
On the Optimization of Side-Channel Attacks

by Advanced Stochastic Methods

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185–189

53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

Abstract. A number of papers on side-channel attacks have been pub-
lished where the side-channel information was not exploited in an opti-
mal manner, which reduced their efficiency. A good understanding of the
source and the true risk potential of an attack is necessary to rate the
effectiveness of possible countermeasures. This paper explains a general
approach to optimize the efficiency of side-channel attacks by advanced
stochastic methods. The approach and its benefits are illustrated by ex-
amples.

Keywords: Side-channel attack, Montgomery’s multiplication algorithm, stoch-
astic process, statistical decision problem, optimal decision strategy.

1 Introduction

At Crypto 1996 and Crypto 1998 Kocher, resp. Kocher et al., introduced timing
and power attacks [5, 8]. Since then side-channel attacks have attracted enour-
mous attention in the scientific community and the smart card industry as they
constitute serious threats against cryptosystems. Their targets are usually smart
cards but also software implementations may be vulnerable, even against remote
attacks ([1, 2] etc.). In a side-channel attack the attacker guesses the secret key
portion by portion. The correctness of the partial guesses cannot be verified (at
least not with certainty) until all parts of the key have been guessed. If the ver-
ification of the whole key guess fails (e.g. by checking a digital signature) this
does not provide the position(s) of the wrong guess(es).

A large number of research papers on timing attacks, power attacks, radiation
attacks and combined timing / power attacks have been published. A variety of
countermeasures have been proposed that shall prevent these attacks.

In ‘real life’ the number of measurements is often limited, or it is at least
costly to perform a large number of measurements. From the attacker’s point of
view it is hence desirable to minimize the error probabilities for the guesses of
the particular key parts (for a given number of measurements) or vice versa, to
minimize the number of measurements which is necessary for a successful attack.
If the outcome of the previous guesses has an impact on the guessing strategy of

On the Optimization of Side-Channel Attacks 87

the present key part it is additionally desirable to have criteria with which the
correctness of the previous guesses can be verified with reasonable probability.

In order to achieve these goals the side-channel information should be ex-
ploited in an optimal manner. Many papers present ingenious ideas but lack of
sound mathematical methods. As a consequence, only a fraction of the overall
side-channel information is indeed used which in turn lowers the efficiency of the
attack. As a consequence it may even be difficult to rate the true risk potential
of these attacks and to assess the effectiveness of the proposed countermeasures.
By applying appropriate stochastic methods it was possible to increase the effi-
ciency of a number of known attacks considerably ([12, 14–16]; Sects. 4, 6, 7 in
this paper), in one case even by factor 50. Moreover, some attacks were gener-
alized, and new attacks were detected due to the better understanding of the
situation ([13, 16, 17], Sects. 5, 6 in this paper).

The focus of this paper are the applied mathematical methods themselves
but not new attacks. This shall put the reader into the position to apply and to
adjust these methods when considering side-channel attacks that are tailored to
a specific target. An individual treatment should in particular be necessary for
most of the power and radiation attacks. Often the (timing, power, radiation)
behaviour of the attacked device can be modelled as a stochastic process, and
the attack can be interpreted as a sequence of statistical decision problems.
Roughly speaking, in a statistical decision problem the optimal decision strategy
minimizes the expected loss which primarily depends on the probabilities for
wrong guesses but also on the a priori information and the consequences of
errors. In fact, depending on the concrete situation particular types of errors
may be easier to detect and correct than others (e.g., in the examples explained
in Sects. 6 and 7).

We refer readers who are generally interested in stochastic and statistical
applications in cryptography to ([10]) and to various papers of Meier and Staffel-
bach, Golic, Vaudenay and Junod, for instance.

Our paper is organized as follows: In Section 2 we introduce the concept of
statistical decision theory, and in Section 3 we exemplarily work out a stoch-
astic model for Montgomery’s multiplication algorithm. Then we illustrate our
approach by various examples and give final conclusions.

2 A Survey on Statistical Decision Theory

We interpret side-channel measurements as realizations of random variables, i.e.
as values assumed by these random variables. The relevant part of the inform-
ation is covered by noise but an attacker clearly aims to exploit all of the available
information in an optimal way. Therefore, he interprets the side-channel attack
as a sequence of statistical decision problems. Each decision problem corresponds
to the guessing of a particular key part. Previous guesses may have an impact
on the present guess (cf. Sects. 4, 5), or all guesses may be independent (cf. Sect.
6). Statistical decision theory quantifies the impact of the particular pieces of
information on the decision so that the search for the optimal decision strategy

88 Werner Schindler

can be formalized. In this section we introduce the concept of statistical decision
theory as far it is relevant for our purposes, namely to improve the efficiency of
side-channel attacks.

Formally, a statistical decision problem is defined by a 5-tuple (Θ,Ω, s,D, A).
The statistician (in our context: the attacker) observes a sample ω ∈ Ω that he
interprets as a realization of a random variable X with unknown distribution
pθ. On basis of this observation he estimates the parameter θ ∈ Θ where Θ
denotes the parameter space, i.e., the set of all admissible hypotheses (= possible
parameters). Further, the set Ω is called the observation space, and the letter A
denotes the set of all admissible alternatives the statistician can decide for. In
the following we assume Θ = A where Θ and A are finite sets.

Example 1. (i) Assume that the attacker guesses a single RSA key bit and that
his decision is based upon N timing or power measurements. Then Θ = A =
{0, 1}, Ω = IRN.
(ii) Consider a power attack on a DES implementation where the attacker guesses
a particular 6-bit-subkey that affects a single S-box in the first round. Then
Θ = A = {0, 1}6.

A deterministic decision strategy is given by a mapping τ :Ω → A (cf. Remark
1 (ii)). If the statistician applies the decision strategy τ he decides for τ(ω) ∈
A = Θ whenever he observes ω ∈ Ω.

Finally, the loss function s:Θ × A → [0,∞) quantifies the harm of a wrong
decision, i.e., s(θ, a) gives the loss if the statistician decides for a ∈ A although
θ ∈ Θ = A is the correct parameter. In our context this quantifies the efforts
(time, money etc.) to detect, to localize and to correct a wrong decision, i.e. a
wrong guess of a key part. Clearly, s(θ, θ) := 0 since a correct guess does not cause
any loss. For some attacks (as in Sects. 6, 7) specific types of errors are easier to
correct than others. The optimal decision strategy takes such phenomena into
account.

Assume that the statistician uses the deterministic decision strategy τ :Ω →
A and that θ is the correct parameter. The expected loss (= average loss if the
hypothesis θ is true) is given by the r isk function

r(θ, τ) :=

∫

Ω

s(θ, τ(ω)) pθ(dω). (1)

Our goal clearly is to apply a decision strategy that minimizes this term. Unfor-
tunately, usually there does not exist a decision strategy that is simultaneously
optimal for all admissible parameters θ ∈ Θ. However, in the context of side-
channel attacks one can usually determine (at least approximate) probabilities
with which the particular parameters occur. This is quantified by the so-called
a priori distribution η, a probability measure on the parameter space Θ.

