
Tractable Rational Map Signature

Lih-Chung Wang1?, Yuh-Hua Hu2, Feipei Lai3, Chun-Yen Chou4??, and Bo-Yin Yang5? ? ?

1 Department of Applied Mathematics, National Donghwa University, Hualien 974,
Taiwan, lcwang@mail.ndhu.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei 106, Taiwan, d92015@csie.ntu.edu.tw

3 Departments of Electrical Engineering & of Computer Science and Information
Engineering, National Taiwan University, Taipei 106, Taiwan, flai@ntu.edu.tw
4 Department of Mathematical Education, National Hualien Teachers College,

Hualien 970, Taiwan, choucy@mail.nhltc.edu.tw
5 Dept. of Mathematics, Tamkang University, Tamsui 251, Taiwan, by@moscito.org

Abstract. Digital signature schemes are crucial for applications in elec-
tronic commerce. The effectiveness and security of a digital signature
scheme rely on its underlying public key cryptosystem. Trapdoor func-
tions are central to public key cryptosystems. However, the modular ex-
ponentiation for RSA or the discrete logarithms for ElGamal/DSA/ECC,
as the choice of the trapdoor functions, are relatively slow in perfor-
mance. Some multivariate schemes has potentially much higher perfor-
mance than other public key cryptosystems. We present a new multivari-
ate digital signature scheme (TRMS) based on tractable rational maps.
We also give some security analysis and some actual implementation data
in comparison to some other signature schemes.

Key Words: multivariate, public key, digital signature, finite field, tractable
rational maps

1 Introduction

Digital signature schemes are crucial for applications in electronic commerce. For
example, to improve the efficiency and maintain the order of stock exchange, each
on-line transaction needs to be verified to be validated. The effectiveness and
security of a digital signature scheme rely on its underlying public key cryp-
tosystem. Trapdoor functions are central to public key cryptosystems. Only a
handful of the many schemes attempted reached practical deployment. How-
ever, the modular exponentiation for RSA or the discrete logarithms for ElGa-
mal/DSA/ECC, as the choice of the trapdoor functions, are relatively slow in
performance. One main reason is the size of the single operand which (at the
required security levels) tends to be huge, and this slows the performance.

? partially supported by National Science Council Grant NSC-93-2115-M-259-003
?? partially supported by National Science Council Grant NSC-93-2115-M-026-001

? ? ? partially supported by National Science Council Grant NSC-93-2115-M-032-008



Tractable Rational Map Signature 247

Some multivariate schemes distinguish themselves from other public key cryp-
tosystems by showing potential for higher performance. For example, Courtois,
Goubin and Patarin proposed SFLASH, which has been selected by Nessie Con-
sortium and recommended for low-cost smart cards. The newest version of this
signature scheme, SFLASHv3 may be found in [12]. Also, Chen and Yang gave
a class of signature (TTS) scheme based on tame transformations in [4, 5, 38].
The newest version of TTS, called Enhanced TTS, outperforms ([40]) all previ-
ously known digital signature schemes of comparable security levels, including
SFLASHv3. A summary of this newest instance may be found in [38].

Here we will present a new class of multivariate digital signature scheme
(TRMS) based on tractable rational maps. TRMS has similar security and per-
formance as Enhanced-TTS. However there is a small yet non-negligible chance
(around 7%) that signing takes perceptibly longer in the newer versions of TTS.
In contrast, the signing time for TRMS is constant, which can do no harm and
may be an improvement.

Fix a finite field K and a natural number n. Tractable rational maps on
K

n are invertible affine transformations or, after a rearrangement of indices if
necessary, functions of the following form ϕ : K

n → K
n,





y1 = r1(x1)

y2 = r2(x2)
p2(x1)

q2(x1)
+

f2(x1)

g2(x1)
...

yk = rk(xk)
pk(x1, x2, . . . , xk−1)

qk(x1, x2, . . . , xk−1)
+

fk(x1, x2, . . . , xk−1)

gk(x1, x2, . . . , xk−1)
...

yn = rn(xn)
pn(x1, x2, . . . , xn−1)

qn(x1, x2, . . . , xn−1)
+

fn(x1, x2, . . . , xn−1)

gn(x1, x2, . . . , xn−1)

where for i = 2, 3, . . . , n, pi, qi, fi, gi are polynomials, and for i = 1, 2, . . . , n, ri

is a permutation polynomial on K. That is, ri is a polynomial function which is
also a bijection from K onto itself.

