
Cryptanalysis of the Tractable Rational Map

Cryptosystem

Antoine Joux1, Sébastien Kunz-Jacques2, Frédéric Muller2, and Pierre-Michel
Ricordel2

1 SPOTI Antoine.Joux@m4x.org
2 DCSSI Crypto Lab 51, Boulevard de La Tour-Maubourg

75700 Paris 07 SP France
{Sebastien.Kunz-Jacques, Frederic.Muller,

Pierre-Michel.Ricordel}@sgdn.pm.gouv.fr

Abstract. In this paper, we present the cryptanalysis of a public key
scheme based on a system of multivariate polynomial equations, the
”tractable rational map” cryptosystem. We show combinatorial weak-
nesses of the cryptosystem, and introduce a variant of the XL resolution
algorithm, the Linear Method, which is able to leverage these weaknesses
to invert in short time the trapdoor one-way function defined by the ci-
pher using only the public key, and even rebuild a private key. We also
interpret the behavior of the Linear Method on random instances of the
scheme, and show that various generalizations of the cipher, as well as
an increase of the security parameter, cannot lead to a secure scheme.

Key words: Public Key Cryptography, Polynomial Systems, Tractable Ra-
tional Map Cryptosystem, XL, Gröbner Bases, Isomorphism of Polynomials

1 Introduction

Several recent public key cryptosystems use multivariate polynomial systems of
equations instead of number-theoretic constructions. The ”public” operation in
such a system is to evaluate the system output on a given input value: this is
a very simple operation even for devices with limited resources such as smart
cards, although the system needs to be stored. The ”private” operation is to find
a preimage of a given value.

Determining whether a random system of n polynomial equations with n
variables over any finite field has a solution is known to be a NP-complete prob-
lem, and thus seems to be a good starting point to build a cryptosystem. But the
polynomial systems used in cryptographic applications must have a special form
to make the solving operation possible given the knowledge of a secret backdoor.
Thus the cryptanalyst does not have to solve random polynomial systems, but
rather random instances of a special subfamily of polynomial systems.

The first cryptosystems based on polynomial equations were defeated. For
example the Matsumoto-Imai scheme introduced in 1988 [6] was cryptanalyzed

262 Antoine Joux et al.

by J. Patarin (Crypto 95, [14]). More recently, some attacks against stronger
schemes, such as HFE (Eurocrypt 96, [15]) or SFLASH (RSA Conference 2001,
[13]), have emerged. In addition, a 80-bit HFE challenge was broken by J.-C.
Faugere in 2002 [4]. It was later described by Faugère and Joux how to attack
HFE using an optimized Gröbner basis algorithm and a linear algebra approach
(see [7]).

All these cryptosystems share some common properties:

– They use only quadratic equations on the ground field. We can however
notice that, in general, an equation of degree more than 2 is equivalent to a
quadratic system with more variables.

– Public and private keys are systems of equations related by a linear or affine
masking: a composition with a linear or affine transformation on the left,
and a linear or affine substitution of variables on the right is performed on
the private key to hide its structure, and the result constitutes the public
key.

Finding whether two random systems are equal under such a transformation
is a difficult problem (it is referred to as the “Isomorphisms of Polynomials”
(IP) problem, and is studied in [12]), thus the linear/affine masking seems a
strong enough barrier between the public and the private key.

These cryptosystems also generally use the relation between n-variable poly-
nomials over a field F , and univariate polynomials over an extension G of de-
gree n of F : any system composed of n equations in n variables over F can be
transformed into a unique 1-variable polynomial over G. For example, the HFE
private key is a sparse polynomial over an extension of GF (27); the function it
defines can be inverted using the Berlekamp algorithm. But the system can also
be expressed using several polynomials over the ground field GF (27).

The Tractable Rational Map Cryptosystem (TRMC, [2]) also follows this
framework: its private key comprises equations on various extensions of GF (28).
It is in a block triangular form: a subset of the equations can be solved, and then
the result injected into other equations to further solve the system. We will show
that this structure is not well hidden by a linear masking. In fact, an attacker
can solve the public system using essentially the same resolution technique as
the owner of the private key (of course, the resolution time will be higher, albeit
still feasible in a reasonable time).

The outline of this paper is as follows: first, we present techniques used to
solve systems of polynomial equations, and in particular the technique we imple-
mented to break TRMC. Then, we introduce the cryptosystem and compute the
complexity of finding preimages of some fixed values with the resolution method
we have chosen. We then present our experimental results, and discuss the secu-
rity of variants of the cryptostem that would use more unknowns and/or more
equations. Finally, me discuss a method that can rebuild a ”pseudo-private key”,
a system almost as easy to invert as the private key itself.

Cryptanalysis of the Tractable Rational Map Cryptosystem 263

2 Algorithms for Solving Polynomial Systems

In this section, we review some known algorithms that allow to solve a system
of multivariate polynomial equations. These algorithms fall into two categories:
special-purpose solving algorithms that only apply to systems having a unique
solution (at least without further work), and Gröbner basis algorithms.

Since the method we used in the case of the TRMC is inspired by linear
algebra solving techniques and not by Gröbner basis techniques, we will not
discuss this second category of algorithms extensively. We will however make a
quick review of the Buchberger algorithm, which is the historical Gröbner basis
algorithm, and on more recent algorithms like F4 and F5. Reference material on
Gröbner basis can be found in [1].