Example 2. (i) (Continuation of Example 1(i)) Assume that k exponent bits
remain to be guessed and that the attacker knows that r of them equal 1. If
the secret key was selected randomly then it is reasonable to assume that the
present bit is 1 with probability η(1) = r/k.
(ii) (Continuation of Example 1(ii)) Here η(x) = 2−6 for all x ∈ {0, 1}6.

On the Optimization of Side-Channel Attacks 89

Assume that η denotes the a priori distribution. If the statistician applies the
deterministic decision strategy τ :Ω → A the expected loss equals

R(η, τ) :=
∑

θ∈Θ
r(θ, τ)η(θ) =

∑

θ∈Θ

∫

Ω

s(θ, τ(ω)) pθ(dω) η(θ). (2)

A decision strategy τ ′ is optimal against η if it minimizes the right-hand term.
Such a decision strategy is also called a Bayes strategy against η.

Remark 1. (i) For specific decision problems (e.g. minimax problems) it is rea-
sonable to consider the more general class of randomized decision strategies
where the statistician decides randomly (quantified by a probability measure)
between various alternatives when observing a particular ω ([20]). In our con-
text we may restrict our attention to the deterministic decision strategies (cf.
Theorem 1). We point out that deterministic decision strategies can be viewed
as specific randomized decision strategies.
(ii) Theorem 1 is tailored to our situation. It provides concrete formulae that
characterize the optimal decision strategy. Although Theorem 1 can be deduced
from more general theorems (e.g., Hilfssatz 2.137 and Satz 2.138(i) in [20] imme-
diately imply assertion (i)) we give an elementary proof (cf. Theorem 2.48 in [20]
for the special case t = 2) in order to illustrate the background. We restricted
our attention to the case |Θ| < ∞ and left out mathematical difficulties as the
concept of σ-algebras and measurability. We mention that the optimal decision
strategy τ from Theorem 1 is measurable.

Theorem 1. Assume that (Θ,Ω, s,D, A) describes a statistical decision prob-
lem with finite parameter space Θ = {θ1, . . . , θt} = A where D contains the
deterministic decision strategies. Further, let µ denote a σ-finite measure on Ω
with pθi

= fθi
· µ, i.e. pθi

has µ-density fθi
, for each i ≤ t.

(i) The deterministic decision strategy τ :Ω → A,

τ(ω) := a if
t∑

i=1

s(θi, a)η(θi)fθi
(ω) = min

a′∈A

{
t∑

i=1

s(θi, a
′)η(θi)fθi

(ω)

}
(3)

is optimal against the a priori distribution η. (If the minimum is attained for
several decisions, we chose a ∈ A according to any (fixed) order on A.)
(ii) If Θ = {0, 1} and s(0, 1), s(1, 0) > 0 the indicator function

τ(ω) := 1f0(ω)/f1(ω)≤s(1,0)η(1)/s(0,1)η(0)(ω) (4)

is optimal against η. (We set τ(ω) := 1 if f0(ω) = f1(ω) = 0 or f0(ω) = f1(ω)=
∞.)
(iii) Assume that C ⊆ Ω with pθi

(C) = p > 0 for all θi ∈ Θ. Then (i) and (ii)
remain valid if fθ is replaced by the conditional density fθ|C.

Proof. Let κ:Ω × P(A) → [0, 1] denote any randomized decision strategy (cf.
[20], for instance). Fubini’s Theorem implies

R(η, κ) =

t∑

i=1




∫

Ω

t∑

j=1

s(θi, θj)κ(ω, θj)fθi
(ω)µ(dω)



 η(θi)

90 Werner Schindler

∫

Ω




t∑

i=1

t∑

j=1

s(θi, θj)κ(ω, θj)fθi
(ω)η(θi)


 µ(dω).

Since κ(ω, ·) is a probability measure, reordering the integrand yields

t∑

j=1

κ(ω, θj)

t∑

i=1

s(θi, θj)fθi
(ω)η(θi) ≥ min

a′∈A

{
t∑

i=1

s(θi, a
′)fθi

(ω)η(θi)

}

which proves (3). Assertion (ii) is an immediate consequence from (i) since
f0(ω) = f1(ω) = 0 and f0(ω) = f1(ω) = ∞ occur only with probability zero.
Assertion (iii) is a corollary from (i) and (ii) since fθ|C = fθ/p.

Remark 2. (i) A σ-finite measure µ on Ω with the properties claimed in Theorem
1 does always exist (e.g. µ = pθ1 + · · · + pθt

).
(ii) For Ω = IRn the well-known Lebesgue measure λn is σ-finite (The Lebesgue
measure on IRn is given by λn([a1, b1] × · · · [an, bn]) =

∏n
i=1(bi − ai) if bi ≥ ai

for all i ≤ n.) If Ω is finite or countable the counting measure µC is σ-finite.
The counting measure is given by µC(ω) = 1 for all ω ∈ Ω. In particular, the
probabilities Probθ(X = ω) = pθ(ω) can be interpreted as densities with respect
to µC .
(iii) The examples mentioned in (ii) and combinations thereof cover the cases
that are relevant in the context of side-channel attacks.

With regard to Theorem 1 we will restrict our attention to decision problems of
the type

(Θ,Ω, s,DS , A = Θ) with finite Θ = A (5)

where DS denotes the set of all deterministic decision strategies. At first the
attacker has to define the sets Θ = A and an appropriate loss function s. Then he
determines the a priori distribution η and, in particular, the probability densities
pθi

for all i ≤ t. In our context the latter will be the most difficult part but
gives the most significant impact on the decision strategy. For timing attacks
on public key algorithms, for instance, these distributions depend essentially on
the implemented arithmetic algorithms, for power and radiation attacks on the
internal activity within the attacked device or specific areas thereof when the
measurements are taken. Finally, the attacker applies Theorem 1 to determine
an optimal decision strategy τ (= Bayes strategy against the a priori distribution
η). In specific situations the attacker may also be interested in the value R(η, τ).

3 Montgomery’s Modular Multiplication Algorithm

In this section we investigate the timing behaviour of Montgomery’s modular
multiplication algorithm ([9], Alg. 14.36) as it is implemented in most of the
smart cards that compute modular exponentiations (e.g., RSA-based digital sig-
natures).

On the Optimization of Side-Channel Attacks 91

3.1 Algebraic Background and Montgomery’s Algorithm

In this subsection we briefly describe the algebraic background and formulate the
multiprecision variant of Montgomery’s algorithm. We begin with a definition.

Definition 1. As usually, ZM := {0, 1, . . . ,M − 1}, and for an integer b ∈ Z
the term b(modM) denotes the unique element of ZM that is congruent to b
modulo M .

In order to compute yd(modM) a sequence of modular multiplications and
squarings have to be carried out. If ‘ordinary’ modular multiplication algorithms
are used this requires a large number of time-consuming integer divisions by the
modulus M . Montgomery’s multiplication algorithm saves these operations.