Let S = {(x1, x2, . . . , xn) |
∏n

j=2 pjqjgj 6= 0}. For any point in the image
set of S, it is very easy to find point-wise inverse for tractable rational maps:
Given a point (y1, y2, . . . , yn) ∈ ϕ(S), we can easily compute (x1, x2, . . . , xn)
∈ K

n such that ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn). When ϕ is an invertible
affine transformation, we can easily write the inverse transformation ϕ−1 in an
explicit and simultaneous way. That is, we have an explicit formula from which
we can compute x1, x2, . . . , xn simultaneously. When ϕ is not an invertible affine
transformation, although it is computationally infeasible to write the inverse in
an explicit and simultaneous way, given any point (y1, y2, . . . , yn) ∈ ϕ(S), it
is very easy to compute x1, x2, . . . , xn in a sequential way. We simply apply a



248 Lih-Chung Wang et al.

sequence of substitutions as follows. We refer to this as substitution property.





x1 = r−1
1 (y1)

x2 = r−1
2

(
(y2 −

f2(x1)

g2(x1)
)
q2(x1)

p2(x1)

)

...

xk = r−1
k

(
(yk −

fk(x1, x2, . . . , xk−1)

gk(x1, x2, . . . , xk−1)
)
qk(x1, x2, . . . , xk−1)

pk(x1, x2, . . . , xk−1)

)

...

xn = r−1
n

(
(yn −

fn(x1, x2, . . . , xn−1)

gn(x1, x2, . . . , xn−1)
)
qn(x1, x2, . . . , xn−1)

pn(x1, x2, . . . , xn−1)

)

Note that, by Lagrange interpolation, any map over a finite field is a poly-
nomial map. There are both computational and categorical reasons that we put
our maps in rational form. For computational reasons, it is faster to compute
the division between two function values by low degree polynomial maps than to
compute a single function value by a much higher degree polynomial map. For

example, it is much easier to compute
1

x
than to compute x254 over GF (256).

And categorically, even given a tractable rational map without denominator,
by the direct computation above, the inverse of that map is most naturally de-
scribed as a rational map. Therefore we choose to put the map in the rational
form. For details, see [36].

TRMS is the result of exploring the combination of substitution property of
tractable rational maps and other mathematical ideas into application of digital
signatures.

In [26], T. Moh invented a public key cryptosystem (TTM) based on tame
automorphisms which also have the substitution property. It is easily seen that
tame transformations are special cases of tractable rational maps with the term

rk(xk)
pk(x1, x2, . . . , xk−1)

qk(x1, x2, . . . , xk−1)
replaced by xk. Therefore it is not surprising at all

that TRMS based on tractable rational maps can achieve similar security and
performance as TTS based on tame automorphisms. However, there are also sub-
stantial differences between TRMS and TTS with respect to other mathematical
ideas and designs.

In section 2, we give the details of TRMS. In section 3, we give some actual
implementation data. In section 4, we give some analysis and compare TRMS
to other signature schemes, in particular, including TTS.

2 Details of TRMS

We show an implement scheme of TRMS. It can be seen that there are a variety
of schemes of TRMS which are all based on tractable rational maps.

Let K = GF (28). We will construct 3 maps ϕ1 : K
28 → K

28, ϕ2 : K
28 → K

20,
ϕ3 : K

20 → K
20 where ϕ1, ϕ3 are invertible affine transformations, ϕ2 = π◦ ϕ̃2 ◦ i



Tractable Rational Map Signature 249

with π a projection, i an imbedding, and ϕ̃2 identified as a tractable rational
map over some extension field over K. All the details are given below.

The public key or the verification map V is the result of the composition
map ϕ3 ◦ ϕ2 ◦ ϕ1. Therefore the public key will only be seen as 20 quadratic
polynomials in 28 variables whose size is about 8.7KB as shown below.

The private key or the key part in the signing map S is the triple (ϕ1, ϕ2, ϕ3)
in some specified structured form whose size is about 0.4KB as shown below.
As mentioned in the introduction, each ϕi gives direct instruction to find the
point-wise inverse for any concrete instance. Therefore the private key holder or
the signer can directly apply ϕ−1

i point-wisely.
To sign a message M , first find its hash z = H(M) ∈ K

20 by a publicly agreed
hash function. Then do y = ϕ−1

3 (z), where the indices of y is starting at 9. Then
choose 8 nonzero random numbers r1, r2, . . . , r8. Then get x by identifying it
with (ϕ̃2

−1◦i)(r1, r2, . . . , r8,y) which is computed by a sequence of substitutions.
Then get the signature w = ϕ−1

1 (x).
To verify a signature w, simply check if V (w) = (ϕ3 ◦ ϕ2 ◦ ϕ1)(w) = (ϕ3 ◦

π ◦ ϕ̃2 ◦ i)(x) = (ϕ3 ◦ π)(r1, r2, . . . , r8,y) = ϕ3(y) = z = H(M).

2.1 Details of ϕ1 and ϕ3

Since GF (232) is finite extension fields of K of degree 4, therefore we can iden-
tify an element in K

4 as an element in GF (232). Furthermore, we can de-
compose (x1, x2, . . . , x28) ∈ K

28 into seven groups: for i = 1, 2, . . . , 7, Xi =
(x4i−3, x4i−2, x4i−1, x4i) and identify Xi ∈ GF (232), i = 1, 2, . . . , 7. Hence we
can identify K

28 with GF (232)7. Similarly, we can identify K
20 with GF (232)5.

Let ϕ1, ϕ3 be invertible affine maps on K
28 and K

20 respectively such that
ϕ1 = S1 ◦ T1 ◦ L1 ◦ D1 ◦ U1 and ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3 ◦ S3 where

1. S1 is a circular shift on K
28 and S3 is a circular shift on K

20.
2. T1 is a translation on K

28 and T3 is a translation on K
20. T3 is used to

cancel the constant terms in the public key. Therefore T3 is not chosen but
determined.

