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Abstract. Hidden field equation (HFE) multivariable cryptosystems
were first suggested by Patarin. Kipnis and Shamir showed that to make
the cryptosystem secure, a special parameter D of any HFE cryptosys-
tem can not be too small. Consequently Kipnis, Patarin and Goubin
proposed an enhanced variant of the HFE cryptosystem by combining
the idea of Oil and Vinegar construction with the HFE construction. Es-
sentially they “perturb” the HFE system with some external variables.
In this paper, we will first present a new cryptanalysis method for the
HFEv schemes. We then use the idea of internal perturbation to build a
new cryptosystem, an internally perturbed HFE cryptosystem (IPHFE).
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1 Introduction

Since the invention of the RSA scheme, there has been great interest in construct-
ing other public key cryptosystems. One of the directions is to use multivariable
polynomials, in particular, quadratic polynomials. This construction relies on
the proven theorem that solving a set of multivariable polynomial equations
over a finite field is, in general, an NP-hard problem [GJ79]. Nevertheless, it is
not enough to guarantee the security of such a cryptosystem.

One of the basic designs in this directions was started by Matsumoto and
Imai [MI88]. They suggested to use a map F over a large field K̄, which is a
degree n extension of a smaller finite field k. By identifying K̄ with kn the map
F produces a multivariable polynomial map from kn to kn, which is denoted by
F̃ . Then one “hides” this map F̃ by composing from the left and the right by
two invertible affine linear maps L1 and L2 on kn. This generates a quadratic
map F̄ :

F̄ = L1 ◦ F̃ ◦ L2

from kn to kn (◦ means composition of two maps). Matsumoto and Imai sug-

gested the map F : X 7−→ X1+qi

, where q is the number of elements in k, X is an
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element in K̄ and k is of characteristic 2. However Patarin [Pat95] showed that
this scheme is insecure under an algebraic attack when linearization equations
are used.

Since then, Patarin and his collaborators have made a great effort to find
secure modifications of the Matsumoto-Imai system. These modified cryptosys-
tems can be divided into two types:

1) Minus-Plus method [PGC98]: The Minus method was first suggested in
[Sha98] and is the simplest idea among all. In the Minus method one removes
a few of the components of F̄ , and in the Plus method one adds a few ran-
domly chosen quadratic polynomials. It is possible to combine both methods.
The main reason to take the “Minus” action is the necessity to make the cor-
responding equations more difficult to solve so that the linearization equations
can no longer be used. Minus (only) method is well suited for signature schemes.
One such scheme, Sflashv2 [ACDG03,PCG01], was last year accepted as one of
the final selections in the New European Schemes for Signatures, Integrity, and
Encryption: IST-1999-12324, although Patarin has now proposed that Sflashv2

should be replaced by the new version Sflashv3 [CGP03].

2) Hidden Field Equation Method (HFE) [Pat95]: Patarin believes that this
construction is the strongest. The difference of this scheme to the original system
of Matsumoto-Imai is that F is substituted by a new map (function)

F : X 7−→

D
∑

0,0

aijX
qi+qj

+

D
∑

0

biX
qi

+ c,

where the polynomial coefficients are randomly chosen. The total degree of F can
not be too large, because the decryption process needs to solve the polynomial
equation F (X) = Y ′ for a constant Y ′. However a new algebraic attack by
Kipnis and Shamir [KS99] using both Minrank and relinearization shows that
the number D can also not be too small. This is confirmed by [Cou01,FJ03].

Another direction Patarin and his collaborators have pursued is inspired by
the linearization equations mentioned above. This type of construction includes
Dragon [Pat96a], Little Dragon [Pat96a], Oil and Vinegar [Pat97], and Unbal-
anced Oil and Vinegar [KPG99]. From the point view of our paper, the interest-
ing ones are the last two schemes, where the basic idea is that certain quadratic
equations can be easily solved if we are allowed to guess a few variables. The
key map is a map O from kn = ko+v to ko:

O(x1, ..., xo, x
′

1, ..., x
′

v) = (O1(x1, ..., xo, x
′

1, ..., x
′

v), ..., Oo(x1, ..., xo, x
′

1, ..., x
′

v)),

such that each Oi is a Oil and Vinegar polynomial in the form:

Oi(x1, . . . , xo, x
′

1, . . . , x
′

v) =
∑

aijxix
′

j +
∑

bijx
′

ix
′

j +
∑

cixi +
∑

dix
′

j + e

where the xi’s are called Oil variables and the x′

j ’s Vinegar variables. One can
see the similarity of the above formula with the linearization equations. This



294 Jintai Ding and Dieter Schmidt

family of cryptosystems are designed specially for signature schemes, where we
need only to find one solution of a given equation not a unique solution.