From now on, we will deal only with systems having a unique solution or
”zero-dimensional ideals”, and deal with Gröbner basis computation algorithms
only in the case of such systems. Moreover, since systems of interest for us are
quadratic, we will freely assume in the description of the algorithms that we deal
with sets of quadratic polynomials.

2.1 Linearization, Relinearization

Linearization is the most simple and natural resolution technique. The idea
behind linearization is to consider each quadratic monomial of the system as a
new unknown. If the system has n variables, this introduces at most n(n + 1)/2
unknowns. Each equation is then viewed as a line vector of a matrix, with higher
degree monomials leftmost. Then Gaussian elimination is applied to the system.
If there are enough linearly independent equations, this will hopefully yield new
polynomials without quadratic terms. Since the size of the matrix is O

(

n2
)

, the

simplest reduction algorithm has a cost of O
(

n6
)

additions and multiplications in
the finite field. Note that as soon as the number of linearly independent equations
exceeds the total number of quadratic monomials present in the system, the
gaussian elimination will yield at least one linear polynomial in the ideal, which
will allow to eliminate one unknown in the original system and to iterate the
method to finish the resolution.

Unfortunately, linearization requires approximately n2/2 equations, which is
not suitable for most practical situations (there are systems with n equations or
more that have a unique solution, therefore linearization leaves many systems
with a unique solution unsolved).

Relinearization is a method introduced by A. Kipnis and A. Shamir to crypt-
analyze HFE in [8], and further analyzed (and compared to XL) in [11]. It is
a generalization of the linearization method that works with less equations. In
fact, there are several variants of the relinearization method, that are able to
cope with various lower bounds for the ratio m/n2, where n is the number of
unknowns and m the number of equations.

The simplest relinearization technique, the fourth degree relinearization, goes
as follows. Build the linearized matrix as in the linearization method. This time,
we have less linearly independent polynomials than quadratic monomials in the

264 Antoine Joux et al.

system, thus the matrix has a non-trivial kernel. Parameter the kernel space

by new unknowns z1, . . . , zk (k = n(n+1)
2 + n + 1 − m). Now, each quadratic

monomial of the original system xixj = yij is viewed as a linear combination
of the zi. We can write quadratic equations on the zi by writing compatibility
equations on the yij :

xixjxkx` = yijyk` = yikyj` = yi`yjk

We can write 2

(

n

4

)

=
n(n − 1)(n − 2)(n − 3)

12
such equations. Thus we have

about n4/12 quadratic equations for the zi. These equations can be proven to
be linearly independent. If we linearize the new quadratic system, this gives us a

new (relinearized) system with n4/12 equations and
(

n2/2 − m
)2

/2 unknowns.
This new system will have more equations than unknowns if

m >

(

1

2
− 1√

6

)

n2 ≈ 0.09n2

This degree 4 relinearization solves the original system if the above condition
is met.

Higher degree relinearizations are able to cope with systems with less equa-
tions. They consist in writing higher degree consistency equations on the zi, like
for example for a degree 6 relinearization, yijyk`ypq = yikyjpy`q. Even for degree
6 relinearization, it is difficult to perfom a precise computation of the threshold
m/n2 above which systems become solvable. This is related to the fact that many
consistency equations are linearly dependent, and we cannot precisely estimate
the number of equations needed.

2.2 XL

XL was introduced by N. Courtois, A. Klimov, J. Patarin and A. Shamir in
[11]. It relates to some works peformed by formal calculus researchers like D.
Lazard (see, for example, [9]), aimed at improving the efficiency of Gröbner
basis computation by using linear algebra and Gaussian reduction.

XL is partly inspired from an idea introduced to use the Buchberger algorithm
to explicitly solve systems of equations having a unique solution. The Bucherger
algorithm allows to eliminate monomials in the polynomials of an ideal, that is
to find new polynomials of the ideal that are written using only a specific set of
monomials. Thus to solve a system, one can try to eliminate all the monomials
but the powers of a selected unknown of the system, say x1. If this succeeds,
this leads to at least one univariate polynomial in x1 that is in the ideal. One
can then use the Berlekamp algorithm to solve such a univariate polynomial
equation, replace x1 by its value in the original system, and run the algorithm
again with the new system that has one unknown less than the original one.

Let S be a system of multivariate polynomial equations having a unique
solution, I the ideal generated by the polynomials in S and p ∈ I . Since p is a
sum of elements of S with polynomial coefficients, p is also a sum with scalar

Cryptanalysis of the Tractable Rational Map Cryptosystem 265

coefficients of all the multiples of elements of S by all monomials of degree ≤ d,
for some degree d. This applies in particular to the univariate polynomials of the
ideal (we know there are such polynomials in I since S has a unique solution).

Following the preceding observations, XL looks for univariate polynomials
built from the elements of S as follows. First, a monomial order is chosen where
all the powers of some unkown, say x1, come last. Then the matrix of all the
polynomials that are multiple of some element in S by some monomial of degree
d is built. The polynomials are mapped to lines in the matrix and each column
gives the coefficient of the polynomials with respect to some particular mono-
mial. Monomials that come first in the order are leftmost in the matrix. Then
a Gaussian reduction is performed. If d is high enough, this step yields at least
one non-zero univariate polynomial in x1. The algorithm then loops as described
above.

Note that at this point, there is no need for a combinatorial argument about
the number of polynomials built and the number of monomials of a given degree
to ensure that, for some d, we will find univariate polynomials. It suffices to see
that such polynomials are in the ideal and that they can be written as polynomial
combinations of elements of S.