3. L1 is a 7 × 7 lower triangular matrix over GF (232) and L3 is a 5 × 5 lower
triangular matrix over GF (232) such that both with diagonal entries equal
to 1 ∈ GF (232).

4. D1 is a 28×28 invertible upper triangular matrix over K and D3 is a 20×20
invertible upper triangular matrix over K in the following form:

D1 =




d1 d2
1 d3

1 . . . d28
1

0 d2 d2
2 . . . d27

2

0 0 d3 . . . d26
3

...
...

. . .
...

0 0 0 . . . d28




5. U1 is a 7× 7 upper triangular matrix over GF (232) and U3 is a 5× 5 upper
triangular matrix over GF (232) such that both with diagonal entries equal
to 1 ∈ GF (232).



250 Lih-Chung Wang et al.

Note that circular shifts on K
n are indeed linear transformations on K

n and
each Ti above represents the translation part in the corresponding affine transfor-
mation. The LDU decomposition above covers quite a part of general invertible
linear transformations. Moreover, our construction enjoys some benefits in key
size. With L1, U1 linear on GF (232)7 and L3, U3 linear on GF (232)5, key size of
the private key is reduced. Also, the calculation speed of additions is optimized
on current 32-bit computer hardware structure. The diagonal entries in L’s and
U ’s are 1 implies that when we solve Lu = v or Uu = v we only have to do
additions and multiplications and don’t have to bother to do any division. Fur-
thermore, with D1 and D3 both linear over K but not on GF (232), and also the
circular shifts over K

n, we can choose ϕ1, ϕ3 linear over K, but not linear over
GF (232). The purpose is to maintain security at the level over K.

2.2 Details of ϕ2

Let L, L′, L′′ be the finite extension fields of K such that K ⊂ L
′′ ⊂ L

′ ⊂ L and
[L′′ : K] = 2, [L′ : L

′′] = 3, [L : L
′] = 3. Therefore we can identify an element

in K
2 as an element in L

′ = GF (216) ⊂ L
′ ⊂ L, an element in K

6 as an element
in L

′ = GF (248) ⊂ L, and an element in K
18 as an element in L = GF (2144).

Decompose (x1, x2, . . . , x28) ∈ K
28 into five groups: X1 = (x1, x2, . . . , x8),

X2 = (x9, x10, x11, x12, x13, x14), X3 = (x15, x16), X4 = (x17, x18, x19) and X5 =
(x20, x21, . . . , x28). Identify X1 with (0, . . . , 0, x1, x2, . . . , x8) ∈ L. Identify X2 ∈
K

6 as an element in L
′ ⊂ L. Identify X3 ∈ K

2 as an element in L
′′ ⊂ L

′ ⊂ L

and X4 ∈ K
3 with (0, x17, 0, x18, 0, x19) ∈ L

′′ ⊂ L. Identify X5 ∈ K
9 with

(0, x20, 0, x21, . . . , 0, x28) as an element in L. Hence we have a natural imbedding
i : K

28 ↪→ L
5 by i(x1, x2, . . . , x28) = (X1, X2, X3, X4, X5). Similarly, decompose

(y9, y10, . . . , y32) ∈ K
20 into four groups: Y2 = (y9, y10, y11, y12, y13, y14), Y3 =

(y15, y16), Y4 = (y17, y18, y19) and Y5 = (y20, y21, . . . , y28) and identify them as
elements in L. For any ri ∈ K, i = 1, 2, . . . , 8, identify R1 = (r1, r2, . . . , r8) ∈ K

8

with (0, . . . , 0, r1, r2, . . . , r8) ∈ L. Then we also have

i(r1, r2, . . . , r8, y9, y10, . . . , y28) = (R1, Y2, Y3, Y4, Y5) ∈ L
5.

Furthermore, since K
20 is a subspace of L

5 = K
90, we have the projection π :

L
5 → K

20 such that (π ◦ i)(r1, r2, . . . , r8, y9, y10, . . . , y28) = (y9, y10, . . . , y28)
Let ϕ̃2 : L

5 → L
5 be a tractable rational map of the following form.





R1 = X1

Y2 = X2 p2(X1) + f2(X1)
Y3 = r3(X3) + f3(X1, X2)
Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3)
Y5 = X5 p5(X1, X2, X3, X4) + f5(X1, X2, X3, X4)

such that ϕ2 = π ◦ ϕ̃2 ◦ i, and we have the following in ϕ2:

1. R1 = X1 induces (r1, r2, . . . , r8) = (x1, x2, . . . , x8).



Tractable Rational Map Signature 251

2. Y2 = X2 p2(X1) + f2(X1) induces




y9

y10

...
y14


 =




x9

x10

...
x14


 ∗6




x1

x2

...
x6


 +




c1x1x2

c2x2x3

...
c6x6x7


 +




c7x3

c8x4

...
c12x8




where ci’s are constant parameters of user’s choice and u ∗n v denotes first
identifying u,v ∈ K

n in the extension field with degree n then carrying out
the multiplication there. For details see Appendix.