In order to enhance the security of the HFE system, Patarin and his col-
laborators proposed later a new scheme, which is a combination of the HFE
system with the Unbalanced Oil and Vinegar system. They denote it by the
Hidden Field Equation Vinegar (HFEv) schemes. The basic idea besides the
HFE method is to add a few new (Vinegar) variables to make the system more
complicated [Pat96b]. This method essentially replaces F with an even more
complicated map from K̄ × kr to K̄ of the form:

Fv(X, x′

1, . . . , x
′

r) = (1)
D,D
∑

0,0

aijX
qi+qj

+

D
∑

0

biX
qi

+

D
∑

0

Ωi(x
′

1, . . . , x
′

r)X
qi

+ U0(x
′

1, . . . , x
′

r),

where Ωi is a randomly chosen k linear affine injective map from kr to K̄ and
U0 is a randomly chosen quadratic map from kr to K̄.

One can see that these new variables are mixed in a special way with the orig-
inal variables (like oil and vinegar). The decryption process requires a search on
these added small number of variables. For the signature case, the Vinegar vari-
ables can be selected at random. It has a good probability to succeed, otherwise
another selection is made until a correct answer is found.

As far as we know, there does not exist any algebraic attack using the struc-
ture of HFEv. However, in this paper, we will show that it is possible that the
attack in [KS99] can also be applied here to separate the Vinegar variables and
attack the system if both D and r are small. The basic idea is to use the alge-
braic method to find a way to purge out the Vinegar variables. The complexity
of such an attack is, however, exponential in term of r.

After all the papers mentioned above, it seems that all possible extensions
and generalizations of the Matsumoto-Imai system are exhausted, but recently a
new idea was proposed by Ding [Din04] to enhance the Matsumoto-Imai system.
It is called internal perturbation and represents a very general idea.

In a very broad context the HFE and Oil-Vinegar methods can also be seen
as an extension of a commonly used idea in mathematics and physics, namely
perturbation. A good way to deal with a continuous system often is to “perturb”
the system at a minimum scale. In terms of this view, the HFEv and Oil-Vinegar
methods can be viewed as perturbations of the HFE method by the newly added
Vinegar variables. However, the perturbation is in some sense more an “external”
perturbation, as a few extra (external) variables (Vinegar) are introduced. The
idea of internal perturbation is to use internal variables instead, which map to
a small subspace of the original variables.

We call the new system an internally perturbed HFE (IPHFE) system. For
a IPHFE system, this method essentially replaces F with a new function:

F : (X) 7−→
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D,D
∑

0,0

aijX
qi+qj

+

D
∑

0

biX
qi

+

D,n−1
∑

0,0

ci,jX
qi

X̃qj

r +

n−1,n−1
∑

0,0

αijX̃
qi+qj

r +

n−1
∑

0

βiX̃
qi

r +γ.

The new internal perturbation variable X̃r is given by X̃r =
∑n−1

0 aiX
qi

. The

function Z(X) =
∑n−1

0 aiX
qi

, when viewed as a linear map from kn to kn, has
an image space of low dimension r, which we call the perturbation dimension.

This perturbation is performed through a small set of variables “inside” the
space kn (therefore they are “internal” variables) and one does not introduce
any new variables. Namely given a quadratic multivariable system F̄ over kn,
we randomly find a linear map Z from kn to kn with the image space of a small
dimension r, then we try to “perturb” the system through the small number
variables related to Z.

Although we use the same basic idea of internal perturbation as in [Din04],
the perturbation here is done differently. In the original method only terms like
U0 were used, whereas here a mixing of the linear terms from the original and
perturbation variables Z(X) occurs, so that the perturbation variables and the
original variables are fully mixed. This makes the system more complicated.

The motivation for our work came from our attack method to purge out the
external perturbation. This lead us to construct new systems that are resistant
to the algebraic attack [Pat95,KS99] and its extensions like XL, but without
sacrificing much of the efficiency of the system. An additional advantage of the
new systems is that the internal perturbation makes the process of elimination
of unnecessary candidates in the decryption process much faster.

