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Abstract. We study the design of efficient and private protocols for
polynomial operations in the shared-coefficients setting. We propose ef-
ficient protocols for polynomial multiplication, division with remainder,
polynomial interpolation, polynomial gcd, and a few other operations. All
the protocols introduced in this paper are constant-round, and more ef-
ficient than the general MPC. The protocols are all composable, and
can be combined to perform more complicated functionalities. We focus
on using a threshold additively homomorphic public key scheme due to
the applications of our protocols. But, our protocols can also be securely
computed in the information-theoretic setting. Finally, we mention some
applications of our protocols to privacy-preserving set-operations.
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tions.

1 Introduction

Secure multiparty computation (MPC) is an important and classic problem in
the realm of cryptography and distributed computing. In this problem, a group
of parties want to compute a function of their inputs while keeping their inputs
private. The special case of two-party computation was first studied by Yao
[Yao82,Yao86]. Classic works such as [GMW87], [BGW88], and [CCD88] give
solutions for the more general case of multiparty computation. These works
solve the problem of general multiparty computation by performing gate by
gate secure computation of a circuit (boolean or arithmetic) that implements
the desired function.

As the function being computed becomes more complicated, so does the cir-
cuit that computes such a function. This, in turn, makes the general MPC solu-
tions inefficient. Therefore, researchers have turned to designing special-purpose
protocols for specific functions in order to improve on the complexity of general
MPC solutions.

Polynomials have turned out to be useful tools for designing efficient and
secure distributed protocols for specific functionalities. [FNP04], [FIPR05], and
[KS05] use polynomials to design efficient multiparty protocols. In these papers,



coefficients of polynomials are encrypted using an additively homomorphic cryp-
tosystem. Then, different operations on polynomials such as polynomial evalua-

tion, and polynomial multiplication are performed.
These works motivated us to take a closer look at different operations on

polynomials. Furthermore, polynomials have appeared (and will continue to ap-
pear) in many schemes, or algorithms. Some of these schemes might have privacy
concerns, and require a set of parties to securely perform some operations on the
polynomials. Anywhere that such operations on polynomials are being performed
and privacy is a concern, our protocols can be useful.

1.1 Our Contribution

We propose efficient protocols for polynomial multiplication, division with re-

mainder, polynomial interpolation, polynomial gcd, and other polynomial oper-
ations. These protocols are composable and can be combined to perform more
complicated functionalities. In this paper, we are concerned with both commu-

nication and round complexity of our protocols. Particularly, all protocols intro-
duced in this paper have constant number of rounds, while we try to optimize
their communication complexity wherever possible.

We propose several applications of our methods to privacy-preserving set-

operations. In this setting, parties hold sets of data, and want to perform joint
operations on their sets. These operations could be union, intersection, subtrac-
tion, or any other operation on sets. In many cases, sets are represented by poly-
nomials. Different operations on polynomials lead to different set-operations. The
coefficients of such polynomials are often encrypted using a threshold additively-

homomorphic public-key cryptosystem. That is why we also use such a cryptosys-
tem to distribute secrets among the parties and to operate on those secrets.

But, we would like to note that our protocols can be implemented using
tools other than a threshold additively-homomorphic cryptosystem. For exam-
ple, any threshold linear secret-sharing scheme can be used to replace such a
cryptosystem.

For simplicity, and with slight abuse of terminology, we will use the single
term shared throughout this paper to refer to both distribution methods: thresh-
old additively-homomorphic encryption, and threshold linear secret-sharing. See
Section 2.1 for more detail.

Our protocols are secure against a semi-honest (passive) adversary. Such an
adversary will follow the steps of protocol but will try to learn extra information
from the messages it receives during every round of the protocol. The security
of our protocols are guaranteed as along as the underlying protocols (multi-
plication, addition, sharing random values, ...) that are discussed in section 2,
can be performed securely. In the computational setting, we require that the
threshold homomorphic cryptosystem used be semantically secure. This leads
to secure implementation of the multiplication protocol described in section 2.1.
The threshold version of Paillier’s cryptosystem is semantically secure and is
suited for this purpose. Similarly, in the information-theoretic setting, [BGW88]
and [CCD88] provide such secure protocols.