In the following we assume that M is an odd modulus (e.g., an RSA modulus
or a prime factor) and that R := 2x > M is a power of two (e.g. x = 512). The
elementary variant of Montgomery’s algorithm transfers the modular multipli-
cations from the modulus ZM to ZR. The term R−1 ∈ ZM denotes the multi-
plicative inverse of R in ZM , i.e. RR−1 ≡ 1 (mod M). The integer M∗ ∈ ZR
satisfies the integer equation RR−1 −MM∗ = 1. For input a, b ∈ ZM Mont-
gomery’s multiplication algorithm returns MM(a, b;M) := abR−1(modM). We
point out that the mappings Ψ, Ψ∗:ZM → ZM , given by Ψ(x) := xR (modM)
and Ψ∗(x) := xR−1 (modM), induce inverse operations on ZM .

Usually, a time-efficient multiprecision variant of Montgomery’s algorithm is
implemented which is tailored to the device’s hardware architecture. Assume that
ws denotes the word size for the arithmetic operations (e.g. ws = 32) and that
ws divides the exponent x. Then r := 2ws and R = rv with v = x/ws (Example:
x = 512, ws = 32, v = 16). For the moment let further a = (av−1, . . . , a0)r,
b = (bv−1, . . . , b0)r, and s = (sv−1, . . . , s0)r denote the r-adic representations of
a, b and s, resp., and let m′ := M∗(mod r).

Algorithm 1: Montgomery’s algorithm (multiprecision variant)

1.) s:=0

2.) for i=0 to v-1 do {

u_i:= (s_0+a_i*b_0)m’ (mod r)

s:= (s+a_ib+u_iM) /r }

3.) if s≥M then s:=s-M

4.) return s (= MM(a,b;M) = abR^{-1} (mod M))

In the following we assume that for fixed parameters M,R and r the run
times needed for Step 1 and Step 2 are identical for all pairs of operands. (This
assumption is reasonable, in particular for smart cards. Software implementa-
tions may process small operands (i.e., those with leading zero-words) faster
due to optimizations of the integer multiplication algorithms. This is absolutely
negligible for the attacks considered in Sects. 4 and 6 but may cause additional
difficulties for particular chosen-input attacks as described in Sect. 5, for in-
stance (cf. [1]).) Timing differences are caused by the fact whether in Step 3 the
subtraction, the so-called extra reduction, has to be carried out. Hence

Time (MM(a, b;M)) ∈ {c, c+ cER} (6)

92 Werner Schindler

where the time c is required iff no extra reduction is necessary. The constant
cER quantifies the time needed for an integer subtraction by M . The values of
the constants c and cER surely depend on the concrete implementation. Lemma
1 below (cf. [13] (Remark 1) or [11] (Lemma 1)) says that the fact whether an
extra reduction is necessary does only depend on a, b,M and R but not on the
word size ws.

Lemma 1. For each word size ws the intermediate result after Step 2 equals
s = (ab+ uM)/R with u = abM∗(mod R).

3.2 The Stochastic Model

In this subsection we study the timing behaviour of Montgomery’s multiplication
algorithm within modular exponentiation algorithms. It will turn out that the
probability for an extra reduction (ER) in a squaring operation differs from
the probabiliy for an extra reduction in a multiplication with a particular value
a ∈ ZM . The latter depends linearly on the ratio a/M . We point out that
the probabilities, or more general, the stochastic properties of random extra
reductions do not depend on the size of the modulus M but on the ratio M/R.

Lemma 2. (i) MM(a,b;M)
M =

(
a
M

b
M

M
R + abM∗ (mod R)

R

)
(mod1). That is, an

extra reduction is carried out iff the sum within the bracket is ≥ 1 iff MM(a,b;M)
M <

a
M

b
M

M
R .

(ii) Assume that the random variable B is equidistributed on ZM . Then the
intermediate result in Algorithm 1 before the ER step is (in good approximation)
distributed as

M

R

a

M
U + V for MM(a,B;M) (7)

M

R
U2 + V for MM(B,B;M). (8)

where U and V denote independent random variables that are equidistributed on
[0, 1).

Sketch of the proof. Assertion (i) follows immediately from Lemma 1. For a proof
of (ii) we refer the interested reader to [12], Lemma A.3. The central idea is that
a small deviation of B/M causes ‘vast’ deviations in the second summand and
that the distribution of the second summand is close to the equidistribution on
[0, 1] for nearly all values of a. An alternate proof for a related assertion is given
in [11]. (Both proofs use plausible heuristic arguments (Assumption DIS in [11]).
We further mention that (7) and (8) yield probabilities for extra reductions (cf.
(11)) which were confirmed by a large number of simulation experiments.

Modular exponentiation algorithms initialize a variable (in the following de-
noted with temp) with the base y or, in case of table methods, with a power
of y. A sequence of modular squarings of temp and multiplications of temp

On the Optimization of Side-Channel Attacks 93

with particular table values are carried out until temp equals yd(mod M). Pseu-
doalgorithm 2 below combines modular exponentiation algorithms with Mont-
gomery’s multiplication algorithm. The modular exponentiation algorithm may
be the ‘square and multiply’ algorithm ([9], Alg. 14.79; cf. Sect. 4), a table
method (e.g. left-to right b-ary exponentiation, cf. [9], Alg. 14.82 and Sect. 6)
or the sliding windows exponentiation algorithm ([9], Alg. 14.85). In Pseudoal-
gorithm 2 the table values equal (yjR) (modM) (unlike (yj)(modM) if ‘ordi-
nary’ modular multiplication algorithms are used) and hence temp = ydR(mod
M) after Step 2.

Pseudoalgorithm 2: Modular Exponentiation with Montgomery’s
multiplication algorithm

1.) \bar y_{1}:=MM(y,R^2;M) (= yR (mod M))

2.) Modular Exponentiation algorithm

a) table initialization (if necessary)

b) exponentiation phase

(Replace modular squarings and multiplications in

2a) and 2b) with the respective Montgomery operations)

3.) return temp:=MM(temp,1;M) (=y^d (mod M))

We interpret the normalized intermediate values temp0/M, temp1/M, . . . from
the exponentiation phase as realizations of [0, 1)-valued random variables S0, S1,
. . .. Consequently, the time needed for the ith Montgomery operation (squaring
or multiplication of temp with a particular table value), is interpreted as a re-
alization of c+Wi · cER, where Wi is a {0, 1}-valued random variable, assuming
1 iff an extra reduction is necessary. The understanding of the stochastic pro-
cess W1,W2, . . . will turn out to be necessary to determine the optimal decision
strategies in the following sections.

From Lemma 2 we deduce the following relations where the right-hand sides
denote the possible types of the ith Montgomery operation within the exponen-
tiation phase.