In the first section of the paper, we will introduce, in detail, our idea of
how to attack an HFEv system. Then we will present the IPHFE system and a
practical implementation example of an 89 bits cryptosystem system, where we
choose the perturbation dimension to be 2. We will show that it should have a
very high security level against all known attacking methods. We will analyze
the security and efficiency of the system.

2 Cryptanalysis of HFEv cryptosystem.

2.1 The HFEv cryptosystem.

Let K̄ be a degree n extension of a finite field k of characteristic 2 with q
elements, and K̄ ∼= k[x]/g(x), where g(x) is a degree n irreducible polynomial
over k. That k has characteristic 2 is not essential here.

Let φ be the standard k-linear map that identifies K̄ with kn:

φ : K̄ 7−→ kn,

such that

φ(a0 + a1x + a2x
2 + · · · + an−1x

n−1) = (a0, a1, a2, · · · , an−1).

The idea of lifting a map over spaces of a small finite field [KS99] to a larger
field is the key idea, which leads us to a new formulation of the HFEv explained
in the introduction.
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Lemma 1 [KS99] Let Q(x1, . . . , xn) = (Q1(x1, . . . , xn), . . . , Qn(x1, . . . , xn)) be
a linear map from kn into kn. Then there exist a0, . . . , an−1 in K̄, such that

φ−1
◦ Q(x1, . . . , xr) =

n−1
∑

i=0

aiX
qi

,

where X = φ−1(x1, . . . , xn).

From this lemma, we have

Lemma 2 Let Q(x′

1, . . . , x
′

r) = (Q1(x
′

1, . . . , x
′

r), . . . , Qn(x′

1, . . . , x
′

r)) be a linear
map from kr into kn. Then there exist a0, . . . , an−1 in K̄, such that

φ−1
◦ Q(x′

1, . . . , x
′

r) =

n−1
∑

i=0

aiX̄
qi

r ,

where X̄r = φ−1(x′

1, . . . , x
′

r, 0, . . . , 0).

This lemma is a simple corollary from Lemma 1 above from [KS99]. It allows
us to reformulate the key function (1) and give an equivalent description:

F : (X, Xr) 7−→

D,D
∑

0,0

aijX
qi+qj

+

D
∑

0

biX
qi

+

D,n−1
∑

0,0

ci,jX
qi

X̄qj

r +

n−1,n−1
∑

0,0

αijX̄
qi+qj

r +

n−1
∑

0

βiX̄
qi

r +γ,

where Xr = (x′

1, . . . , x
′

r) represents the new Vinegar variables. The first two
terms are the same as in (1), the third term here is derived from the third term
in (1), and the last three terms come from U0.

This new formulation is the key to our attack. Let F̃ be a map from kn+r to
kn and

F̃ (x1, . . . , xn, x′

1, . . . , x
′

r) = φ ◦ F ◦ (φ−1
× Id)(x1, . . . , xn, x′

1, . . . , x
′

r) =

(F̃1(x1, ..., xn, x′

1, ..., x
′

r), F̃2(x1, ..., xn, x′

1, ..., x
′

r), · · · , F̃n(x1, ..., xn, x′

1, ..., x
′

r)).

Here F̃i(x1, . . . , xr, x
′

1, . . . , x
′

r) are quadratic polynomials of n + r variables.
Let L1 and L2 be two randomly chosen invertible affine linear maps one over

kn and the other over kn+r.

F̄ (x1, . . . , xn, x′

1, . . . , x
′

r) = L1 ◦ F̃ ◦ L2(x1, . . . , xn, x′

1, . . . , x
′

r) =

(F̄1(x1, ..., xn, x′

1, ..., x
′

r), F̄2(x1, ..., xn, x′

1, ..., x
′

r), ..., F̄n(x1, ..., xn, x′

1, ..., x
′

r))

is the cipher for the HFEv system. No effective algebraic attack method exists
for it yet, which uses the properties of the map F .
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2.2 Cryptanalysis for the case r = 1

In this section, we will present a new attack method for the HFEv cryptosystem,
which is an extension of an idea of Kipnis and Shamir. We will show how it works
when r = 1, which we will assume throughout this section.