In [11], it was proven that XL is more powerful than the relinearization
algorithm, in the following sense: if a d-degree relinearization succeeds in solving
a system S, then XL will also succeed by building the matrix of (total) degree
d from S. Moreover, the system size of the matrix in XL will be lower than the
relinearization matrix. Estimates of the complexity of XL are also given.

2.3 Gröbner bases, Buchberger, F4, F5

In general, a system of polynomial equations does not have a unique solution
thus ”solving” it does not necessarily make sense. The relevant concept is the
Gröbner basis of a polynomial system. A Gröbner basis of an ideal is a family of
polynomials of the ideal that plays the same role in the multivariate case, than
the polynomial generating an ideal in the univariate case. Indeed, with a Gröbner
basis of an ideal I , it can be quickly decided whether a polynomial p belongs to
I or not. This is done with an euclidian division algorithm generalized to the
multivariate case that reduces p on the basis. The special property of Gröbner
bases is that a polynomial reduces to 0 iff it belongs to the ideal. This is not true
in general for a family F generating an ideal I : if a polynomial reduces to 0 on
F , it belongs to the ideal (since it is a sum of elements of F), but the converse
needs not to be true.

In the case of a system having a unique solution x1 = a1, . . . , xn = an, the
family X1 − a1, . . . , Xn − an generates the ideal of the system and is a Gröbner
basis. More generally, any (minimal) Gröbner basis of such a system will contain
only degree 1 polynomials, and there will be sufficiently many of them to recover
the solution of the system. Thus Gröbner basis algorithms are of interest for us.

In the univariate case, the euclidian division crucially uses the properties of
the degree. The degree enables to totally order the monomials of a polynomial
and then, by only considering the leading terms of two polynomials (p1, p2), one

266 Antoine Joux et al.

can decide whether p1 can be reduced by p2 or not. In a similar fashion, in the
multivariate case, we use monomial orderings (total, well-funded, compatible
with multiplication). These monomial orderings are at the heart of reduction
algorithms because they associate to each polynomial a leading monomial in a
consistent way, and reduction decisions are made only by considering leading
monomials.

– The Buchberger Algorithm
The central notion in the Buchberger algorithm is the S-polynomial S formed
from a pair of polynomials (p1, p2). S is the simplest polynomial combination
of p1 and p2 that has a leading term strictly smaller than the least common
multiple of the leading terms of p1 and p2. It is formed by mutiplying p1

and p2 by appropriate monomials so that in the sum of the results, the two
leading terms cancel each other.

A Gröbner basis has the characteristic property that all S-polynomials built
upon it reduce to zero on the base; this results from the special property of
Gröbner bases since S-polynomials belong to the ideal. Based on this observa-
tion, the Buchberger algorithm works as follows: starting from a polynomial
family F , one builds all the S-polynomials that can be formed from F , then
reduces them on F . If all polynomials reduce to zero, F is a Gröbner basis.
If not, non-zero polynomials that have been found after reduction are added
to F . This yields new pairs to examine. This algorithm always terminates,
but the execution time and the size of the resulting basis are hard to predict;
in particular, the resulting family is not in general a minimal Gröbner basis.
It usually contains many redundant polynomials and can be ”cleaned up”.

One of the problems of the Buchberger algorithm is that once it has built a
Gröbner basis of an ideal, there are usually many pairs left to examine and
the algorithm will terminate only when all these pairs have been reduced
to zero. This termination phase usually represents a significant part of the
computation. It is possible to avoid reducing some pairs, but we will see that
in F5 or in linear algebraic approaches, an efficient criterion can be found to
avoid considering polynomials trivially reducing to zero.

– F4 and F5

Both of these algorithms were engineered by J.C. Faugère and his team.
F4 was introduced in [5] and F5 in [3]. F4 uses some ideas from the Buch-
berger algorithm combined with linear algebra. Its performance is roughly
equivalent to XL for a system that has a unique solution.

F5 is built upon F4 but has the additional property to avoid trivial reductions
to zero. This is performed by maintaining a set of known generators G of
the ideal, and avoiding to form polynomial relations gh−hg = 0 (g, h ∈ G).
Other trivial relations may also arise from the Frobenius map of the finite
field, but F5 avoids considering them too.

Cryptanalysis of the Tractable Rational Map Cryptosystem 267

3 A Variant of XL: the Linear Method

In this section, we describe the variant of XL that we implemented. We call
it the Linear Method. Just like XL tries to build univariate polynomials, our
method looks for linear polynomials in the ideal. Once sufficiently many (linearly
independent) linear polynomials have been built, the solution of the system can
be found. This purely linear approach has provable properties that will be very
useful to break TRMC, even if XL might be more efficient.

3.1 Principles of the Linear Method

Let S be a set of polynomials and I =< S > the ideal it generates. The basic
operation of the algorithm, for a target degree d, unfolds as follows. Consider
p ∈ S, of degree d′ ≤ d. Every multiple of p by a monomial m of degree d′ − d
is in I , and of degree d. The algorithm builds a matrix description of all the
polynomials of degree d obtained this way, for all p ∈ S of degree ≤ d and all
suitable m. Each line in the matrix describes a polynomial, and each column gives
the coefficient of a particular monomial in the polynomials. Monomials of lower
degree correspond to rightmost columns in the matrix. Starting with m quadratic

polynomials with n variables in S, the degree d matrix has m

(

n − 1 + d − 2

d − 2

)

rows and

d
∑

d′=0

(

n − 1 + d′

d′

)

columns.