3. Y3 = r3(X3) + f3(X1, X2) induces

(
y15

y16

)
=

(
x15

x16

)2

+

(
c13x1x2 + c14x3x4 + · · · + c19x13x14

c20x14x1 + c21x2x3 + · · · + c26x12x13

)
+

(
c27x1

c28x2

)

where

(
x15

x16

)2

=

(
x15

x16

)
∗2

(
x15

x16

)
and ci’s are constant parameters of user’s

choice.
4. Y4 = X4 p4(X1, X2, X3) + f4(X1, X2, X3) induces




y17

y18

y19


 =




x17

x18

x19


 ∗3




x8

x9 + x11 + x12

x13 + x15 + x16


 +




c29x4x16

c30x5x10

c31x15x16


 +




c32x9

c33x10

c34x11




where ci’s are constant parameters of user’s choice.
5. Y5 = X5 p5(X1, X2, X3, X4) + f5(X1, X2, X3, X4) induces




y20

y21

...
y28


 =




x20

x21

...
x28


 ∗9




x1

x2 + x6 + x11

x3 + x7 + x12

x4 + x8 + x13

x5 + x9 + x14

x10 + x14 + x16

x11 + x15 + x17

x12 + x16 + x18

x13 + x17 + x19




+




c35x18x19

c36x17x13

c37x16x14

c38x12x13

c39x15x14

c40x19x12

c41x18x10

c42x12x6

c43x13x5




+




c44x1

c45x2

...
c52x9




where ci’s are constant parameters of user’s choice.

The reason why the formulas in the above assignments represents a permu-
tation polynomial r3 and polynomials p2, f2, f3, p4, f4, p5, f5 is as follows.

1. We identify X3 = (x15, x16) as an element in L
′′ = GF (216) which is of

characteristic 2. For any finite field of characteristic 2, X 7→ X2 is an auto-
morphism. Hence let r3(X) = X2, then r3 is an automorphism on L

′′, hence

a permutation polynomial. And

(
x15

x16

)
7→

(
x15

x16

)2

surely represents r3.



252 Lih-Chung Wang et al.

2. For polynomials p2, f2, f3, p4, f4, p5, f5, simply notice that on a finite field,
any map is a polynomial map. See [36] for details. For example, we show the
case of p2 for illustration. Consider a map P on L as follows

P(X1) =








0
...
0
0
0
x1

x2

x3

x4

x5

x6




if X1 =




0
...
0
x1

x2

x3

x4

x5

x6

x7

x8




,

−→
0 otherwise.

Simply let p2 to be the polynomial representation for P .

It is worth to mention the following.

1. For theoretical purpose we showed above that ϕ2 is viewed as π◦ ϕ̃2◦ i where
ϕ̃2 : L

5 → L
5 is a tractable rational map with polynomials p2, f2, f3, p4, f4,

p5, f5 possibly very complicated. Computationally, we actually follow the
other way around. That is, ϕ2 is a computationally efficient representation
for ϕ̃2 when restricted to the subspace i(K28). We get benefits on calculation
speed due the following. The second assignment in ϕ2 can be carried out in
the subfield GF (248) instead of in L = GF (2144). For details see appendix.
Similarly, the third assignment in ϕ2 can be carried out in L

′′ = GF (216)
instead of in L = GF (2144). Both these contribute on calculation speed.

2. It is easily seen that our ϕ2 representation is quadratic in xi’s. Since ϕ1, ϕ3

are affine maps, the public key is 20 general quadratic polynomials in 28
variables without constant terms.

2.3 Information on keys

As shown above, ϕ1 = S1 ◦ T1 ◦ L1 ◦ D1 ◦ U1, ϕ3 = T3 ◦ L3 ◦ D3 ◦ U3 ◦ S3, and
there are 52 parameters c1, c2, . . . , c52 for the private key user to choose in ϕ2.
Therefore the size for private key is [0+28+4(1+2+3+4+5+6)+28+4(6+
5 + 4 + 3 + 2 + 1)] + [20+ 4(1 + 2 + 3 + 4) + 20 + 4(4 + 3 + 2 + 1) + 0] + 52 = 396
Bytes. However, T3 in ϕ3 is not chosen but determined. Hence it is to choose
376 nonzero elements in K to generate the private key.

Also, since the public key is 20 general quadratic polynomials in 28 variables

without constant terms, its size is 20·(
28 · 29

2
+28) = 8680 bytes. In general, there

are two ways to generate the public keys. One way is the method of undetermined



Tractable Rational Map Signature 253

coefficients, the other one is to make the composition by direct computation.
Both have many optimized variants. Our major concern is on the structure of
TRMS, therefore we did not put much effort in the optimization of the key
generation.