When r = 1, the map F from K̄ × k to K̄, which is used to define the HFEv
system, is:

F : (X, x′

1) 7−→

D
∑

0,0

aijX
qi+qj

+

D
∑

0

biX
qi

+

D
∑

0

ciX
qi

T1(x
′

1) + αT1(x
′

1)
2 + βT1(x

′

1) + γ

where x′

1 represents the new Vinegar variables, X̄ = φ−1(x′

1, 0, . . . , 0) is the
image of a k linear embedding map T1 from k to K̄: T1(x) = φ−1(x, 0, . . . , 0).

Let K̂ be the n + 1 dimensional k subspace in K̄ × K̄ such that for any
element X̂ = (X1, X2),

φ(X2) = (x′

1, 0, . . . , 0).

The map F (X, x′

1) can be reinterpreted as a map from K̂ to K, so that we
have

F : (X, X̄) 7−→

D
∑

i,j

aijX
qi+qj

+

D
∑

0

biX
qi

+

D
∑

i

ciX
qi

X̄ + αX̄2 + βX̄ + γ,

with
φ(X̄) = (x′

1, 0, . . . , 0).

We should recall that
X̄q = X̄,

and this is why the formula above has no high power terms of X̄ . Let P1 be the
projection such that

P1(x1, . . . , xn) = x1.

Let φ1 = φ × (P1 ◦ φ) be the standard map from K̂ to kn+1, then

F̃ = φ ◦ F ◦ φ−1
1

and the cipher (public key) is given as

F̄ = L1 ◦ F̃ ◦ L2,

where L1 is an invertible affine linear map on kn and L2 is an affine linear map
on kn+1.

The public key consists of the polynomial components of K̄. The private key
is L1, L2 and F and its related field structure.

One way to attack the system is to find L1 and L2 such that if we compose
from the two ends with their inverses we would recover F .
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To attack, the first observation we have is that:

F̂ = φ−1 ◦ F̄ ◦ φ1 = φ−1 ◦L1 ◦ F̃ ◦ L2 ◦ φ1

= (φ−1 ◦ L1 ◦ φ) ◦ F ◦ (φ−1
1 ◦ L2 ◦ φ1).

We know what (φ ◦L1 ◦φ−1) is like from Lemma 1 and for φ1 ◦L2 ◦ φ−1
1 , we

have the following lemma

Lemma 3 Let Q(x1, . . . , xn, x′

1) = (Q1(x1, . . . , x
′

1), . . . , Qn+1(x1, . . . , x
′

1)) be a
linear map from kn+1 to kn+1. Then there exist a0, . . . , an−1, a

′

0, a, b in K̄, such
that

φ−1
1 ◦ Q(x1, . . . , xn, x′

1) = (

n−1
∑

0

aiX
qi

+ a′

0X̄, bX̄ +

n−1
∑

0

aqi

Xqi

),

as a k linear map over K̂, where X̄ = φ−1(x′

1, 0, . . . , 0), X = φ−1(x1, . . . , xn)
and φ(b) = (b, 0, . . . , 0).

This can be proven with the same argument as the one for Lemma 1 in
[KS99].

In order to simplify the presentation, from now on we will assume that L1

and L2 and F are homogeneous. Our attack works the same way for the non–
homogeneous case, because we can simply drop all lower degree terms.

In this case,

F : (X, X̄) 7−→

D
∑

0,0

aijX
qi+qj

+

D
∑

0

ciX
qi

X̄ + αX̄2.

From the lemma above, we can set

L̄1(X) = φ ◦ L1 ◦ φ−1(X) =

n−1
∑

0

l1iX
qi

,

as in Lemma 1;

L̄2(X, X̄) = φ1 ◦ L2 ◦ φ−1
1 (X, X̄) = (

n−1
∑

0

l2iX
qi

+ l′2,0X̄, l′2,1X̄ +
n−1
∑

0

lq
i

2 Xqi

),

as in Lemma 3. This means that

F̂ (X, X̄) =

n−1,n−1
∑

0,0

âijX
qi+qj

+

D
∑

0

ĉiX
qi

X̄ + α̂X̄2.

Once we have the public key, it is clear that F̂ can be easily found by solving
a set of a linear equations, once we fix the field structure of K̄. Because all finite
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fields with the same size are isomorphic, any choice would work in this case as
was pointed out in [KS99].

Our formulation changes the problem of finding L1 and L2 into a problem of
finding L̄1 and L̄2.