The matrix can then be row reduced by the Gauss algorithm. Since this
reduction cancels the coefficients of the higher degree monomials in the poly-
nomials described by the matrix, it may yield new polynomials of degree < d.
They are in I , since they are expressed as linear combinations of polynomials of
I .

The aim of the algorithm is to build linear polynomials in the ideal by building
and reducing degree d matrices for various values of d. Having built and reduced
the degree d matrix, what degree should we analyze next? Since reducing degrees
smaller than d is far less costly than reducing degree d, one could choose to always
reduce degree d′ when new polynomials of degree d′ < d have been found during
the reduction of degree d, and reduce degree d + 1 otherwise. Another variant
would be to go into degree d′ as soon as one polynomial of degree d′ < d is found
when reducing degree d. In general, it is difficult to find an optimal strategy.
Moreover, the behavior of the algorithm is heavily dependent on the structure
of the system solved. For random systems, the choice of strategy is usually not
so important, because no fall of degree will happen before the critical degree for
which the corresponding matrix has mores lines than columns.

We specialized our algorithm to solve TRMC, and since we wanted to explore
in detail the combinatorial behavior of the system, we did not implement any
particular stategy and rather opted for a manual sequencing.

268 Antoine Joux et al.

– Numerical data for TRMC
With 40 variables such as in the case of the TRMC, and 48 polynomials in
S, the degree 4 matrix is 39360× 123410. It is only feasible to go to degree
4 or 5 on a typical 32-bit machine, e.g. a PC with 2 GB of RAM.

– An alternative to the Gauss reduction: sparse matrix algebra
Let A be the the degree d matrix before Gauss reduction. The columns of A
represent monomials of degree ≤ d: split A horizontally in A1, corresponding
to monomials of degree d, and A2, corresponding to monomials of degree < d.
If v is a nontrivial kernel vector of tA1, then vA2 represents a polynomial
of I of degree < d. Any such v can be found using sparse algebra resolution
techniques like Lanczos or Wiedemann. Since lines in A are sparse, this
technique saves memory for high values of d.

– Room for improvement

• Starting with degree 4, if the polynomials of the system have degree 2,
the matrices that are built yield many polynomials trivially reducing
to zero arising from the relations fg − gf = 0 (see section 5.1 for an
example). This can be avoided by selectively removing some polynomial
multiples when building the matrix.

• When a linear polynomial ` has been found, it can be used to reduce the
number of unknowns in the system by a direct susbstitution, instead of
adding multiples of ` to the known polynomials. The same polynomials
are found in both cases, but the first approach is faster and saves memory.

In the case of TRMC however, these optimizations are not relevant since
they would save very little computation time.

3.2 Properties of the Linear Method

Here, we present two key properties of the Linear Method which enable it to
break TRMC. The proofs are given in annex A.

In the course of the resolution of a system, we are interested in the number
of linearly independent polynomials of degree d′ < d that appear when reducing
the degree d matrix. These falls of degree are strongly related to the ability to
solve a system. The number of falls of degree that appear at all degrees d and
for all sequencing choices of the algorithm when solving a system S are what we
call the combinatorial properties of S.

Independence from Linear-Affine Masking Two systems equal up to left
linear and right affine invertible transformations have the same combinatorial
properties w.r.t. the linear method.

Independence from Subfield Projection If the Linear Method is able to
solve a system S expressed on a finite extension G of a field F by reducing
degrees less than d, it will also be able to solve S expressed on F by reducing
degrees less than d.

Cryptanalysis of the Tractable Rational Map Cryptosystem 269

In the case of TRMC, these properties mean that the public key and private
key systems have the same combinatorial properties. In particular, the Linear
Method will give the same results on both systems.

4 The Tractable Rational Map Cryptosystem

The Tractable Rational Map Cryptosystem was introduced in [2] by F. Chang
and L. Wang. Its private key is a system of 48 quadratic equations with 40
unknowns over F = GF (28). In the public key, these equations are masked by
affine transformations on the left (before the polynomial system) and on the right
(after the polynomial system). Some equations of the private key are derived
from extensions of F , GF (216), GF (232) and GF (2128). As in [2], we will use the
notation xi,...,i+k−1 for a k-uple of elements xi, . . . , xi+k−1 of GF (28) viewed as
an element of the extension GF (28k) of GF (28).

The input of the private system is x1, . . . , x40, and its output is y1, . . . , y48.
The system can be written as follows :

y1,2 = q1(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (1)

y3,4 = q2(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (2)

y5,6 = q3(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (3)

y7,8 = q4(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (4)

y9,10 = q5(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (5)

y11,12 = q6(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (6)

y13,14 = q7(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (7)

y15,16 = q8(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (8)

y17,18 = q9(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (9)

y19,20 = q10(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (10)

y21,22 = q11(x1,2, x3,4, x5,6, x7,8, x9,10, x11,12, x13,14) (11)

y23,...,26 = x15,...,18(x
256
2,...,5 + x2,...,5 + a) + b x6,...,9x10,...,13 (12)

y27 = x19 + f1(x1, . . . , x18) (13)

y28 = x20 + f2(x1, . . . , x19) (14)

y29 = x21 + f3(x1, . . . , x20) (15)

y30 = x22 + f4(x1, . . . , x21) (16)

y31 = x23 + f5(x1, . . . , x22) (17)

y32 = x24 + f6(x1, . . . , x23) (18)

y33,48 = x25,...,40(x
256
7,...,22 + x7,...,22 + c) + f7,...,22(x1, . . . , x24) (19)

where:

– a, b and c are random values in GF (28),

270 Antoine Joux et al.

– f1, . . . , f6 are random quadratic polynomials over GF (28) (the number of
variables of each polynomial ranges from 18 to 23),

– f7,...,22 is a random system of 16 quadratic polynomials over GF (28) with
24 variables,

– q1, . . . , q11 are random quadratic polynomials with 7 variables over GF (216).

