484.

16

References

1. M. Ajtai. Generating Hard Instances of Lattice Problems. In Proc. 28th STOC,
pages 99–108, New York, 1996. ACM Press.

2. M. Bellare and D. Micciancio. A New Paradigm for Collision-free Hashing: Incre-
mentality at Reduced Cost. In EUROCRYPT ’97, volume 1233 of LNCS, pages
163–192, Berlin, 1997. Springer-Verlag.

3. M. Bellare and P. Rogaway. Collision-Resistant hashing: Towards making
UOWHFs Practical. In CRYPTO ’97, volume 1294 of LNCS, pages 470–484,
Berlin, 1997. Springer-Verlag.

4. M.J. Coster, B.A. LaMacchia, A.M. Odlyzko, and C.P. Schnorr. An Improved
Low-Density Subset Sum Algorithm. In EUROCRYPT ’91, volume 547 of LNCS,
pages 54–67, Berlin, 1991. Springer-Verlag.

5. I. Damg̊ard. A Design Principle for Hash Functions. In CRYPTO ’89, volume 435
of LNCS, pages 416–427, Berlin, 1989. Springer-Verlag.

6. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice
problems. Technical Report TR96-056, Electronic Colloquium on Computational
Complexity (ECCC), 1996.

7. D. Hong, B. Preneel, and S. Lee. Higher Order Universal One-Way Hash Func-
tions. In ASIACRYPT 2004, volume 3329 of LNCS, pages 201–213, Berlin, 2004.
Springer-Verlag.

8. C. Hsiao and L. Reyzin. Finding Collisions on a Public Road, or Do Secure Hash
Functions Need Secret Coins? In CRYPTO ’04, volume 3152 of LNCS, pages
92–105, Berlin, 2004. Springer-Verlag.

9. R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure
as Subset Sum. Journal of Cryptology, 9:199–216, 1996.

10. R. M. Karp. Reducibility among Combinatorial Problems. In R. E. Miller and
J.W. Thatcher, editors, Complexity of Computer Computation. Plenum, New York,
1972.

11. R. Merkle. One Way Hash Functions and DES. In CRYPTO ’89, volume 435 of
LNCS, pages 428–446, Berlin, 1989. Springer-Verlag.

12. R. Merkle and M. Hellman. Hiding Information and Signatures in Trapdoor Knap-
sacks. IEEE Trans. on Information Theory, 24:525–530, 1978.

13. D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions based on
Gaussian Measures. In Proc. FOCS 2004, pages 372–381. IEEE Computer Society
Press, 2004.

14. M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Significance. In Proc. 21st STOC, pages 33–43, New York, 1989. ACM
Press.

15. A. Shamir. A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem. IEEE Trans. on Information Theory, 30:699–704, 1984.

16. V. Shoup. A Composition Theorem for Universal One-Way Hash Functions. In
EUROCRYPT 2000, volume 1807 of LNCS, pages 445–452, Berlin, 2000. Springer-
Verlag.

17