Now we will use the same method as in [KS99], namely we treat the map F̂
and F as a quadratic form, to which we associate a (n + 1)× (n + 1) matrix for
a corresponding bilinear form.

In this case, we associate a symmetric matrix Â with F̂ such that

Â =



















0 â0,1 + â1,0 . . . . â0,n−1 + ân−1,0 ĉ0

â0,1 + â1,0 0 . . . . â1,n−1 + ân−1,1 ĉ1

â0,2 + â2,0 â1,2 + â2,1 . . . . â2,n−1 + ân−1,2 ĉ2

. . . . . . . .

. . . . . . . .
â0,n−1 + ân−1,0 â0,n−1 + ân−1,0 . . . . 0 ĉn−1

ĉ0 ĉ1 . . . . ĉn−1 0



















.

We associate a matrix A to F as

A =



























0 a0,1 + a1,0 ... a0,D + aD,0 0 .. 0 c0

a0,1 + a1,0 0 ... a1,D + aD,1 0 .. 0 c1

a0,2 + a2,0 a1,2 + a2,1 ... a2,D + aD,2 0 .. 0 c2

. . ... . . .. . .
a0,D + aD,0 . ... 0 0 .. 0 cD

0 . ... . . .. 0 cD+1

. . ... . . .. . .
0 . ... . . .. 0 cn−1

c0 c1 ... cD . .. cn−1 0



























.

Then we can show that the matrix Ā associated to F ◦ L̄2 is:

Ā = Bt
2 A B2,

and

B2 =



















l2,0 l2,1 ... . . l2,n−2 l2,n−1 l′2,0

lq2,n−1 lq2,0 ... . . lq2,n−3 lq2,n−2 l′2,0
q

lq
2

2,n−2 lq
2

2,n−1 ... . . lq
2

2,n−4 lq
2

2,n−3 l′2,0
q2

. . ... . . . . .
lq

n−1

2,1 lq
n−1

2,2 ... . . lq
n−1

2,n−4 lq
n−1

2,n−3 l′2,0
qn−1

l2 lq2 ... . . lq
n−2

2 lq
n−1

2 l′21



















.

The matrix Ã associated to L̄1 ◦ F is:

Ã = l1,0A + l1,1A1 + ... + l1,n−1An−1,
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where Al corresponding to the polynomial F ql

and we can see that

(Al)i,j = Aql

i−l(mod(n)),j−l(mod(n)), for 0 < i, j < n + 1;

(Al)n+1,j = Aql

n+1,j−l(mod(n)), for j < n + 1;

(Al)j,n+1 = Aql

j−l(mod(n)),n+1, for j < n + 1;

(Al)n+1,n+1 = 0.

Therefore we have

Ā = Bt
2(l1,0A + l1,1A1 + · · · + l1,n−1An−1)B2.

What we know is Ā, because the invertibility of L1 and L2, the problem to
attack the system becomes a problem to find L̄−1

1 and L̄−1
2 or equivalently to

find B−1
2 and L̄−1

1 (X) =
∑n−1

0 l′1iX
qi

. This will allow us to recover A because

A = (Bt
2)

−1(l′1,0Ā + l′1,1Ā1 + · · · + l′1,n−1Ān−1)B
−1
2

where Āl is the matrix corresponding to (F̄ )ql

similar to the case of Al.
One more point we notice is that if we do a change of variable X by aX , it

does not affect the rank of F at all, therefore this freedom allows us to assume
that l2 = 1, which we will assume now.

Now we can see that we have reduced our problem to exactly the same
problem that was dealt with in [KS99], and we can apply the whole machinery
developed in [KS99]. But here we suggest an improved method of applying the
Minrank attack method for HFE in [Cou01], such that we first find L̄−1

1 and then
find B−1

2 . We know that the rank of A is at most and in general D + 1. Using
results in [Cou01], we know that recovering the secret key (or equivalent key)
has a complexity of (n+1)3(D+1)+O(1). This means our attack is subexponential,
and in general, if D = 3 and n ≤ 26, the security is less than 280. We did some
computer simulations with n < 20 and D = 1, 2 and the results are as predicted.