Note that in any extension of F = GF (28), viewed as a F -vector space,
x 7→ x256 is linear, and each multiplication coordinate is a quadratic form. There-
fore all equations, including equations 12 and 19, yield quadratic equations when
expressed over F .

As far as our attack is concerned, we will only retain the following aspects
of the structure of the system: it has a block triangular structure; it contains a
random susbsystem of 11 equations with 7 variables over GF (216), that must
be solved first. The next equations allow to retrieve one or several variables at
a time (depending on the field on which they are written).

5 Combinatorial Properties of the Public and Private

Key of TRMC

By section 3.2, we know that the combinatorial properties of the public and
private key of TRMC are the same. That means that the Linear Method is able
to break TRMC without exploring a higher degree than the one needed to solve
the private key system expressed over GF (28). In this section, we show that the
private key system can be solved by analyzing degrees ≤ 4.

We first review the behavior of the Linear Method on the subsystem of 11
equations with 7 variables over GF (216).

We do not have to consider the role of field equations (x|k|−x = 0) since the
maximum degree of the polynomials we will consider, 4, is less than the size of
the smallest field considered, GF (28).

5.1 Resolution of the Subsystem Over GF (216)

Let us compute the number of monomials of a given degree with 7 variables.
There are

(

n−1+d
d

)

monomials of degree d with n variables, thus we have

degree 1 2 3 4
monomials 7 28 84 210

We also need the number of polynomials of a given degree d that can be
formed from the 11 original polynomials:

degree 2 3 4
polynomials 11 77 308

Suppose now we try to build linear polynomials by multiplying the original
polynomials by quadratic polynomials. Will we find some? This is equivalent

Cryptanalysis of the Tractable Rational Map Cryptosystem 271

to saying that we are looking for linear combinations of the 11+77+308=396
polynomials of the preceding table, that are linear. We thus need to cancel
210+84+28=322 terms in these polynomials. Unfortunately, our 396 polynomials
are not linearly independent, because there are

(

11
2

)

= 55 relations in degree 4 of
the form fg−gh = 0 with g 6= h belonging to the set of the original polynomials.
This leaves us with 396-55-322=19 linear polynomials. They cannot be linearly
independent. Indeed, since we only have 7 variables and since our system has a
unique solution, the dimension of the linear polynomials in the system is 7. Thus
we have 12 more cancellations, which are in fact caused by the redundancy of
the original equations (with very high probability, not all of the equations of the
original system are needed for the system to have a unique solution).

We know by section 3.2 that when translated over GF (28), the subsystem,
which becomes a system of 22 equations with 14 variables, is still solvable by
exploring degrees 4, 3, 2 then 1.

These theoretical observations are confirmed when running our algorithm on
such a system. Building and reducing the matrices of degrees 4, then 3, 2 and
1 of the system expressed over GF (216) yields the solution as expected. The
total number of cancellations occuring during the computation is 67, which cor-
responds to the 55 ”fg−gh” cancellations and the 12 redundancy cancellations.
Over GF (28), the system can be solved as well, but the number of cancella-
tions observed (255) is higher than 2 × 67, because many parasistic redundant
equations are induced by the projections.

5.2 Behavior of the Linear Method over the Full Private Key

Because of the results of section 5.1, when reducing degrees 4, 3, 2, then 1, we
expect to find 14 linearly independent linear polynomials in the ideal. Then, by
adding multiples of these polynomials to the degree 2 matrix (which amounts
to using these relations to reduce the number of variables in the original sys-
tem), and reducing degree 2 again, we expect to find 4 more linear polynomials
(because once x1, . . . , x14 have been found and their value substituted into the
system, equation 12 becomes linear in x15, . . . , x18). Substituting into the degree
2 polynomials and reducing will yield x19, and so on. In our experiments, this
phenomenon was observed as predicted. The only surprise is that we do not
have to know x1, . . . , x24 to get a partial information on x25, . . . , x40. Indeed,
once x1, . . . , x22 are known, equation 19 becomes linear in x25, . . . , x40, and thus
equations 17, 18 and 19 form a set of 18 equations over GF (28) with 18 lin-
ear terms and only 3 quadratic terms (x2

23, x23x24, and x2
24): their reduction

gives 15 linear polynomials, among which there is x23, one linear combination of
x24, . . . , x40 and 13 linear combinations of x25, . . . , x40. The next step is identical
except that x23 and x2

23 are now constants; there is now only one quadratic term
left, instead of 3, and thus reduction gives x24 and another linear combination
of x25, . . . , x40. The last step yields the last linear relation needed to compute
the values of x25, . . . , x40.