Si+1 :=

{
M
R S

2
i + Vi+1(mod 1) for MM(temp, temp;M)

ȳj

M
M
R Si + Vi+1(mod 1) for MM(temp, ȳj ;M)

(9)

The term ȳj denotes the jth table entry (j ≡ 1 for the square & multiply
algorithm). With regard to Lemma 2(ii) we may assume that the random vari-
ables V1, V2, . . . are iid equidistributed on [0, 1). As an immediate consequence,
the random variables S1, S2, . . . are also iid equidistributed on [0, 1). From the
random variables S0, S1, . . . one derives the random variables W1,W2, . . . that
describe the (random) timing behaviour of the Montgomery operations within
the exponentiation phase. To be precise, from Lemma 2(i) we conclude

Wi :=

{
1Si<S2

i−1
(M/R) for MM(temp, temp;M)

1Si<Si−1(ȳj/M)(M/R) for MM(temp, ȳj ;M).
(10)

We mention that the sequence W1,W2, . . . is neither independent nor identically
distributed but Wi and Wi+1 are negatively correlated. On the other hand, the

94 Werner Schindler

tuples (Wi,Wi+1, . . . ,Wi+j) and (Wk,Wk+1, . . . ,Wk+t) (but not their compo-
nents!) are independent if k > i+ j + 1. In particular, (10) implies

E(Wi) =

{
1
3
M
R for MM(temp, temp;M)

1
2
ȳj

M
M
R for MM(temp, ȳj ;M).

(11)

Remark 3. In this section we have derived a stochastic process W1,W2, . . . that
models the timing behaviour of the Montgomery multiplications within modular
exponentiation algorithms. Clearly, a similar approach is at least principally
feasible for other arithmetic algorithms, too.

4 Timing Attacks on RSA Without CRT

A timing attack on RSA implementations was first described (and experimentally
verified) in [5]. Two years later a successful timing attack on a preliminary version
of the Cascade chip was presented at the Cardis conference ([4]). Kocher’s attack
was generalized and optimized in [12]. In this section we consider the attack
presented in [4]. Our approach improves its efficiency by factor 50.

4.1 The Optimal Decision Strategy

In this section we assume that the attacked smart card (e.g., a preliminary ver-
sion of the Cascade chip) calculates the modular exponentiations y 7→ yd(mod
n) with the square & multiply algorithm, combined with Montgomery’s algo-
rithm (cf. Pseudoalgorithm 2). We assume further that the secret exponent d
(target of the attack) remains fixed for all observed exponentiations and that no
blinding techniques are applied (cf. Remark 4) so that repetitions with identical
bases require equal running times. The binary representation of the secret expo-
nent d reads (dv−1, . . . , d0)2, and in Phase 2b of Pseudoalgorithm 2 the exponent
bits are processed from the left to the right.

In a pre-step the attacker measures the exponentiation times t̃(j) :=

Time(yd(j) (modn)) + tErr(j) for a sample y(1), . . . , y(N) where tErr(j) denotes the
measurement error for sample j. To be precise, we have

t̃(j) = tErr(j)+tS(j)+(v+ham(d)−2)c+
(
w(j)1 + . . .+ w(j)v+ham(d)−2

)
cER (12)

where w(j)i ∈ {0, 1} equals 1 iff the ith Montgomery operation requires an
extra reduction for sample j and 0 else. The term tS(j) summarizes the time
needed for all operations apart from the Montgomery multiplications (input,
output, handling the loop variable, evaluating the if-statements, pre- and post-
multiplication). We may assume that the attacker knows tS(j) exactly as possible
errors can be interpreted as part of the measurement error tErr(j). We may further
assume that the attacker had guessed the parameters v, ham(d), c and cER in a
pre-step of the attack (cf. [14], Sect. 6).

On the Optimization of Side-Channel Attacks 95

The exponent bits are guessed from the left to the right. For the moment
we assume that the most significant exponent bits dv−1, . . . , dk+1 have already

been guessed, and that all guesses d̃v−1, . . . , d̃k+1 are correct. Our goal is to
derive an optimal decision strategy to guess the exponent bit dk. At first the
attacker subtracts the time needed to process the (correctly) guessed exponent
bits dv−1, . . . , dk+1 from the measured exponentiation time in order to obtain
the time needed for the remaining bits dk, . . . , d0 (beginning with ‘if (dk = 1)
then MM(temp(j), ȳ1(j);n)’), and from ham(d) he further computes the number
m of remaining Montgomery multiplications with ȳ1(j). If the random exponent
d has been selected randomly it is reasonable to assume that η(1) := Prob(dk =
1) = (m − 1)/k since d0 = 1. That is, the a priori distribution is given by
(η(0), η(1)) = ((k + 1 −m)/k, (m − 1)/k). Clearly, Θ = A = {0, 1}. Since the
differences of the running times are caused by the number of extra reductions
(and maybe by measurement errors) we consider the ‘normalized’ remaining time

t̃d,rem(j) : =
t̃(j) − tS(j) − (v + ham(d) − 2)c

cER
−
v+ham(d)−2−k−m∑

i=1

wi(j) (13)

= tdErr(j) +

v+ham(d)−2∑

i=v+ham(d)−k−m−1

wi(j).

where the last sum equals the number of extra reductions in the remaining
Mongomery multiplications. The remaining Montgomery operations are labelled
by the indices v + ham(d) − k − m − 1, . . . , v + ham(d) − 2. The normalized
measurement error tdErr(i) = tErr(i)/ cER is assumed to be a realization of
an N(0, α2(= σ2

Err/ cER
2))-distributed random variable that is independent of

W1,W2, . . . (cf. [12], Sect. 6).
The attacker bases his decision on the 4N -tuple

(̃
tdrem(j), uM(j), uS(j), tS(j)

)
j≤N

(‘observation’) where uM(j), uS(j), tS(j) ∈ {0, 1} quantify the timing of sample
j until the next decision (i.e., when guessing dk−1). To be precise, uM(j) = 1
(resp. uS(j) = 1, resp. tS(j) = 1) iff θ = 1 and the next multiplication with
ȳ1(j) (resp., iff θ = 1 and the subsequent squaring, resp. iff θ = 0 and the next
squaring) requires an extra reduction. That is, uM(j) and uS(j) are summands
of the right-hand side of (13) if θ = 1 whereas tS(j) is such a summand if θ = 0.
Next, we study the stochastic process W1(j),W2(j), . . . that quantifies the (ran-
dom) timing behaviour of these Montgomery multiplications. Although these
random variables are neither independent nor stationary distributed they yet
meet the central limit theorem ([12], Lemma 6.3(iii)). Since Wi(j) and Wr(j) are
independent if |i− r| > 1 (cf. Subsection 3.2) we conclude

Var
(
W1(j) + . . .+Wt(j)

)
=

t∑

i=1

Var(Wi(j)) + 2

t−1∑

i=1

Cov(Wi(j),Wi+1(j)) (14)

Concerning the variances we have to distinguish between two cases (squaring,
multiplication with ȳ(j); cf. (11)), for the covariances between three cases, namely

96 Werner Schindler

that Wi(j) and Wi+1(j) correspond to two squarings (covSS), resp. to a squaring
followed by a multiplication with ȳ(j) (covSM(j)), resp. to a multiplication with
ȳ(j) followed by a squaring (covMS(j)). Exploiting (10) and (9) the random vec-
tor (Wi(j),Wi+1(j)) can be expressed as a function of the iid random variables
Si−1(j), Si(j), Si+1(j). For instance, CovMS(WiWi+1) =

∫

[0,1)3
1{si<si−1ȳj/R} · 1{si+1<s2in/R}(si−1, si, si+1) dsi−1dsidsi+1 −

ȳ(j)

2R
· n
3R

(15)

Careful but elementary computations yield

covMS(j) = 2p3
jp∗ − pjp∗, covSM(j) =

9

5
pjp

2
∗ − pjp∗ (16)

covSS =
27

7
p4
∗ − p2

∗ with pj :=
ȳ(j)

2R
and p∗ :=

n

3R
.