3 Performance

Test Platform: CPU: P4 2.4GHz; RAM: 1024MB; OS: Linux + gcc 3.3;
ARG: gcc -O3 -march=pentium4 -fomit-frame-pointer

Signature Public Private Key
Scheme Name size Key Size Key Size Sign Verify Generation

(byte) (byte) (byte) (µs) (µs) (ms)
TTS(20,28) 28 8680 1399 7 20 2.2

TRMS(20,28) 28 8680 396 4.8 20 1.2

Table: NESSIE signature report, TTS and TRMS tested as above

Unit:

{
Signature/key size:Bytes,
Sign/Verify/Key Generation: cycles/invocation

Scheme Name Signature Public Private Sign Verify Key
size Key Size Key Size Generation

ECDSA 48 48 24 1971K 5415K 1758K
ESgin 144 145 96 4434K 936K 269M

RSA-PSS 128 128 320 82M 1587K 3206M
SFLASHv2 37 ≈ 15K ≈ 28K 5106K 765K 2929M
SQARTZ 16 ≈ 71K ≈ 4K 6261M 144K 3167M
ACESign 425 620 748 26M 20M 9645M

TTS(20,28) 28 ≈ 8.7K ≈ 1.4K 16.8K 48K 5.28M
TRMS(20,28) 28 ≈ 8.7K 396 11.4K 48K 2.67M

4 Analysis and Comparison

4.1 Security Analysis

For brevity, we fix the following notations for our TRMS example:

– m = 20 denotes the dimension of the hash space.
– n = 28 denotes the dimension of the signature space.
– q = 28 denotes the size of the base field GF (256).

There are several known attacks for multivariate cryptosystems.

Rank Attack: Goubin and Courtois shows that the MinRank attack for Triangular-
Plus-Minus systems. Yang and Chen generalized the idea to Rank attack for
multivariate systems in [38]. The complexity of the Rank attack is about



254 Lih-Chung Wang et al.

qr ·
(m2(n

2 − m
6 ) + mn2)

k
multiplications, where k is the number of linear

combinations of the components of ϕ2 which reach the minimal rank r. The
minimal rank for our example is at least 12, and k is 6. Therefore the com-
plexity is about 2107 multiplications or 2101 3DES units (1 unit of 3DES
≈ 26 multiplications).

Dual Rank Attack: Coppersmith et al first ([6]) used the Dual Rank attack
against multivariate scheme of Shamir; Yang and Chen to generalize this
attack to all tame-like multivariate systems in [38]. The complexity of the

Dual Rank attack is about qu(un2 +
n3

6
) multiplications where u is the

minimal number of appearances in ϕ2 for any variable xi. When u = 9 for
our sample scheme, the complexity is about 286 multiplications or 280 3DES
units.

Unbalanced Oil and Vinegar Attack: As in [38], Let an “oil-set” be any
set of independent variables xi, such that any of their cross-products never
appears in any equation in ϕ2. Suppose the maximum size of an oil set is
k, then then we may determine in time k4qn−2k−1 the “vinegar” and the
“oil” subspaces. After that, several possible techniques may be used to find
a solution. If case k = 9, so the time taken to identify the vinegar and oil
subspaces is about 286 multiplications, or 280 3DES units.

Patarin Relations Attack for C∗ family: In ϕ2 of our TRMS example, there
is no Patarin relation, which means the attack for C∗ family is not feasible
for our system.

Affine Parts Distillation Geiselmann et al. in [19, 20] pointed out the possi-
bility that if the middle portion of any multivariate system is homogeneous
of degree two, then it is possible to find the constant parts of both affine
mappings easily. The ϕ2 in our TRMS example is not homogeneous.

XL Family and Gröbner Bases: Courtois et al proposed the XL method for
solving overdetermined quadratic system (which can be viewed as a refine-
ment of the relinearization method by Kipnis-Shamir, [24]) and its variant
FXL in [11]. Faugère ([15, 16]) have been improving algorithms for comput-
ing Gröbner Bases, and the current state-of-the art variant is F5, which was
used as the critical equation solver in breaking the HFE challenge 1 ([17]).

The consensus of current research ([1–3, 13, 39, 41]) is that Gröbner/XL-like
equation solvers on generic equations are exponential in the number of vari-
ables. The best variant will be FF5 if O(n2+ε) timing can be achieved, and
FXL otherwise. The time complexity for the two methods on a system with
m = 20 equations will be respectively 274 and 276 3DES units, still bet-
ter than RSA-1024 (see [29]). If m = 24, then we would get 280 and 281

respectively.

Remark: The speed estimates on nongeneric equations are still being de-
bated, but the converse to Moh’s lemma was proved in [39], which shows that
it is likely that all Gröbner/XL-like equation solvers will run into trouble if
the dimension of the projective solution set at infinity (denoted dim H∞) is
non-zero. It is not very easy to benefit from this, however, because the UOV



Tractable Rational Map Signature 255

attack means that the last stage of our sample TRMS scheme or something
similar cannot be too large, and the dual rank attack dictates that it cannot
be too small! Thus for m = 20, we cannot benefit dim H∞ > 0, because the
last stage is forced to be 9 variables. For larger TRMS schemes, say m = 28
upwards, we can start to do better with optimal selection of parameters.