272 Antoine Joux et al.

6 Experimental Results and Complexity Estimates

6.1 Linear Method used Over Instances of TRMC Public Keys

To be in a realistic cryptanalysis situation, we built a random public key with
Magma [10], computed the image of a random vector by the public key, and built
the system composed of the value obtained substracted to the key. We then tried
to solve the resulting system using the Linear Method3.

The resolution process follows exactly the steps described in subsection 5.2:
reduction of degrees 4 downto 1 yields 14 linear polynomials, and then we only
have to loop between degrees 1 and 2 to get 4, then 1, 1, 1, 1, 15, 2 and 1
linear equations. The longest step is the degree 4 reduction, which we have
performed using a lanczos algorithm. The computation time of the lanczos al-
gorithm is proportional to the number of vectors computed. Thus, instead of
looking for degree 3 polynomials in the degree 4 matrix M , we tried to build
directly quadratic polynomials: this gave us 23 polynomials instead of the 273
cubic polynomials that can be buit from M (these are experimental figures ob-
tained from experiments on a system of 11 equations with 7 variables on GF (216)
and expressed over GF (28)). Overall, the lanczos resolution took 5 hours on a
cluster of 6 bi-pentium IV PCs and used 400MB of RAM on each machine (data
was duplicated on every machine). In that case, a Gauss reduction would have
probably been faster but broke the 2GB per process limit, and could not be
implemented simply on a 32-bit PC.

The other steps are performed in a few minutes on an average PC.

6.2 Asymptotic Security of TRMC

Here, we estimate the computation time ratio between the legitimate user of the
system and the cryptanalyst who tries to decrypt a message, first for the ”plain”
TRMC algorithm, and then in the asymtptotic limit of a generalized TRMC
with more variables and equations.

The preimage computation method suggested by the authors of TRMC is to
solve first the random subsystem using XL, and then to substitute the result into
the other equations. Using the Linear Method instead of XL, solving the random
subsystem S requires to build the degree 4 matrix from the 11 equations with
7 variables of S. The complexity of a legitimate inversion is thus roughly equal
to the computation of the kernel of a

[

11 ∗
(

7−1+2
2

)

= 308
]

×
[(

7−1+4
4

)

= 210
]

matrix. On the other hand, the cryptanalyst must deal with 48 equations with
40 unknowns, and thus compute the kernel of a matrix of size 39360 × 123410.
Suppose this computation is performed using a Gauss reduction, and that the
cost of a reduction of a a × b matrix is a2b, then the complexity ratio between
the cryptanalyst and the legitimate user is about 223.

3 The resulting system is guaranteed to have at least one solution (the random vector)
but combinatorial arguments show that this solution is very likely to be unique. Thus
we can apply the Linear Method

Cryptanalysis of the Tractable Rational Map Cryptosystem 273

Now, put TRMC in the following more general setting: suppose we have a
random quadratic system of m equations with n variables that can be solved by
building and reducing matrices of degree less than or equal to d with the Linear
Method, and that this subsystem is embedded in a block triangular system of
m′ > m equations with n′ > n variables. Then the Linear Method is able to
solve the big system by iterative explorations of polynomials of degree ≤ d built
from the m′ equations with n′ variables.

For the legitimate user, the biggest matrix that must be built is

m

(

n − 1 + d − 2

d − 2

)

×
(

n − 1 + d

d

)

≈ mnd−2 × nd

For the cryptanalyst, it is

m′

(

n′ − 1 + d − 2

d − 2

)

×
(

n′ − 1 + d

d

)

≈ m′n′d−2 × n′d

.
At degree d since the systems can be solved, we have mnd−2 ≥ nd and

m′n′d−2 ≥ n′d. Thus with
Note that since the system has more equations than unknowns, not every

value has a preimage by the system; this is why we had to compute first an image
value.a Gaussian elimination algorithm as before, the ratios of the running times

is ≤
(

m′n′d−2

nd

)3

. This rough estimate is sufficient to show that an increase in

the number of variables of the big system, n′, increases the overall security of
the scheme at most polynomially in n′.

In this analysis, we did not consider the degrees of the field extensions in-
volved as a security parameter. The idea to use extensions of variable degree is
used, for instance, in HFE, and is analyzed in [7]. Although the authors of [2]
do not explicitly state what the security parameter of TRMC is, the algorithm
does not seem to be designed with extensions of variable degree in mind.

7 Computing a Pseudo-Private Key

Here, we show that the knowledge of the combinatorial properties of the system
of equations of the public key allows the attacker to build a system equivalent
to the public or the private key and that has the block triangular form of the
private key. Although this pseudo-private key is not necessarily equal to the
private key, it enables the attacker to speed up further attacks.

As we saw in section 5.2 and 6.1, linear equations are computed in several
passes during the course of the resolution. For example, the first group of linear
equations obtained corresponds to the innermost subsystem hidden in the public
key. This subsystem can be extracted from the public key in the following way.
Let S bet the first group of 14 linear equations obtained during resolution, with
their constant part removed. Complete S with other linear equations to obtain
an invertible linear system with 40 variables. Apply the inverse of this change

274 Antoine Joux et al.

of variables to the public key. Let us call the new variables z1, . . . , z40, with
z1 to z14 corresponding to elements of S. In the resulting system, there are 22
linear combinations of the equations that only depend on the z1, . . . , z14. These
equations can be computed by a Gaussian elimination on this system, by putting
linear and quadratic monomials depending only on z1, . . . , z14 leftmost.