1.2 Organization

In section 2, we describe all the tools we need for our protocols. In section 3, we
describe an efficient protocol for multiplying two shared polynomials. A protocol
for Division with remainder is described in section 4. Multiplying many shared
polynomials in constant-round is explained in section 5. An efficient protocol for
polynomial interpolation is give in section 6. In section 7, we design constant-
round protocols for gcd of two and many shared polynomials. We also describe
a protocol for determining if two shared polynomials are coprime or not.

2 Preliminaries

Throughout this paper, F is a finite field of size q. F [x] is the ring of polynomials
over F . F [x]/f is the extension field where f is an irreducible polynomial.

In this paper, by a shared value, we mean a value that has been distributed
among the parties using either (1) a threshold additively-homomorphic public
key encryption scheme or (2) a threshold linear secret sharing scheme. The tech-
niques described in this paper will not depend on which method is used. See
Section 2.1 for more details.

Throughout this paper, by a shared polynomial, we mean a polynomial whose
coefficients have been individually encrypted or shared using one of the methods
mentioned in the preceding paragraph. A shared polynomial leaks an upper
bound on the degree of the polynomial. For some of our protocols, the exact
degrees of some shared polynomials may be leaked.

In this paper, by a shared matrix, we mean a matrix whose elements have
been individually encrypted or shared using one of the methods described above.

We measure the complexity of our protocols by the number of multiplications
of shared values that are necessary. This is a natural measure due to the fact
that addition of shared values (for either of the two aforementioned methods)
can be performed non-interactively. When the context is clear, we may refer to
this complexity measure as simply multiplications.

2.1 Shared Values

In this paper, we assume that we either have a threshold additively-homomorphic
public key encryption scheme or a threshold linear secret-sharing scheme. As
noted above, we may use the term shared value to refer to a value that has been
distributed according to either method.

Threshold Additively-Homomorphic Encryption We use a threshold cryp-
tosystem with homomorphic properties such as Paillier’s cryptosystem [Pai00].
Paillier’s cryptosystem is additively homomorphic, and supports threshold de-
cryption [FP00]. Such a cryptosystem has the following four properties:

1. To share a value between the parties, a party can encrypt the value using
the public key to the cryptosystem, and broadcast the ciphertext.



2. Parties can jointly reveal an encrypted value using the threshold decryption.
3. Given the ciphertexts, Epk(a), and Epk(b), and a public plaintext c, parties

can compute Epk(a + b), and Epk(ca) non-interactively.
4. Given the ciphertexts Epk(a) and Epk(b) parties can securely compute Epk(ab)

in constant number of rounds.

The first three properties are automatically satisfied by any threshold ad-
ditively homomorphic cryptosystem. We give a simple constant-round protocol
to satisfy the fourth property here1. Let’s assume that parties are holding the
ciphertexts Epk(a), and Epk(b). They want to compute Epk(ab). The protocol
follows:

1. Party i broadcasts Epk(ri) to all the parties, where ri is a randomly chosen
plaintext.

2. Parties compute Epk(a+
∑

i ri), and decrypt the result to get a′ = a+
∑

i ri.
3. Each party computes a′Epk(b) = Epk(a′b).
4. Party i computes riEpk(b) = Epk(rib), and broadcasts it to other parties.
5. Parties compute Epk(a′b) −

∑

i Epk(rib) = Epk(ab).

One minor issue is that the domain of Paillier’s cryptosystem is the ring Zn,
where n is the product of two large and secret primes. Note that Zn has all of
the properties of a finite field except that some of the non-zero elements in Zn

are not invertible. However, an extended gcd algorithm on x and n either finds
the inverse of x mod n, or finds a non-trivial factor of n. So in practice we can
describe computations in Zn as if it were a finite field.