Finding Minus and Vinegar Variables: These are very specialized meth-
ods designed against what is generally called “Big-Field” multivariate schemes
such as C∗−−. They do not work against tame-like multivariates with non-
constant central parts.

Patarin’s IP approach: Patarin et al proposed an attack method for fixed
middle map schemes in [31, 32]. Since there are variable parameters in the
middle map, the IP attack is not applicable.

Search Methods: Courtois et al proposed some search methods at PKC 2002
in [7]. However, they are mainly designed for small finite fields, and we may
follow the computations of [4] to find a complexity of 2120 3DES units.

4.2 Comparison to Enhanced-TTS

The structure of the latest version of TTS, Enhanced-TTS is as follows. Fix
a finite field K. Choose three natural numbers m, n, k such that m < n and
k < n − m. Let ϕ1, ϕ3 are invertible affine maps on K

n and K
m respectively.

Let ϕ2 : K
n → K

m be of the following form. (Below fi’s are all quadratic and
y = (yn−m+1, . . . , yn).)





r1 = x1

r2 = x2

...
...

...
rn−m = xn−m



yn−m+1

yn−m+2

...
yn−k−j


 =




invertible
matrix of

linear
expressions of
x1, . . . , xn−m







xn−m+1

xn−m+2

...
xn−k−j


 +




column
vector of
quadratic

expressions of
x1, . . . , xn−m




yn−k−j+1 = xn−k−j+1 + fn−k−j+1(x1, x2, . . . , xn−k−j)
...

...
...

yn−k = xn−k + fn−k(x1, x2, . . . , xn−k−1)


yn−k+1

yn−k+2

...
yn


 =




invertible
matrix of

linear
expressions of
x1, . . . , xn−k







xn−k+1

xn−k+2

...
xn


 +




column
vector of
quadratic

expressions of
x1, . . . , xn−k




The verification map V can be decomposed as w ∈ K
n ϕ1

7→ x
ϕ2

7→ y
ϕ3

7→ z ∈ K
m.

That is, V = ϕ3 ◦ϕ2 ◦ϕ1, where x = ϕ1(w) = M1w+ c1, z = ϕ3(y) = M3y + c3

and (r1, r2, . . . , rn−m,y) = ϕ2(x).



256 Lih-Chung Wang et al.

To sign a message, Enhanced-TTS needs to solve two systems of equations
for finding one inverse image point of the middle map. There is about 1/25
chance of redoing the signing procedure for the implement in [38]. However, our
TRMS example has constant signing time, since the non-zero element in a field
is always invertible.

Regarding to signing time, TRMS is better than TTS. One reason is that
TRMS utilizes special field extension structure to reduce the computation time
for ϕ−1

2 , the details is in the Appendix, while TTS only uses the common method
of Gaussian elimination. Another reason is that during computation of the affine
transformations ϕ1, ϕ3, part of it is also carried out in a larger field, which will
benefit the computation, too. We like to point out that there are a lot of ways
to construct ϕ1, ϕ3. One reason for us to use the LU -decomposition is that it
has advantages when implemented on smart cards.

The main external differences between TRMS(20,28) and Enhanced-TTS(20,28)
can be tabulated as follows.

1. The private key size for TTS is 1.4KB, while for TRMS it is 396 bytes.
2. Regarding to signing time, TRMS is better than TTS.
3. TTS has at most 7% chance of redoing the signing procedure while the

signing time for TRMS is constant.

5 Appendix: Implement of Field Extension

Firstly, GF (2) = {(0)2, (1)2}, where (·)2 means the binary representation. Then
t2 + t + (1)2 is irreducible over GF (2). Let GF (4) = GF (2)[t]/(t2 + t + (1)2)
and (ab)2 denote the equivalent class of at + b. Then we have the following
multiplication table.

(00)2 (01)2 (10)2 (11)2
(00)2 (00)2 (00)2 (00)2 (00)2
(01)2 (00)2 (01)2 (10)2 (11)2
(10)2 (00)2 (10)2 (11)2 (01)2
(11)2 (00)2 (11)2 (01)2 (10)2

Similarly, we have t2 + t + (10)2 is irreducible over GF (4). Let GF (16) =
GF (4)[t]/(t2+t+(10)2) and (abcd)2 denote the equivalent class of (ab)2t+(cd)2.
Then we can construct a multiplication table of size 16× 16.

Similarly, we have t2 + t+(1000)2 is irreducible over GF (16). Let GF (256) =
GF (16)[t]/(t2 + t + (1000)2) and (abcdefgh)2 denote the equivalent class of
(abcd)2t+(efgh)2. Then we can construct a multiplication table of size 256×256.

Similarly, we have t2 + t + (1000, 0000)2 is irreducible over GF (256). Let
α1 = (1000, 0000)2. Let GF (216) = GF (256)[t1]/(t21 + t1 + α1). However, we
do not construct the multiplication table of GF (216). For a, b, c, d ∈ GF (256),
(at1 + b)(ct1 + d) = act21 + (ad + bc)t1 + bd = ac(t1 + α1) + (ad + bc)t1 + bd =
[(a + b)(c + d) + bd]t1 + [acα1 + bd].