Since z1, . . . , z14 are only equal to x1, . . . , x14 up to an invertible linear trans-
formation, the resulting subsystem is not necessarily equal to the subsystem of
the private key.

We can iterate this method to further mimic the structure of the original sys-
tem, but the main interest of this technique is to recover the random subsystem
up to a linear transform.

Each preimage computation now requires from the cryptanalyst to find the
kernel of the degree 4 matrix built from 22 polynomials with 14 variables, a
matrix that is 2310× 2380. This computation is roughly 29 times slower than a
legitimate preimage computation.

8 Conclusion

In this article, we performed a practical and full cryptanalysis of a public key
scheme using sets of polynomial equations over finite field, the Tractable Rational
Map Cryptosystem. To do so, we used a variant of the XL algorithm which we
call the Linear Method. Our cryptanalysis is two-staged. A first resolution step is
performed using the Linear Method to find a preimage of some value; depending
on the usage of TRMC, this might correspond for example to a signature forgery
or to a decryption of some message. This operation has a cost of 223 legitimate
preimage computations. Using its result and additional information about the
process of the computation, we can then build a pseudo-private key that reduces
the cost of finding a new preimage to only 29 legitimate preimage computations.

We also showed that the very principle of TRMC is flawed in that its security
parameter cannot be reasonably increased to make it secure.

The Linear Method behaves identically on a system whether it is masked by
linear or affine transformations or not. These masking techniques are used to
separate the public key from the private key not only in TRMC but also in well-
known schemes such as HFE or sFLASH. As with other cryptanalysis techniques
like relinearization ([8]), the difficulty in breaking HFE with the linear method
comes from the combination of a projection on a subfield and a linear masking,
and not from the linear masking alone.

References

1. W. Adams and P. Loustaunau. An introduction to Gröbner Bases, volume 3 of
Graduate Studies in Mathematics. American Mathematical Society, 1994.

2. L. Wang F. Chang. Tractable Rational Map Cryptosystem. Cryptology ePrint
archive, Report 2004/046, available at http://eprint.iacr.org.

Cryptanalysis of the Tractable Rational Map Cryptosystem 275

3. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases without
reduction to zero (F5). In T. Mora, editor, ISSAC 2002, pages 75–83, 2002.

4. J.-C. Faugère. Report on a Successful Attack of HFE Challenge 1 with Gröbner
Basis Algorithm F5/2. Announcement on sci.crypt newsgroup, in April 19th 2002.

5. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

6. T. Matsumoto H. Imai. Public Quadratic Polynomial-tuples for Efficient Signa-
ture Verification and Message Encryption. In C. G. Günther, editor, Advances in

Cryptology - Eurocrypt’88, volume 330 of LNCS, pages 419–453. Springer Verlag,
1988.

7. A. Joux J.-C. Faugère. Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In D. Boneh, editor, Advances in Cryptology

- Crypto’2003, volume 2729 of LNCS, pages 44–60. Springer Verlag, 2003.
8. A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public-key Cryptosystem.

In M. Wiener, editor, Advances in Cryptology - Crypto’99, volume 1666 of LNCS,
pages 19–30. Springer Verlag, 1999.

9. D. Lazard. Gröbner Basis, Gaussian Elimination and Resolution of Systems of
Algebraic Equations. In J. A. van Hulzen, editor, EUROCAL ’83, European Com-

puter Algebra Conference, volume 162 of LNCS, pages 146–156. Springer Verlag,
1983.

10. The magma home page. http://www.maths.usyd.edu.au/u/magma.
11. J. Patarin N. Courtois, A. Klimov and A. Shamir. Efficient Algorithms for Solving

Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor,
Advances in Cryptology - Eurocrypt’2000, volume 180 of LNCS, pages 392–407.
Springer Verlag, 2000.

12. J. Patarin N. Courtois, L. Goubin. Improved Algorithms for Isomorphisms of
Polynomials. In K. Nyberg, editor, Advances in Cryptology - Eurocrypt’98, volume
1403 of LNCS, pages 184–200. Springer-Verlag, 1998.

13. J. Patarin N. Courtois, L. Goubin. Flash, a Fast Multivariate Signature Algo-
rithm. In D. Naccache, editor, The Cryptographers’ Track at RSA Conference

2001, volume 2020 of LNCS, pages 298–307. Springer-Verlag, 2001.
14. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-

crypt’88. In D. Coppersmith, editor, Advances in Cryptology - Crypto’95, volume
963 of LNCS, pages 248–261. Springer Verlag, 1995.

15. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In Advances in Cryptology -

Eurocrypt’96, volume 1070 of LNCS, pages 33–48. Springer Verlag, 1996.

276 Antoine Joux et al.

A Proofs of the Properties of the Linear Method

In this section, we prove the two results stated in section 3.2.

A.1 Notions of d-relations and depth

Let S = {pi} be a finite set of polynomials. We are looking for the existence of
d-relations of the form

∑

mjej = p (1)

where ∀ j, deg(mjej) ≤ d. p is the result of the relation. The polynomials
ej are either elements of S or results of other d-relations, thus relation results
always belong to the ideal generated by S, denoted < S >. Note that substituting
one d-relation into another yields a e-relation for e > d, that is not in general
a d-relation. This means that such a relation can be found in two passes by
exploring degrees at most d, but in one pass by exploring degree e. We introduce
the notion of depth that captures the number of degree d explorations needed
to compute a polynomial as element of < S >.