Threshold Linear Secret Sharing We require a threshold linear secret-sharing
scheme over a field with the following properties:

1. Parties can share a value in constant number of rounds.
2. Parties can reveal their shares in a constant number of rounds.
3. Given shares of values a and b, and a publicly known value c, parties can

compute shares of (a + b), and ca without any interaction.
4. Given shares of values a, and b, parties can compute shares of ab in constant

number of rounds.

The secret-sharing scheme can be unconditionally or computationally secure.
Shamir’s polynomial-based threshold linear secret sharing scheme [Sha79] is un-
conditionally secure. One example of a secret-sharing scheme for the computa-
tional setting is given in [GRR98].

2.2 Existing Constant-Round Protocols

In this section, we review some of the existing protocols with constant number
of rounds. We would like to remind the reader that the term shared value (and

1 see [CDN01] for a similar protocol.



shared polynomial and shared matrix ) is used throughout the remainder of this
paper regardless of whether the underlying distribution method is by threshold
additively-homomorphic encryption or by threshold linear secret sharing.

Shares of a polynomial P in F [x], are simply the collection of shares of all of
P ’s coefficients. In a similar way, shares of a matrix M over F are the collection
of shares of all the elements in M .

We will use or refer to the following techniques throughout the paper. Most
of these protocols have appeared in [BB89], and [CD01].

Sharing a Secret Random Field Element, Polynomial, or Matrix A protocol
in which parties generate shares of a random and secret value r ∈ F . This can
be done by letting each party share a random value between the parties. Then,
parties take the sum of all of those values as r. We can extend this protocol to
share random polynomials in F [x] or F [x]/f . In a similar way, we can also share
random matrices over F .

Constant-Round Multiplication and Division Consider the polynomials PA

and PB in F [x]. If PA, and PB are both secret and shared among the parties,
then the parties can use the basic polynomial multiplication to compute shares
of PAPB in constant-round. We will describe a more communication-efficient
protocol for this task in Section 3. If at least one of the polynomials is publicly
known, the multiplication does not need any interaction. The case of matrices is
similar.

If PA is shared, and PB is publicly known, parties can compute shares of Q
and R such that PA = QPB + R and deg(R) ≤ PB. This can be done using the
synthetic division, and does not require any interaction between the parties. In
Section 4, we describe an efficient division protocol for the case where both PA

and PB are secret and shared.

Sharing Secret Invertible Field Elements and Matrices This is a protocol
that generates a sharing of a secret, random non-zero field element, or an invert-
ible matrix. The protocol securely generates two random elements (matrices),
securely multiplies them, and reveals the result. If this is non-zero (invertible),
one of the secret elements(matrices) is taken as the desired output of the pro-
tocol. The probability that a random n by n matrix is invertible is greater than
1

4
, and at least 1 − n

q
.

Constant-Round Inversion of Matrices and Field Elements In this protocol,
given shares of a field element (matrix) X, parties compute shares of the inverse
of that element (matrix). As it is described in [BB89], parties first generate shares
of a random non-zero (invertible) field element (matrix) R. Then, they compute
shares of RX, and reveal the result. Parties compute (RX)−1 = X−1R−1 non-
interactively. Finally, they compute X−1R−1 ∗ R = X−1 non-interactively.



Unbounded Fan-In Multiplication in Constant-Round Given shares of poly-
nomially many field elements (matrices) X1, . . . ,Xl, parties want to compute
shares of their product. Parties generate shared random non-zero (invertible)
field elements (matrices) R1, . . . , Rl. They compute P1 = X1R1, and Pi =
R−1

i−1
XiRi for i ≥ 2. They publicly announce all the Pi values, compute

∏

i Pi,
and multiply the result by Rl, all non-interactively. This gives them shares of
∏

i Xi.