Tractable Rational Map Signature 257

Similarly, we have t2+t+(1000, 0000, 0000, 0000)2 is irreducible over GF (216).
Let α2 = (1000, 0000, 0000, 0000)2. Let GF (232) = GF (216)[t2]/(t22 + t2 + α2).
For A, B, C, D ∈ GF (216), (At2 + B)(Ct2 + D) = [(A + B)(C + D) + BD]t2 +
[ACα2 + BD].

Note that we now have a recursive definition for GF ((28)(2
i)). With a proper

choice of αi, we let GF ((28)(2
i)) = GF ((28)(2

i−1))[ti]/(t2i +ti+αi). For a, b, c, d ∈

GF ((28)(2
i−1)),

(ati + b)(cti + d) = [(a + b)(c + d) + bd]ti + [acαi + bd]

where the addition is the bitwise XOR and the multiplication of expressions of
a, b, c, d and αi are done in GF ((28)(2

i−1)).
To find the inverse of ati + b, first we let (ati + b)(Ati + B) = 1, that is,

(aA + aB + Ab)ti + aAαi + bB = 1 or, in vector form, by considering {ti, 1}

as a basis,

(
a + b a
aαi b

) (
A
B

)
=

(
0
1

)
. Hence

(
A
B

)
=

(
a + b a
aαi b

)
−1 (

0
1

)
=

(ab + b2 + a2αi)
−1

(
b a

aαi a + b

) (
0
1

)
= (ab + b2 + a2αi)

−1

(
a

a + b

)
. Therefore

(ati + b)−1 = (ati + a + b)(ab + b2 + a2αi)
−1.

Here we give an example of field extension of degree 12 to illustrate how we
can accelerate the computation of large field. We let K = GF (28) and L, L′, L′′

be the finite extension fields of K such that K ⊂ L
′′ ⊂ L

′ ⊂ L and [L′′ : K] = 2,
[L′ : L

′′] = 2, [L : L
′] = 3. Therefore L

′ = GF (216), L
′ = GF (232) ⊂ L, and

L = GF (296) and we need to discuss the field extension of degree 3 below.

Since t3 + t + 1 is irreducible over GF (232)[t], we can identify GF (296) with

GF (232)[t]/(t3 + t + 1). If we use




a
b
c


 to represent at2 + bt + c, then




a
b
c


 ∗12




x1

x2

x3


 =




(a + c) b a
(a + b) (a + c) b

b a c







x1

x2

x3




where ∗12 denotes the multiplication in L and the right hand side is just the
usual matrix multiplication. In signing a message, we need to solve ax = y for
x in L. That is, to solve




(a + c) b a
(a + b) (a + c) b

b a c







x1

x2

x3


 =




y1

y2

y3




for x1, x2, x3. Therefore, we have




x1

x2

x3


 =

1

4


adj




(a + c) b a
(a + b) (a + c) b

b a c










y1

y2

y3


 .



258 Lih-Chung Wang et al.

Write out adj




(a + c) b a
(a + b) (a + c) b

b a c


 as




A11 A12 A13

A21 A22 A23

A31 A32 A33


, then

A31 = A12 = A23 = a2 + bc
A11 = A22 = a(b + c) + c2

A32 = A13 = ac + (a + b)2

A21 = A31 + A13

A33 = A22 + A32

4 = aA31 + bA32 + cA33

According to the calculation above, to solve ax = y, we need 21 multiplica-
tions and one inverse operation in GF (232), which is roughly 342 multiplications
in K. Comparing to TTS, doing the Gaussian elimination for two 9×9 matrices,
it takes at least about 2 × 93/3 ≈ 500 multiplications in K.

Note: There will be a extended version at IACR eprint archive.

References

1. G. Ars and J.-C. Faugère, Comparison of XL and Gröbner Bases Algorithms over
Finite Fields, preprint. Will appear as one half of an article at Asiacrypt 2004 and
LNCS.

2. M. Bardet, J.-C. Faugère, and B. Salvy, Complexity of Gröbner Basis Computa-
tions for Regular Overdetermined Systems, INRIA Rapport de Recherche No. 5049;
a slightly modified preprint is accepted by the International Conference on Poly-
nomial System Solving.

3. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang, Asymptotic Complexity of
Gröbner Basis Algorithms for Semi-regular Overdetermined Systems over Large
Fields, manuscript in preparation.

4. J.-M. Chen and B.-Y. Yang, Tame Transformations Signatures With Topsy-Turvy
Hashes, proc. IWAP 2002, Taipei.

5. J.-M. Chen and B.-Y. Yang, A More Secure and Efficacious TTS Scheme, ICISC
2003, LNCS v. 2971, pp. 320-338; full version at eprint.iacr.org/2003/160.

6. D. Coppersmith, J. Stern, and S. Vaudenay, Attacks on the Birational Permutation
Signature Schemes, Crypto 1993, LNCS v. 773, pp. 435–443.