Since the random variables W1(j),W2(j), . . . are not independent the distribution
ofWi+1(j)+· · ·+Wt(j) depends on the preceding value wi(j). Theorem 2 considers
this fact (cf. [12]). We first introduce some abbreviations.

Notation. hn(0, j) := (k − 1)p∗(1 − p∗) + mpj(1 − pj) + 2(m − 1)covMS(j) +

2(m− 1)covSM(j) + 2(k −m− 1)covSS + 2k−mk−1 covSM(j) + 2m−1
k−1 covSS + α2,

hn(1, j) := (k − 1)p∗(1 − p∗) + (m− 1)pj(1 − pj) + 2(m− 2)covMS(j) +

2(m− 2)covSM(j) + 2(k −m)covSS + 2k−m+1
k−1 covSM(j) + 2m−2

k−1 covSS + α2,

ew(0, j | b) := (k − 1)p∗ +mpj + k−m
k−1 (p∗S(b) − p∗) + m−1

k−1 (pjS(b) − pj),

ew(1, j | b) := (k−1)p∗+(m−1)pj+
k−m+1
k−1 (p∗S(b)−p∗)+ m−2

k−1 (pjS(b)−pj) with

p∗S(1) := 27
7 p

3
∗, p∗S(0) :=

p∗−p∗p∗S(1)

1−p∗ , pjS(1) := 9
5p∗pj and pjS(0) :=

pj−p∗pjS(1)

1−p∗ .

A false guess d̃k 6= dk implies wrong assumptions about the intermediate temp
values for both hypotheses dt = 0 and dt = 1 for all the forthcoming decisions
(when guessing dt for t < k). Consequently, these guesses cannot be reliable, and
hence we use the loss function s(0, 1) = s(1, 0) = 1. (For this setting the expected

loss R(η, τ) equals the error probability Prob(dk 6= d̃k).) For a complete proof
of Theorem 2 we refer the interested reader to [12], Theorem 6.5 (i).

Theorem 2. (Optimal decision strategy) Assume that the guesses d̃v−1, . . . , d̃k+1

are correct and that ham(dk , . . . , d0) = m. Let

ψN,d : (IR × {0, 1}3)N → IR, ψN,d((̃tdrem(1), uM(1), . . . , uS(N), tS(N))) :=

−1

2

N∑

j=1

((
t̃drem(j) − tS(j) − ew(0, j | tS(j))

)2

hn(0, j)
−

(
t̃drem(j) − uM(j) − uS(j) − ew(1, j | uS(j))

)2

hn(1, j)

)
.

On the Optimization of Side-Channel Attacks 97

Then the deterministic decision strategy τd: (IR × {0, 1}3)N → {0, 1}, defined by

τd = 1
ψN,d<log(m−1

k−m+1)+ 1
2

∑
N

j=1
log (1+cj)

with cj :=
hn(0, j) − hn(1, j)

hn(1, j)
(17)

is optimal (i.e., a Bayes strategy against the a priori distribution η).

Sketch of the proof. To apply Theorem 1(ii), (iii) we first have to determine
the conditional probability densities hθ,∗j|Cj

(t̃drem(j), uM(j), uS(j), tS(j)) (normal

distribution) of the random vectors Xj := (T̃drem(j), UM(j), US(j), TS(j)) for θ =
0, 1 and j ≤ N with Cj = (UM(j) = uM(j), US(j) = uS(j), TS(j) = tS(j)). (We
point out that the Xj are independent but not their components.) The products∏N
j=1 hθ,∗j|Cj

(·) are inserted in (4), and elementary computations complete the
proof of Theorem 2.

The overall attack is successful iff all the guesses d̃v−1, . . . , d̃0 are correct.
Theorem 6.5 (ii) in [12] quantifies the probability for individual wrong guesses.
In particular, guessing errors will presumably only occur in the first phase of the
attack since the variance of the sum Wv+ham(d)−k−m−1(j) + . . .+Wv+ham(d)−2(j)

decreases as k tends to 0. Due to the lack of space we skip this aspect but give
a numerical example.

Example 3. Assume that the guesses d̃v−1, . . . , d̃k+1 have been correct. For ran-
domly chosen bases y(1), . . . , y(N), for n/R = 0.7, α2 = 0, N ≥ 5000, and . . .

(a) . . . (k,m) = (510, 255) we have Prob(d̃k 6= dk) ≤ 0.014.

(b) . . . (k,m) = (440, 234) we have Prob(d̃k 6= dk) ≤ 0.010.

(c) . . . (k,m) = (256, 127) we have Prob(d̃k 6= dk) ≤ 0.001.

4.2 Error Detection, Error Location and Error Correction

In order to guess the secret exponent d the attacker considers a sequence of
statistical decision problems (one for each exponent bit). The ψN,d-values them-
selves can be interpreted as realizations of random variables Zv−1, Zv−2, . . . with
the pleasant property that their distributions change noticeably after the first
wrong guess. For instance, the decision strategy from Theorem 2 then yields the
guess 1 only with a probability of about 0.20 (The exact probability depends
on the concrete parameters; cf. [12], Theorem 6.5(iii)). The interested reader is
referred to Section 3 of [15] where a new stochastic strategy was introduced to
detect, locate and correct guessing errors, which additionally reduces the sample
size by about 40%.

4.3 Practical Experiments / Efficiency of the Optimized Attack

Reference [15] distinguishes two cases. In the ideal case it is assumed that the
time measurements are exact, that the attacker knows the constants and param-
eters c, cER, v and ham(d) and that he is able to determine the setup time t(S)

exactly. For the ‘ real-life’ case the timing measurements were performed using

98 Werner Schindler

an emulator which predicts the running time of a program in clock cycles. The
code we used was the ready-for-transfer version of the Cascade library, i.e. with
critical routines directly written in the card’s native assemble language. Since the
emulator is designed to allow implementors to optimize their code before ‘burn-
ing’ the actual smart cards, its predictions should match almost perfectly. In
the ‘real-life’ case the attacker did not know c, cER, v, ham(d), and t(S). Instead,
these values were guessed in a pre-step ([14], Sect. 6).