Linear Algebra in Constant-Round consider the following protocols: (1) Given
shares of a matrix A, parties want to compute shares of det(A) (2) Given shares of
a matrix A, and shares of vector b, parties want to compute shares of solution(s)
to the linear system Ax = b. [CD01] proposes efficient and constant-round pro-
tocols for these two problems, and others. These protocols are more elaborate,
and we will not describe them here.

2.3 Privacy-Preserving Set-Operations

[KS05] uses polynomials to represent sets of data. The polynomial representation
of a set S of elements in F is the polynomial P =

∏

i(x − si), where si ∈ S.
Then, different operations on polynomials lead to different operations on the
underlying set. For instance, to compute the union of two disjoint sets, one can
simply multiply the two polynomials.

By performing different operations on the polynomials, [KS05] designs pri-
vacy preserving operations on sets. These operations include, set-intersection,

set-union, element reduction, and others. For these protocols to be private,
coefficients of polynomials can be shared using either a threshold additively-
homomorphic encryption scheme or a threshold linear secret-sharing scheme.
In fact, the results in [KS05] are presented using only threshold additively-
homomorphic encryption, but it is easy to translate their results to the threshold
linear secret-sharing setting. For consistency we will use the single term shared

(as discussed in Section 2.1) throughout this section to describe their results.
Their protocols gain efficiency compared to general multiparty solutions, due

to the fact that the following operations can be performed without any interac-
tion:

1. If a party knows the polynomial PA, and is given the shared polynomial PB ,
then he can compute shared polynomial PAPB without any interaction.

2. A party can compute the derivative of a shared polynomial P without any
interaction with other parties.

In case of polynomial multiplication, if both polynomials are shared, the most
efficient solution is the general multiparty computation. An appropriate general
MPC for this case is [CDN01]. For instance, the classic polynomial multipli-
cation algorithm (polynomials of degree O(n)), gives us a circuit with O(n2)
multiplication gates over a ring, each of which requires interaction between the



parties. The most efficient polynomial multiplication algorithm has a circuit with
O(npolylog(n)) gates.

Another interesting operation on polynomials that has not been considered
in the privacy-preserving setting, is the division with remainder of polynomi-
als. Such a protocol leads to operations for set deletion/subtraction (when the
element(s) is known to be in the set).

One can verify that if a party A knows polynomial PA and is given the shared
polynomial PB , he can perform the synthetic division algorithm to compute the
shared polynomials Q and R without any interaction with other parties, where
PB = QPA + R, and deg(R) ≤ PA. But, if both polynomials are shared, the
most efficient protocols are the general MPC protocols.

In later sections, we will propose protocols for these, and other tasks. Our
protocols will be constant-round , and more efficient than the general MPC.

3 Multiplying Two Polynomials

Consider two shared polynomials f(x), g(x) ∈ F [x], where F is a finite field,
and deg(f) = deg(g) = n. Parties want to compute shares of the polynomial
h(x) = f(x)∗g(x). The following is a simple and efficient constant-round protocol
for computing the shared product polynomial, with communication complexity
of O(n) multiplications. To the best of our knowledge, this protocol has not been
published previously.

1. Each party computes his/her share of f(i) and g(i) for all 0 ≤ i ≤ 2n.
2. Parties engage in 2n multiplications to get their shares of h(i) = f(i) ∗ g(i).
3. Each party can perform the Lagrange Interpolation on its own to get his/her

share of coefficients of h(x).

In step 1, no interaction is necessary. All the i’s are public, and therefore,
parties are computing a linear function of shared coefficients. In step 2, par-
ties perform 2n multiplications of shared elements in the field. Step 3 is also
performed without any interaction between the parties. This leads to the com-
munication complexity of O(n) multiplications. This also provides an efficient
privacy-preserving set union protocol for the setting of [KS05].