7. N. Courtois, L. Goubin, W. Meier, and J. Tacier, Solving Underdefined Systems of
Multivariate Quadratic Equations, PKC 2002, LNCS v. 2274, pp. 211-227

8. N. Courtois, Generic Attacks and the Security of Quartz, PKC 2003, LNCS v. 2567,
pp. 351-364.

9. N. Courtois, Algebraic Attacks over GF (2k), Cryptanalysis of HFE Challenge 2
and SFLASHv2, accepted for PKC 2004.

10. N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations, EUROCRYPT 2000,
LNCS v. 1807, pp. 392-407.

11. N. Courtois and J. Patarin, About the XL Algorithms over GF (2), CT-RSA 2003,
LNCS v. 2612, pp. 141-157.

12. N. Courtois, L. Goubin, and J. Patarin, SFLASHv3, a Fast Asymmetric Signature
Scheme, preprint



Tractable Rational Map Signature 259

13. C. Diem, The XL-algorithm and a Conjecture from Commutative Algebra, preprint
(to appear Asiacrypt 2004 and LNCS) and private communication.

14. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Info. The-
ory, vol. IT-22, no. 6, pp. 644-654.

15. J.-C. Faugére, A New Efficient Algorithm for Computing Gröbner Bases (F4),
Journal of Pure and Applied Algebra, 139 (1999), pp. 61–88.

16. J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero (F5), Proc. ISSAC 2002, pp. 75-83, ACM Press 2002.

17. J.-C. Faugère and A. Joux, Algebraic Cryptanalysis of Hidden Field Equations
(HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS v. 2729, pp. 44-
60.

18. M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory
of NP-completeness, 1979, p. 251.

19. W. Geiselmann, R. Steinwandt, and T. Beth, Attacking the Affine Parts of
SFLASH, 8th International IMA Conference on Cryptography and Coding, LNCS
v. 2260, pp. 355-359.

20. W. Geiselmann, R. Steinwandt, and T. Beth, Revealing the 441 Key Bits of
SFLASHv2, Third NESSIE Workshop, 2002.

21. L. Goubin and N. Courtois, Cryptanalysis of the TTM cryptosystem, Asiacrypt
2000, LNCS v. 1976, pp. 44-57.

22. A. Kipnis and A. Shamir, Cryptanalysis of the Oil and Vinegar Signature Scheme,
Crypto’98, LNCS v. 1462, pp. 257-266

23. A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Sigature
Schemes, Crypto’99, LNCS v. 1592, pp. 206-222

24. A. Kipnis and A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization, Crypto’99, LNCS v. 1666, pp. 19-30

25. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption, EUROCRYPT’88, LNCS v. 330,
pp. 419-453.

26. T. Moh, A Public Key System with Signature and Master Key Functions, Commu-
nications in Algebra, 27 (1999), pp. 2207-2222.

27. T. Moh and J. -M. Chen, On the Goubin-Courtois Attack on TTM, published
electronically by Cryptology ePrint Archive (2001/072).

28. New European Schemes for Signatures, Integrity, and Encryption, project home-
page at http://www.cryptonessie.org.

29. Performance of Optimized Implementations of the NESSIE primitives, version 2.0
http://www.cryptonessie.org.

30. J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88, Crypto’95, LNCS v. 963, pp. 248-261.

31. J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP)
Two New Families of Asymmetric Algorithms, EUROCRYPT’96, LNCS v. 1070,
pp. 33-48.

32. J. Patarin, L. Goubin, N. Courtois, Improved Algorithm for Isomorphisms of Poly-
nomials, EUROCRYPT’98, LNCS v. 1403, pp. 184-200.

33. J. Patarin, N. Courtois, and L. Goubin, QUARTZ, 128-Bit Long Digital Signa-
tures, CT-RSA 2001, LNCS v. 2020, pp. 282-297. Updated version available at
http://www.cryptonessie.org.

34. J. Patarin, N. Courtois, and L. Goubin, FLASH, a Fast Multivariate Signature
Algorithm, CT-RSA 2001, LNCS v. 2020, pp. 298-307. Updated version available
at http://www.cryptonessie.org.



260 Lih-Chung Wang et al.

35. A. Shamir and E. Tromer, Factoring Large Numbers with the TWIRL Device,
Crypto 2003, LNCS v. 2729, pp. 1-26.

36. Lih-Chung Wang and Fei-Hwang Chang, Tractable Rational Map Cryptosystem,
available at http://eprint.iacr.org/2004/046.

37. C. Wolf, Efficient Public Key Generation for Multivariate Cryptosystems, preprint,
available at http://eprint.iacr.org/2003/089.

38. B.-Y. Yang and J.-M. Chen, Rank Attacks and Defence in Tame-Like Multivariate
PKC’s, see http://eprint.iacr.org/2004/061.

39. B.-Y. Yang and J.-M. Chen, All in the XL Family: Theory and Practice, to appear
at ICISC 2004 and LNCS.

40. B.-Y. Yang, Y.-H. Chen, and J.-M. Chen, TTS: High-Speed Signatures on a Low-
End Smart Card , Proc. CHES ’04, LNCS v. 3156, pp. 371-385.

41. B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Estimates in XL
and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS 2004, LNCS v. 3269,
pp. 401-413.