Applying the optimized decision strategy and the error detection strategy
mentioned in the previous subsection we obtained for sample size N = 5000
success rates of 85% (ideal case) and 74% (‘real-life’ case). For N = 6000 we
obtained success rates of 95% and 85%, respectively. The original attack ([4])
yet required 200.000 − 300.000 measurements. In other words: The optimized
decision strategy from Theorem 2, combined with an efficient new error detection
strategy, improved the efficiency of the original attack by factor 50. Moreover,
the success rates for the ideal and the ‘real-life’ case are of the same size, which
additionally underlines that our stochastic model is very appropriate.

Remark 4. (Countermeasures) The attacker exploits that the secret exponent
d is the same for each exponentiation and that he knows both the bases and
the modulus. In fact, this type of timing attack can be prevented with expo-
nent blinding or base blinding techniques ([5]; Sect. 10). The latter is yet not
sufficient to prevent combined timing and power attacks (cf. Sect. 6). Constant
processing times for all Montgomery operations clearly is an alternative coun-
termeasure. This goal can be reached by omitting all extra reductions within
the exponentiation phase at cost of a larger modulus R > 4M ([18]). Alterna-
tively, an integer subtraction may be carried out in each Montgomery operation.
(The dummy subtractions should be implemented carefully since otherwise the
compiler might ignore them.)

5 A Timing Attack on RSA with CRT

In the previous section we considered a timing attack on RSA implementations
that do not use the CRT. It was essential that the attacker knew the base y,
the modulus n and the intermediate results of the computation. These require-
ments are obviously not fulfilled if the CRT is used. Consequently, it had been
assumed for some years that CRT implemenations were not vulnerable to tim-
ing attacks. In [13] a new type of timing attack against RSA with CRT and
Montgomery’s multiplication algorithm was introduced (adaptive chosen-input
attack). Unlike the attack from the previous section it does not guess the secret
exponent d bit by bit but factorizes the modulus n = p1p2. The attack would
not have been detected without the understanding of the stochastic behaviour
of Montgomery’s multiplication algorithm. We point out that also this timing
attack can be prevented with the countermeasures mentioned in Remark 4.

If the CRT is applied xi := (y(modpi))
di ≡ yd(modpi) is computed for

i = 1, 2 with di = d(mod (pi − 1)). Finally, yd(mod n) is computed from these

On the Optimization of Side-Channel Attacks 99

intermediate results. We assume that the square & multiply exponentiation al-
gorithm and Montgomery’s algorithm are used to calculate x1 and x2. As in the
previous section R > pi denotes the Montgomery constant (which is assumed to
be the same for p1 and p2), while R−1 stands for the multiplicative inverse of R
in Zn. For input y := uR−1(mod n) the constant factor in the computation of
xi equals ȳi;1 = yR ≡ u (mod pi) (cf. Step 1 of Pseudoalgorithm 2).

Let 0 < u1 < u2 < n with u2 − u1 � p1, p2. Three cases are possible:
The ‘interval set’ {u1 + 1, . . . , u2} contains no multiple of p1 and p2 (Case A),
resp. contains a multiple of p1 or p2 but not of both (Case B), resp. contains
multiples of both p1 and p2 (Case C). The computation of xi requires about
log2(n)/2 squarings and log2(n)/4 multiplications with ȳi;1. The running time
for input y := uR−1 (mod n), denoted with T (u), is interpreted as a realization
of a normally distributed random variable Xu (cf. [13]), and from (11) we obtain

E(Xu2 −Xu1) ≈





0 for Case A

− cER

8

√
n
R for Case B

− cER

4

√
n
R for Case C.

(18)

where ‘E(·)′ denotes the expectation of a random variable. This observation can
be used for a timing attack that factorizes the modulus n. In Phase 1 the attacker
determines an ‘interval set’ {u1 + 1, . . . , u2} with u2 − u1 ≈ 2−6p1, 2

−6p2 that
contains a multiple of p1 or p2. The attacker is convinced that this is the case iff
T (u2)− T (u1) > − cER

√
n/16R. (There is no need to distinguish between Case

B and Case C.) Starting with this interval {u1 +1, . . . , u2} in Phase 2 he applies
the same decision rule to decide whether its upper halve contains a multiple of p1

or p2, and he replaces current interval by that halve (upper halve or lower halve)
that contains a multiple of p1 or p2. In the elementary form of the attack this
process is continued until the actual subset {u1 + 1, . . . , u2} is sufficiently small
so that it is feasible to calculate gcd(u, n) for all u within this subset (Phase 3).
If all decisions within Phase 1 and Phase 2 have been correct the final subset
indeed contains a multiple of p1 or p2, and Phase 3 yields the factorization of n.

At any instant within Phase 2 the attacker can verify with high probability
whether his decisions have been correct so far, i.e. whether a given interval
{u1+1, . . . , u2} really contains a multiple of p1 or p2. He just applies the decision
rule to the time difference required for neighboured values of u1 and u2, for
instance to T (u2 − 1) − T (u1 + 1). If this confirms the preceding decisions it is
verified with overwhelming probability that the interval {u1 + 1, . . . , u2} truly
contains a multiple of p1 or p2. Consequently, we then call {u1 + 1, . . . , u2} a
confirmed interval. Otherwise, the attacker evaluates a further time difference
(e.g. T (u2−2)−T (u1+2)). Depending on this difference he either finally confirms
the interval {u1 + 1, . . . , u2} or restarts the attack at the preceding confirmed
interval, denoted with {u1;c + 1, . . . , u2;c}, using values u′1 and u′2 that are close
to u1;c and u2;c, respectively.

Under ideal conditions (no measurement errors) this attack required 570 time
measurements to factorize 1024 bit moduli n ≈ 0.7 · 21024. Confirmed intervals
were tried to establish after each 42 steps ([13]). When attacking a prime pi

100 Werner Schindler

directly (instead of any multiple) it suffices to reconstruct the upper half of the
bit representation of p1 or p2 ([3]). For the parameters from above this reduces
the number of time measurements from 570 to 300.

Also this attack may be interpreted as a sequence of decision problems with
|Θ| = 2, s(1, 0) = s(0, 1) = 1 and η(0) = η(1) = 0.5. However, the loss function
and the a priori distribution do not yield any additional information in this
case. We point out that this attack can be generalized to table methods ([13])
although its efficiency decreases due to a lower signal-to-noise ratio. In [1] this
attack was modified to attack OpenSSL implementations over local networks.

6 A Combined Timing and Power Attack

In this section we assume that the attacked device computes modular expo-
nentiations y 7→ yd(mod n) with a modular exponentiation algorithm that uses
a b-bit-table ([9], Alg. 14.82) and Montgomery’s multiplication algorithm (cf.
Pseudoalgorithm 2). The b-bit table stores the values ȳ1, . . . , ȳ2b−1 with ȳj+1 =
MM(ȳj , ȳ1;M) (cf. Sect. 3). We assume that the attacked device is resistant
against pure power attacks but that the power measurements (SPA; cf. [16], Re-
mark 3) enable the attacker to identify the beginning and the end of the partic-
ular Montgomery multiplications, i.e., whether an extra reduction is carried out.
Due to base blinding (which prevents pure timing attacks) the attacker does
not any of the table values, that is, the operands of the Montgomery multiplic-
ations. (If the attacker knew the table entries the attack was indeed elementary
([19], Subsect. 3.3).) In [19] only the special case b = 2 was considered. In [16]
this attack was optimized and generalized to arbitrary b. Reference [17] treats
the sliding windows exponentiation algorithm ([9], Alg. 14.85) with a modified
variant of Montgomery’s exponentiation algorithm where an extra reduction is
carried out iff s ≥ R (cf. Sect. 3, Alg. 1). Although the general approach remains
the same this increases the mathematical difficulties considerably.