4 Division with Remainder

Let f(x) and g(x) be two polynomials in F [x] where deg(f) = n, deg(g) = m,
and m ≤ n. Given shares of f and g, parties want to compute shares of q
and r such that f(x) = g(x)q(x) + r(x), and deg(r) ≤ deg(g). The synthetic
polynomial division is sequential and does not directly lead to a constant-round
protocol for polynomial division. Furthermore, it requires O(n2) multiplication
of elements of a field. The fastest division algorithm still requires O(npolylog(n))
such multiplications.



Next, we give a constant-round protocol for the division with remainder of
two shared polynomials. The communication complexity of our protocol is O(n)
multiplications. The idea is borrowed from a division algorithm using Newton’s
iteration (See chapter 9 of [GG03] for more information).

Consider the equation

f(x) = g(x)q(x) + r(x) (1)

By substituting 1

x
for the variable x in the polynomials, we have the following

equation:

xnf(1/x) = [xn−mq(1/x)] ∗ [xmg(1/x)] + (xn−m+1) ∗ [xm−1r(1/x)] (2)

Let revk(a) = xka(1/x) for an arbitrary polynomial a(x) . When deg(a) = k,
this operation simply reverses the order of coefficients of a(x). We can rewrite
the above equation as:

revn(f) = revn−m(q) ∗ revm(b) + xn−m+1 ∗ revm−1(r) ⇒

revn(f) = revn−m(q) ∗ revm(g) mod xn−m+1 ⇒

revn−m(q) = revn(f) ∗ revm(g)−1 mod xn−m+1

(3)

If parties can compute shares of revn−m(q) efficiently and in constant-round,
they can also compute shares of q(x), and r(x) = f(x) − g(x)q(x) efficiently.
Note that we already have an efficient protocol for multiplying two polynomials
from section 3. The division algorithm follows:

1. Parties compute shares of revn(f) and revm(g) without any interaction.
2. Now, parties need to compute shares of revm(g)−1 mod xn−m+1. We will

give an efficient sub protocol for this operation later in this section.
3. They can use the protocol for multiplying two polynomials to compute shares

of revv(f) ∗ revm(g)−1.
4. Parties reduce the result mod xn−m+1 and reverse the coefficients to get

q(x) shared without any interaction.
5. By performing another polynomial multiplication, parties compute shares of

g(x)q(x).
6. Parties compute shares of r(x) = f(x) − g(x)q(x) without any interaction.

Note that division with remainder is reduced to two polynomial multiplica-
tions (step 3, 5) and one polynomial inversion (step 2). We already know how to
do the polynomial multiplication in an efficient way. It suffices to give an efficient
protocol for inverting an invertible polynomial f mod xt, where t is known to all
parties. It is important to note that revm(g) is invertible mod xt for any t ≥ 1.
To see that, note that deg(g) = m. This means that the leftmost coefficient of
g(x) is non-zero. Therefore, the free coefficient (constant term) of revm(g) is



also non-zero. This implies that revm(g) is not divisible by x, and is invertible
mod xt for any t ≥ 1. This observation implies that for our division algorithm
to work properly, we need to guarantee that the given (maximum) degrees for
the polynomials are in fact the exact degrees of those polynomials.

Consider the ring F [x]/xt. Consider the multiplicative subgroup (F [x]/xt)∗

that contains all the invertible polynomials in F [x]/xt. To invert a polynomial
f ∈ (F [x]/xt)∗, we adapt the matrix inversion technique of [BB89].

1. Parties compute shares of a uniformly random polynomial s in F [x]/xt.
2. Parties compute shares of f(x) ∗ s(x) mod xt, and publicly announce their

shares.
3. Parties compute their shares of g(x) = (f(x) ∗ s(x))−1 mod xt = s(x)−1 ∗

f(x)−1 mod xt. We expect s to be invertible in F [x]/xt, because gcd(s, xt) =
1 with high probability (1 − 1/q).

4. Parties compute their shares of f(x)−1 mod xt = s(x) ∗ g(x) mod xt.

Step 2 requires a polynomial multiplication. Steps 3 and 4 do not require any
interaction between the parties. Therefore, the communication complexity of this
inversion is O(n) multiplications.