For the more general r > 1 case our method can be extended directly and
our initial analysis shows that the attack complexity is (n + r)3(D+r)+O(1). But
the details of the attack are much more complicated, and we will present them
in the full version of this paper. This attack complexity depends on n, r and D
and the exponent depends on D and r. It would be much better if we could find
some attack such that r would not be in the exponent. But from a point view
of symmetry, this is impossible. If we consider the case when r is large (bigger
than n), then the property of the HFEv polynomial should be dominated by the
r Vinegar variables and these polynomials are more or less than what can be
treated with randomly chosen polynomials. From this point of view, we think
that this attack complexity must include r in some way in the exponent and we
speculate our attack method could be very close to what might be achieved in
general.

In addition, we think our attack could lead to some new ways of attacking
HFEv using the XL family of methods, see [Cou01].
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3 Internal Perturbation of HFE

From the above, we can see that HFEv is indeed a cryptosystem derived through
perturbation of HFE through some external variable. It is possible to purge the
external variables using the method we proposed above. Now we will suggest a
new cryptosystem through internal perturbation, which we will call an internally
perturbed HFE cryptosystem – IPHFE.

In this section, we will present the new cryptosystem. The idea is very simple,
namely we will not add new variables, but instead we will perturb the system
by using some internal variables, such that the above attack can no longer be
used.

3.1 The IPHFE cryptosystem

Here we will use the same notations as in the section above, namely K̄, a degree
n extension of the finite field k of characteristic 2 with q elements. That k is of
characteristic 2 is not essential. Let K̄ ∼= k[x]/g(x) and φ : K̄ 7−→ kn again be
the standard k-linear map that identifies K̄ with kn. Let D > 1, r ≥ 1 be two
small integers.

Let Z(X) =
∑n−1

0 ziX
qi

be a randomly chosen k linear map from K̄ to K̄
such that the dimension of the image space of Z in kn is r. We can also say that
the linear map φ ◦ Z ◦ φ−1 from kn to kn has a kernel of dimension n − r.

Let F be a map from K̄ to K̄, and

F : (X) 7−→

D
∑

0,0

aijX
qi+qj

+
D

∑

0

biX
qi

+

D,n−1
∑

0,0

ci,jX
qi

X̃qj

r +

n−1,n−1
∑

0,0

αijX̃
qi+qj

r +
n−1
∑

0

βiX̃
qi

r +γ,

where the new internal perturbation variable X̃r is given as X̃r =
∑n−1

0 ziX
qi

.
Let L1 and L2 be two randomly chosen invertible affine linear maps on kn

and let F̄ = L1 ◦ φ ◦ F̃ ◦ φ−1 ◦ L2.
For this public-key cryptosystem, F̄ , that is the set of n quadratic polyno-

mials of F̄ and the structure of the field k form the public key. L1, L2, the field
structure of K̄, F , and Z are the secret key.

To encrypt a message (x′

1, . . . , x
′

n), one just finds the value of F̄ (x′

1, . . . , x
′

n).
To decrypt a message, one just “inverts” each component of the composition.

It is easy to invert everything except the function F . Here, by “inverting” F , we
mean to solve the equation

F (x1, . . . , xn) = (y′

1, . . . , y
′

n).

What we do is plug in all possible values of X̃r ∈ Z(K̄) into the equation, which
consists of qr elements, and then solve the corresponding degree q2D polynomial
equations. This is why both q and r must be small. It is possible for many
of the cases, that there is no solution at all, but we should have at least one
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solution among all the possibilities. For each case of X̃ , if we have any solution
X = (x1, . . . , xn), we then have to make sure that the solution is consistent
with the corresponding elements in X̄ ∈ Z(K̄), namely the solution X must also
satisfy the equation X̄ = Z(X), otherwise the solution is discarded. This process
helps us to eliminate efficiently most of the unwanted solutions.

In general, we should have a good chance to have only one solution, but due
to the definition of F , we know that the map F is not necessarily injective, which
requires us to add something extra just like in the case of HFE [Pat96b]. One can
add hash functions or just add (Plus method) more randomly chosen quadratic
polynomials.

Similarly we can apply the Minus method [Sha98] to build authentication
schemes.

3.2 A practical realization of an IPHFE cryptosystem

For a practical realization, we have chosen K̄ to be a degree n = 89 extension
of the finite field k = Z2 with q = 2 elements. We use D = 3, and r = 2. In
this case, we will choose the terms X23+23

to be zero. In terms of key size, the
public key is the largest, which is the size of about 400,000 bits (50 KBytes).
This implementation is comparable with any of the existing multivariable cryp-
tosystems.