The attack falls into four phases. At first the attacker measures the power
consumption for a sample y1, . . . , yN , and therefrom he determines those Mont-
gomery operations that require extra reductions. On basis of this information he
guesses the types (‘S ′, ‘M ′

1, . . . , ‘M ′
2b−1) of all Montgomery operations within the

exponentiation phase. The attacker guesses blocks of f ≥ 1 consecutive Mont-
gomery operations independently. (The attack becomes more efficient for f > 1
since the extra reductions of consecutive Montgomery multiplications are not in-
dependent. At the same time the computations become more complex.) Finally,
the attacker tries to correct possible guessing errors and checks the resulting
guess d̃ for the secret exponent d (e.g. by a known digital signature).

Theorem 3 specifies the optimal decision strategy. The {0, 1}-valued random
variables W1(k),W2(k), . . . describe the random timing behaviour of the Mont-
gomery multiplications in the exponentiation phase (see Sect. 3) where ‘(k)’
indicates sample k. Equation (11) quantifies the probabilities for extra reduc-
tions which yet depend on the unknown table values. The ‘source’ of the attack
is the initialization phase where the table values ȳ1(k), . . . , ȳ2b−1(k) computed.

On the Optimization of Side-Channel Attacks 101

Although the attacker does not know the particular operands he at least knows
the type of these operation (ȳj+1(k) = MM(ȳj(k), ȳ1(k);M)). The random timing
behaviour in the initialization phase is quantified by another stochastic process
W ′

1(k), . . . ,W
′
2b−1(k) (cf. [16], Equation (3)). Theorem 3 uses Theorem 1(iii). For

its proof we refer the interested reader to [16].

Theorem 3. Let τopt

(
(wi(k), . . . , wi+f−1(k), w

′
1(k), . . . , w

′
2b−1(k))1≤k≤N

)
:= θ∗ if

∑

θ∈Θ
s(θ, θ′)η(θ)

N∏

k=1

Probθ
(
Wi(k) = wi(k) , . . . ,Wi+f−1(k) = wi+f−1(k) |

W ′
r(k) = w′

r(k), r = 1, . . . , 2b − 1
)

is minimal for θ′ = θ∗. The decision strategy τopt is optimal among all the
decision strategies that guess the types T (i), . . . , T (i+ f − 1) simultaneously.

Apart from additional technical difficulties the conditional probabilities Probθ(· |
·) are computed in a similar manner as in (15). We refer the interested reader
to Section 4 of [16]. Due to the lack of space we restrict our attention to the
a priori distribution and the loss function where we exclusively consider the
case f = 1. (The general case f ≥ 1 is treated in [16], Sect. 5.) In particular,
Θ = {‘S′, ‘M ′

1 . . . , ‘M
′
2b−1}. In the exponentiation phase ≈ log2(d) squarings and

≈ log2(d)/(b2
b) multiplications with any particular table entry ȳj are carried out.

This yields the a priori distribution

η(‘M ′
1) = · · · = η(‘M ′

2b−1) =
1
b2b

2b−1
b2b + 1

=
1

b2b(2b − 1)
, η(‘S′) =

b2b

b2b(2b − 1)
. (19)

The following example underlines that unlike in Sects. 4 and 5 it is reasonable
to distinguish between different types of guessing errors.

Example 4. Let b = 4 and let the correct type sequence be given by
. . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
whereas a), b) and c) are possible guesses.
a) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘M11‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
b) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
c) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M14‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .

Each of the subsequences a), b), and c) contains exactly one wrong guess. The
error in Sequence a) (‘M11’) is obvious as the number of squarings between two
multiplications with table entries must be a multiple of b = 4. Type-a errors
(‘Mj ’ instead of ‘S’) are easy to detect and to correct if they occur isolated, i.e.
if there are no further type-a or type-b errors (‘S’ instead of ‘Mj ’; cf. Sequence b))
in their neighbourhood. The correction of type-b-errors is not as obvious as that
of type-a errors. (Reasonably, the attacker tries that alternative a ∈ Θ \ {‘S ′}
that yields the second lowest expected loss.) The detection and location of type-a

102 Werner Schindler

errors and type-b errors can be interpreted as a decoding problem. (Therefore,
‘S′ is replaced by 0 and ‘M ′

j by 1. Valid code words consist of isolated 1s and
subsequences of 0s with lengths that are multiples of b.) Most cumbersome are
the type-c errors (‘Mj ’ instead of ‘M ′

t) as not even their detection is obvious.
Clearly, the attacker wants to avoid false guesses. However, the optimal decision
strategy need not minimize the total number of errors (which was achieved by
defining s(θi, θj) := 1 for all θi 6= θj ∈ Θ) but should ‘favour’ type-a and
type-b errors in comparison with type-c errors. Consequently, it is reasonable to
choose a loss function that punishes type-c errors more than type-a and type-b
errors, In our practical experiments we used for b = 4, for instance, the values
s(‘S′, ‘M ′

j) = 1, s(‘M ′
j , ‘S

′) = 1.5, s(‘M ′
t , ‘M

′
j) = 8 (cf. [16]). We point out

that the attack can be prevented with suitable exponent blinding or constant
processing times for all Montgomery operations in the exponentiation phase (cf.
Remark 4 and [16], Sect. 11) but not with base blinding.

Recall that whether a Montgomery operation requires an extra reduction nei-
ther depends on the concrete hardware platform nor on the used multiprecision
variant of Montgomery’s multiplication algorithm but only on d, n, R and the
base y(k) (cf. Subsect. 3.1). Hence we emulated the modular exponentiations on a
computer, outputting which Montgomery operations required extra reductions.
This clearly corresponds with an attack under ideal conditions (also consid-
ered in [19] and [16]) where the attacker knows definitely whether a particular
Montgomery operation needs an extra reduction. We point out that the attack,
though less efficient, will also work under less favourable conditions. An attack
was counted as successful iff the closest code word yielded the location of all
type-a and type-b errors, and if there was at most one type-c error. For RSA
without CRT, b = 2, n/R ≈ 0.99, log2(d) ≈ 384 and (f = 3, N = 200) we ob-
tained a success rate of about 90% whereas the attack in [19] required N = 1000
samples. (The efficiency of the attack increases as the ratio n/R increases.) For
b = 4, n/R ≈ 0.70 (average case), log2(d) ≈ 512 and (f = 1, N = 550) about of
94% of the attacks were successful. We point out that also CRT implementations
are vulnerable to this attack (cf. [16], Sect. 10).