Our division with remainder protocol also provides an efficient privacy pre-
serving subset deletion protocol for the setting of [KS05].

5 Multiplying Many Polynomials

Let f1, f2, . . . , fl be polynomials in F [x], where deg(fi) = ni. Given shares of fi

for all 1 ≤ i ≤ l, parties want to compute shares of h(x) =
∏l

i=1
fi(x). In this

section, we will give an efficient constant-round protocol for this task.
We would like to use the technique of [BB89] for unbounded fan-in multipli-

cation of elements in a field. But, note that F[x] is not a field. An appropriate
field that contains all the fi’s and their product h(x) is the extension field F [x]/f
where f is an irreducible polynomial of degree n1 +n2 + . . .+nl +1. To multiply
two polynomials in F [x]/f , parties can multiply the polynomials using the pro-
tocol in section 3, and compute the result mod f . Since f is a publicly known
polynomial, the second step doesn’t require any interaction. The protocol for
multiplying many polynomials follows:

1. One party computes an irreducible polynomial f of degree n1 + . . . + nl + 1,
and announces it to other parties.

2. Parties share l random polynomials r1, . . . , rl in the field F [x]/f .
3. Parties compute shares of ri(x)−1 for all i ∈ {0..l}.
4. Parties compute and publicly announce (f1(x)r1(x) mod f), (r1(x)−1f2(x)r2(x)

mod f) , (r2(x)−1f3(x)r3(x) mod f), . . . , (rl−1(x)−1fl(x)rl(x) mod f).
5. Parties compute the product of the l public polynomials, and multiply the

result by rl(x)−1.
6. Parties reduce the result mod f to obtain shares of h(x).

The above protocol is constant-round. The communication complexity is
dominated by step 4, which requires O(l(

∑l

i=1
ni)) multiplications.



6 Polynomial Interpolation

Let xi and yi be shared elements of the field F for i ∈ {1..n}. Parties would
like to compute shares of the polynomial f ∈ F [x] such that f(xi) = yi for all
i ∈ {1..n}.

A simple and constant-round protocol for this problem is possible based on
the existing techniques. Consider the Vandermonde matrix:

V =

















1 x1 x2
1 ... xn

1

1 x2 x2
2 ... xn

2

. . . . .

. . . . .

. . . . .
1 xn x2

n ... xn
n

















(4)

Parties can compute the matrix V , and solve the linear system V X =
[y1, y2, ..., yn]T . The components of the solution to the linear system are the
coefficients of f . If xi’s are distinct, the system will be non-singular, and solving
the linear system is reduced to matrix inversion. [BB89] gives an efficient and
constant-round algorithm for inverting matrices. The communication complexity
of this method will be O(n3) multiplications.

Using the protocol from section 5 for multiplying many polynomials, we can
improve on that, and achieve a constant-round protocol with communication
complexity of O(n2) multiplications. The protocol follows:

1. Parties compute shares of the polynomial P = (x − x1)(x − x2)...(x − xn).
2. Parties compute shares of n polynomials Pi = P/(x − xi) for all i ∈ {1..n}.
3. Parties compute shares of Pi(xi) and Pi(xi)

−1 for all i ∈ {1..n}.
4. Parties compute shares of the Lagrange coefficients, γi = Pi(x) ∗ Pi(xi)

−1

for all i ∈ {1..n}.
5. Parties compute shares of f =

∑n

i=1
γi ∗ yi.

The above protocol is constant round. For step 1, we will use the protocol
for multiplying many polynomials which requires O(n2) multiplications. Step 2
requires n runs of polynomial division protocol, and also requires O(n2) multi-
plications. Step 3 consists of n polynomial evaluation (or equivalently, n runs
of unbounded fan-in multiplication of n field elements), and n inversion of field
elements. Therefore, it requires a total of O(n2) multiplications. It is easy to
see that steps 4 and 5 also require O(n2) multiplications. Therefore, the above
protocol has a total communication complexity of O(n2) multiplications.