In this case, the decryption process requires us to solve four times an equation
of degree 16 over a finite field of size 289, which can be done easily.

3.3 Cryptanalysis

We will now show that existing algebraic attacking methods for multivariable
cryptosystems can no longer be used efficiently against IPHFE. This includes the
method, which was suggested above for attacking HFEv. The reason is that the
internal perturbation is fully mixed with the original system and can no longer
be distinguished.

We will take a careful look at two algebraic methods. We start first with the
attack method of [KS99,Cou01] for HFE. From the formula for Z we can see
that F , when described as a polynomial of X , looks far more complicated than
F in the HFE system. Essentially it has all possible terms of Xqi+qj

, and the
corresponding symmetric matrix for its related bilinear form is expected to have
a very high rank in general. In all of our computer simulations it turns out that
the rank of this matrix is exactly D + r + 1. Therefore, we conjecture that the
rank of this matrix is exactly D + r + 1, and we believe it is possible to actually
prove this statement.

Let’s now try to use the method of Kipnis-Shamir to attack our system. In
the fist step, the Minrank method is used to recover part of the key L1 and we
know that for this step, the computational complexity for our implementation
is 893×6, which is bigger than 2120. Let’s now further assume that this can be
done, and that we already have part of the key, namely L1. In the case of the
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attack by Kipnis-Shamir, the second step is essentially trivial due to fact that
we know that the symmetric matrix corresponding to the original n × n matrix
has the shape:

(

Ω 0
0 0

)

where Ω is a submatrix of size (D + 1) × (D + 1), whose null space therefore is
known to us and can be used to find the second part of the key L2. However,
in our case, even if we successful recover L1, we have no idea what the matrix
corresponding to the original polynomial is. As we mentioned above, it is far
more complicated and we have no way of knowing what its null space is like and
therefore we still can not recover L2, which is what happened in our computer
simulations. Therefore the Kipnis-Shamir method and the key part, the Minrank
method, can not be used anymore to attack IPHFE efficiently.

Second, we look at the method we use in this paper to attack HFEv. In the
case of “internal” perturbations we can no longer use our method to differentiate
what are the perturbation variables, or put into a more intuitive term, internal
perturbation allows the perturbation to be fully “mixed” with the original vari-
ables. This is unlike the Oil-Vinegar “mixing” of the HFEv. Therefore we can
no longer use the attack method in this paper to attack the IPHFE.

The only possible attack method we can see is the XL method or the method
of improved Gröbner basis. But we can not see any reason why they would
perform well against our construction, especially after experimenting with some
examples. In order to really check how our system can resist such attacks, we
need to find out how the attack complexity changes as r changes with a fixed D.
Computer simulations should give us some reasonable way of estimating it, but
it is in general a rather daunting time consuming task. A referee of our paper
pointed out, that the results in [AFI+04], to be presented in Asiacrypt’04, show
that the new Gröbner basis algorithm is actually more powerful than the XL
method. This implies that we will only need to find out how our new schemes
behave under the attack by the new Gröbner basis algorithm. We are now using
an implementation of the new Gröbner basis algorithm in Magma to study this
problem and preliminary results seem to be very supportive of our speculation
on the security of our new schemes.

Overall, in accordance with our own estimates the attack complexity of all
existing methods should be at least 280. We believe that it could be much higher
so that the best method to attack the IPHFE system might be brute force, that
is, checking all possible answers one by one.

4 Conclusion

In this paper, we presented a new algebraic method to attack the HEFv cryp-
tosystem. This is the first attack using the algebraic structure of the HFEv.
The basic idea is to view the new Vinegar variables as an external perturbation
and to try to separate them. This method allows us, for the cases when D + r is
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small, to attack the system efficiently. However, the complexity of such an attack
is indeed exponential in terms of r.

Then we used the method of internal perturbation developed by Ding [Din04]
to improve the system such that this attack can no longer be applied. It gives
us the internally perturbed HFE cryptosystem. This system, at this moment,
seems to be very secure and can be implemented efficiently. However more work,
in particular, large scale simulation should be done to study the explicit rela-
tion between the level of the security and the level of perturbation and confirm
the claims in this paper. In general, it seems that internal perturbation is a
method that can be used to improve substantially the security of multivariable
cryptosystem without sacrificing much of the efficiency of such a system.
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