For b = 4, n/R ≈ 0.70, log2(d) ≈ 512 and (f = 1, N = 550), resp. (f =
1, N = 450) the optimal decision strategy was successful in about 94%, resp.
67% of the trials. Neglecting the a priori distribution and the different classes
of errors, i.e. when using the maximum-likelihood estimator, the success rates
decreased to 74% and 12%, resp., for these two parameter sets. For the optimal
decision strategy the average numbers of type-c errors per trial were about 0.3
and 0.8, respectively. When using the maximum-likelihood estimator about 0.8,
resp. 2.4, type-c errors occurred per trial in average.

These results underline that the probabilities pθ have the most significant
impact on the efficiency of the decision rule. Depending on the concrete situa-
tion, however, also the a priori distribution and the definition of an appropriate
loss function may have non-negligible impact on the efficiency of the decision
statrategy, especially for small sample sizes.

On the Optimization of Side-Channel Attacks 103

7 A Timing Attack on a Weak AES Implementation

Reference [7] considers a timing attack on a careless AES implementation. In
the MixColumn transformation multiplications over GF (28) by ‘02′ and ‘03′ =
‘01′ + ‘02′ are carried out. Essentially, only the multiplications by ‘02′ need
to be calculated, and this is done by shifting the respective state byte by one
position to the left. If a carry occurs the hexadecimal constant ‘1B ′ is XORed to
the shifted value. In the attacked implementation these conditional operations
caused differences in the encryption times since the other AES transformations
required identical time for all input values. In [7] the key bytes k1, k2, . . . , k16

were treated independently, and all combinations of key byte candidates were
checked by a known plaintext/ciphertext pair.

Clearly, the larger the candidate sets the more time-consuming is the checking
phase. On the other hand, if a correct key byte is rejected the attack must fail.
In [15] the efficiency of this attack was increased noticeably by interpreting the
encryption times as realizations of random variables and by applying statistical
decision theory. The candidate sets for the particular key bytes were reduced in
two steps, considering one further key byte in each step. Each reduction step itself
consists of many decisions, tolerating errors in some of these individual decision
problems. Due to the lack of space we omit details and refer the interested reader
to [15]. We merely point out that the sample size was reduced from 48000 to 4000
with a success rate of more than 90%. Moreover, this two-step sieving process
can be adjusted to other side-channel attacks (e.g., to power attacks) where
different parts of the key influence the measurements simultaneously.

8 Final Remarks

This paper proposes a general method to optimize the efficiency of side-channel
attacks by advanced stochastic methods, especially by applying the calculus of
stochastic processes and statistical decision theory. The proposed method is not
a ‘ready-to-use’ tool for any application but requires some work to apply it to
specific problems. We yet believe that the above examples have illustrated the
central principles. We emphasize that a good understanding of the potential
power of an attack is necessary to be able to rate its true risk potential and to
design adequate and reliable countermeasures.

References

1. D. Brumley, D. Boneh: Remote Timing Attacks are Practical. In: Proceedings of
the 12th Usenix Security Symposium, 2003.

2. B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux: Password Interception in a
SSL/TSL Channel. In: D. Boneh (ed.): Crypto 2003, Lecture Notes in Computer
Science 2729, Springer, Heidelberg (2003), 583–599.

3. D. Coppersmith: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology 10 (no. 4) (1997) 233–260.

104 Werner Schindler

4. J.-F. Dhem, F. Koeune, P.-A. Leroux, P.-A. Mestré, J.-J. Quisquater, J.-L.
Willems: A Practical Implementation of the Timing Attack. In: J.-J. Quisquater
and B. Schneier (eds.): Smart Card – Research and Applications, Springer, Lecture
Notes in Computer Science 1820, Berlin (2000), 175–191.

5. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Crypto 1996, Springer, Lecture Notes in Com-
puter Science 1109, Heidelberg (1996), 104–113.

6. K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic Analysis: Concrete Results.
In: Ç.K. Koç, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2001, Springer, Lecture Notes in Computer Science 2162, Berlin
(2001), 251–261.

7. F. Koeune, J.-J. Quisquater: A Timing Attack against Rijndael. Catholic Univer-
sity of Louvain, Crypto Group, Technical report CG-1999/1, 1999.

8. P. Kocher, J. Jaffe, B. Jub: Differential Power Analysis. In: M. Wiener (ed.): Crypto
1999, Springer, Lecture Notes in Computer Science 1666, Berlin (1999), 388–397.

9. A.J. Menezes, P.C. van Oorschot, S.C. Vanstone: Handbook of Applied Crypto-
graphy, Boca Raton, CRC Press (1997).

10. D. Neuenschwander: Probabilistic and Statistical Methods in Cryptology. An In-
troduction by Selected Topics. Springer, Lecture Notes in Computer Science 3028,
Berlin (2004).

11. H. Sato, D. Schepers, T. Takagi: Exact Analysis of Montgomery Multiplication.
TU Darmstadt, Technical Report TI-6/04.

12. W. Schindler: Optimized Timing Attacks against Public Key Cryptosystems.
Statist. Decisions 20 (2002), 191–210.

13. W. Schindler: A Timing Attack against RSA with the Chinese Remainder Theo-
rem. In: Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, Springer, Lecture Notes in Computer Science 1965, Berlin
(2000), 110–125.

14. W. Schindler, F. Koeune, J.-J. Quisquater: Unleashing the Full Power of Timing
Attack. Catholic University of Louvain, Technical Report CG-2001/3.

15. W. Schindler, F. Koeune, J.-J. Quisquater: Improving Divide and Conquer Attacks
Against Cryptosystems by Better Error Detection / Correction Strategies. In: B.
Honary (ed.): Cryptography and Coding — IMA 2001, Springer, Lecture Notes in
Computer Science 2260, Berlin (2001), 245–267.

16. W. Schindler: A Combined Timing and Power Attack. In: P. Paillier, D. Naccache
(eds.): Public Key Cryptography — PKC 2002, Springer, Lecture Notes in Com-
puter Science 2274, Berlin (2002), 263–279.

17. W. Schindler, C. Walter: More Detail for a Combined Timing and Power At-
tack against Implementations of RSA. In: K.G. Paterson (ed.): Cryptography and
Coding — IMA 2003, Springer, Lecture Notes in Computer Science 2898, Berlin
(2003), 245–263.

18. C.D. Walter: Precise Bounds for Montgomery Montgomery Modular Multiplica-
tion and Some Potentially Insecure RSA Moduli. In: B. Preneel (ed.): Topics in
Cryptology – CT-RSA 2002, Springer, Lecture Notes in Computer Science 2271,
Berlin (2002), 30–39.

19. C.D. Walter, S. Thompson: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: D. Naccache (ed.): Topics in Cryptology – CT-RSA 2001,
Springer, Lecture Notes in Computer Science 2020, Berlin (2001), 192–207.

20. H. Witting.: Mathematische Statistik I, Stuttgart, Teubner (1985).