7 Computing GCD of Polynomials

Given shares of f(x), and g(x) in F [x], where deg(f) = n, deg(g) = m, and
n ≥ m, parties want to compute shares of d(x) = gcd(f, g). Here, we assume
that we leak the degree of the gcd (so that everyone learns number of coefficients
of the gcd).



Euclid’s Algorithm for computing the gcd of two polynomials is sequential in
nature. Particularly, it requires the parties to perform O(n) division protocols
in a sequential manner. Furthermore, we cannot use the division algorithm we
introduced in Section 4, to improve the communication complexity of a Euclid-
based protocol. The reason is that, as we mentioned earlier, the division protocol
assumes that the polynomials have non-zero coefficients for their highest degree.
This might not be true during all the steps of Euclid’s Algorithm. Therefore, we
take a different approach to solving the polynomial gcd problem efficiently and
in constant number of rounds.

7.1 Extended Euclidean Algorithm and Subresultants

Consider the Extended Euclidean Algorithm (EEA) below:

r0 = f s0 = 1 t0 = 0

r1 = g s1 = 0 t1 = 1

r2 = r0 − r1 ∗ q1 s2 = s0 − s1 ∗ q1 t2 = t0 − t1 ∗ q1

. . .

. . .

. . .

ri+1 = ri−1 − ri ∗ qi si+1 = si−1 − si ∗ qi ti+1 = ti−1 − ti ∗ qi

. . .

. . .

. . .

0 = rl−1 − ql ∗ rl sl+1 = sl−1 − ql ∗ rl tl+1 = tl−1 − ql ∗ rl (5)

One invariant of the EEA is that ri = si ∗ f + ti ∗ g for all i ∈ {0..l}. Note
that d(x) = rl(x), and sl(x), and tl(x) are the Bezout coefficients. We denote
the degree sequence of EEA by (n0, n1, n2, . . . , nl), where ni = deg(ri) for all
i ∈ {0..l}.

Next, we review some of the properties of subresultants of two polynomials.
These properties will help us design a constant-round protocol for polynomial
gcd.

Some Properties of the Subresultants Consider the polynomials f(x) =
∑n

j=0
ajx

j and g(x) =
∑m

j=0
bjx

j . The subresultant matrix Si (for i ∈ {0..m})
is a (n + m − 2i) ∗ (n + m − 2i) matrix of the form:



Si =





































an bm

an−1 an bm−1 bm

...
. . .

...
. . .

an−m+i+1 · · · · · · an bi+1 · · · · · · bm

...
...

...
. . .

ai+1 · · · · · · am bm−n+i+1 · · · · · · · · · · · · bm

...
...

...
...

...
...

...
...

a2i−m+1 · · · · · · ai b2i−n+1 · · · · · · · · · · · · bi





































(6)

All the entries in the Si’s are coefficients of f and g. The following two
theorems about the subresultant matrices will be useful (please refer to [GG03]
for proof details).

Theorem 1. Integer k appears in the degree-sequence of EEA, iff det(Sk) 6= 0.

Theorem 2. If k = ni, where ni is the ith element in the degree sequence of

EEA, the linear system Sk ∗ x = [0, ..., 0, 1]T has a unique solution x such that

si = x[1...(m − k)], and ti = x[(m − k + 1)...(m + n − 2k)].