Let p ∈< S >. The d-depth of p is defined recursively as follows: elements of
S have d-depth 0. If p is obtained by a d-relation

∑

j

mjej ,

depthd(p) = 1 + max
j

depthd(ej)

If p is the multiple of a depth k polynomial by a monomial, then depth(p) = k.
The depth of a polynomial p might not be uniquely defined. This is because

there may be several sequences of reductions (relations) and multiplications that
lead to p. In this case, we define the depth of p as the minimum of all depths of
p.

The d-depth of a polynomial p is thus the minimal number of d-relations re-
quired to construct p as an element of < S >. Some polynomials p in < S > might
never be reached through d-relations, and for these p we set depthd(p) = ∞.

The depth is an useful tool to perform recursions on relations.

A.2 Behavior of the Linear Method With Respect to Linear of
Affine Masking

Here we prove that two systems equal up to left linear and right affine invert-
ible transformations, have the same combinatorial properties w.r.t. the Linear
Method.

First, let us show that a change of variables has no influence on relations.
Intuitively, this is clear because multiples of polynomials in the transformed sys-
tem are just transformed of multiples of the original system. To prove the result
formally, we show that there is a one-to-one depth-preserving correspondence
between the d-relations of the two systems for any d.

We fix some value of d and perform a recursion on the relation depth.

Cryptanalysis of the Tractable Rational Map Cryptosystem 277

Let S = {pj} and T = {qj} be two families of polynomials satisfying

∀ j, qj = pj ◦ A

where A is an invertible affine transformation of the variables. This exactly
means that ϕ : p 7→ p ◦ A is a one-to-one correspondence between depth 0
polynomials of < S > and < T >.

Suppose that ϕ establishes a one-to-one correspondence between polynomials
of d-depth k in < S > and < T >, and that p is a polynomial of d-depth k + 1
w.r.t. S:

∑

mjej = p

with ∀ j, deg(mjej) ≤ d and depthd(ej) ≤ k.
Then for T , depthd(ej ◦ A) ≤ k, hence

∑

(mj ◦ A)(ej ◦ A) = p ◦ A

is a d-relation. Since A is affine, ∀ j, deg((mj ◦ A)(ej ◦ A)) ≤ d, thus

depthd(p ◦ A) ≤ k + 1

Therefore we have shown that the right affine invertible transformations do
not change the relations results. Similarily, left invertible linear transformations
do not change at all relations results since they do not change the vector space
spanned by a polynomial family.

Left affine transformations do change relations in general. Indeed, such an
operation can even transform a system having a unique solution into a system
that does not have this property. In TRMC or other cryptosystems, left affine
transformations are used, but the systems to which we apply the linear resolution
method are not masked systems, but masked systems minus a masked image

value. Thus the constant of the affine transformation is cancelled, and we only
have to consider left linear transformations.

A.3 Behavior of the Linear Method w.r.t Projection on a Smaller
Field

Here, we prove that if the Linear Method is able to solve a system S = {pj}
expressed on a finite extension G of a field F by reducing degrees less than d,
it is also able to solve S expressed over F by reducing degrees no more than d.
Roughly said, this is because the projected system contains all the projections
of the relations of the original system.

Let [G : F] = `, and pk, 1 ≤ k ≤ `, be the projections from G to F associated
to some basis {b1, . . . , b`} of G over F . If q is a polynomial over G with u
unknowns, it defines a function f : F ul → G that can be composed with any pk.

278 Antoine Joux et al.

pk(q) is the polynomial over F corresponding to the k-th coordinate of f (this
polynomial is unique with some extra conditions on its degree). Each equation
e ∈ S is translated into ` equations p1(e), . . . , p`(e) over F . Thus the starting
point of the Linear Method over F is the set S ′ = {pk(e)|1 ≤ k ≤ `, e ∈ S}.

We only have to prove that, for any d and q ∈ < S >, if the d-depth of q is
n, then for 1 ≤ k ≤ `, the d-depth of pk(q) is at most n.

Indeed, if that result holds, then by applying it to the case where q is linear,
we get that as soon as the algorithm in G computes enough linear relations to
solve the system, the algorithm running over F solves the system too.

For depth 0, the result is true because S ′ contains the pk(S), 1 ≤ k ≤ `.
Suppose it is true at depth n. Let q ∈ < S > of depth n + 1 output by the
relation

∑

j

mjej = q

with deg(mjej) ≤ d and depth(ej) ≤ n.

pk(q) = pk





∑

j

mjej



 =
∑

j

pk (mjej)

Since ∀ i, j, depth(pi(ej)) ≤ n, we only have to show that for all j, the
pk(mjej) can be written

∑

i

mijpi(ej), with ∀ i, j, deg(mijpi(ej)) ≤ d.

This is true because for any polynomial r over G, a projection of a multiple
of r pk(mr) can be expressed as a sum of multiples of projections of r

∑

i

mipi(r)

with mi polynomials over F and ∀ i, deg mi ≤ deg m.
Let αijk ∈ F such that ∀ i, j, bibj =

∑

k

αijk bk. Then since r =
∑

i

pi(r)bi

and m =
∑

j

pj(m)bj ,

mr =
∑

i,j

pi(r)pj(m)bibj =
∑

k





∑

i,j

αijk pj(m)pi(r)



 bk

thus

pk(mr) =
∑

i





∑

j

αijk pj(m)



 pi(r)