7.2 Shared GCD of Two Polynomials

Here is the intuition behind our protocol for computing shares of the gcd of two
shared polynomials. First, parties compute p = deg(d(x)) = deg(rl(x)) without
learning anything else. Note that based on Theorem 1, p is the only element in
the degree sequence with the property that:

det(Sp) 6= 0, and det(Si) = 0 for all 0 ≤ i < p. (7)

Parties then jointly solve a linear system (Theorem 2) to compute shares of the
Bezout coefficients sl(x) and tl(x) from which shares of the gcd can be derived.
The polynomial gcd protocol follows:

The Protocol

1. Parties compute shares of det(Si) for all i ∈ {0..m}.
2. Parties compute shares of non-zero random field elements h1, ..., hm.
3. Parties compute shares of b0, ..., bm such that bk =

∑k
i=0

hi ∗ det(Si) for all
k ∈ {0..m}. (Note: bi = 0 for all 0 ≤ i < p. bi 6= 0 for all p ≤ i ≤ m, with
high probability).

4. Parties generate shares of non-zero random elements r1, ..., rm of the field.
5. Parties compute and announce shares of values ci = ri ∗ bi.
6. Note that ci = 0 for all 0 ≤ i < p, and ci 6= 0 for all p ≤ i ≤ m . By counting

the non-zero ci’s, parties learn p = deg(d(x)) (Nothing else is learned, since
all the non-zero ci’s are random).



7. Parties compute shares of the solution to the linear system Sp∗X = [0, ..., 1]T ,
and extract shares of the sl(x) and tl(x) from the unique shared solution
(based on Theorem 2).

8. Parties compute shares of d = f ∗ sl + g ∗ tl. (Parties only consider the first
p + 1 coefficients of the result).

All the steps of the protocol can be performed in constant number of rounds.
[CD01] introduces an efficient, and constant-round algorithm for computing de-
terminant of a shared matrix (step 1). Since Sp is always invertible, the linear
system of step 7 can be solved using the matrix inversion protocol of [BB89].

The communication complexity of the protocol is dominated by step 1, in
which determinants of O(n) matrices are computed, and each matrix is O(n) by
O(n). In the computational setting, our protocol is not very appealing. In partic-
ular, the general MPC protocol of [BMR90] can compute the gcd of two polyno-
mials in constant number of rounds and with communication complexity of O(n2)
multiplications. Our protocol is more interesting in the information-theoretic

setting. In the information-theoretic setting, we only know of general constant-
round protocols for problems in NL (please see [FKN94],[IK97],[IK00]). It is
unlikely that these general techniques would lead to the same communication-
efficiency as our protocol for polynomial gcd.

7.3 Are Two Shared Polynomials Coprime?

Given shares of f(x) and g(x) in F [x], parties want to compute shares of the bit
b such that b = 0 if gcd(f, g) = 1, and b = 1 otherwise.

Let us consider the Syslvester matrix (S0) of the two polynomials. The de-
terminant of this matrix is also called the resultant of two polynomials. The
following is a corollary of theorem 1:

Corollary 1. gcd(f, g) = 1 iff det(S0) 6= 0.

This leads to the following protocol:

1. Parties compute shares of the determinant of S0.
2. Parties compute shares of the bit b such that b = 0 if det(S0) = 0 and b = 1

otherwise.

This reduces the problem to a protocol for testing equality of a shared value
with zero. One can use the protocol given in [DFNT05] to implement such a
functionality in constant-round.

7.4 Shared GCD of Many Polynomials

Given shares of polynomials f1, f2, . . . , ft in F [x], parties want to compute shares
of gcd(f1, ..., ft).

Let g = f2 +
∑

3≤i≤t rifi, where ri’s are chosen independently at random
from F . The following theorem shows that gcd(f1, . . . , ft) = gcd(g, f1) with very
high probability (see Chapter 6 of [GG03] for proof details).



Theorem 3. The probability that gcd(f1, . . . , ft) 6= gcd(g, f1) is less than

(max1≤i≤t deg(fi))/q.

This leads to the following protocol for computing the shared gcd of many
shared polynomials:

1. Parties generate shares of random field elements ri for all i ∈ {1..t}.
2. Parties compute shares of g = f2 +

∑

3≤i≤t rifi.
3. Parties compute shares of d = gcd(g, f1) using the given constant-round

polynomial gcd.
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