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Abstract. A mix network achieving strong correctness and privacy is
proposed. The degree of correctness and privacy are precisely stated and
a formal proof of correctness is given. A grouping function is employed
to achieve stronger correctness and higher efficiency without compromis-
ing strong privacy. In order to further improve the efficiency of the mix
network a new batch verification technique, suitable for verifying mul-
tiple proofs of knowledge, is presented together with a formal proof of
soundness.
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1 Introduction

Mix networks are important tools to implement anonymity and are widely em-
ployed in many cryptographic applications such as e-voting and e-auctions. Since
the original proposal of Chaum [6] many mix networks have been proposed in the
research literature. However, most of them are inefficient, vulnerable, or limited
to some special applications. Abe [1] introduced the idea of improving efficiency
by dividing a costly large-scale verification operation into a few efficient small-
scale verification operations. In this paper, we use Abe’s idea in a new way to
design a mix network with several novel features and avoiding some shortcom-
ings of Abe’s scheme. Our final proposal is simpler and more efficient than Abe’s
mix network, and also more efficient than other mix networks employing verifica-
tion of shuffling on each server (e.g.[8, 14, 10]), especially when a large number of
values are shuffled. Unlike other schemes, the new proposal achieves correctness
and privacy more clearly and precisely. Therefore, our scheme is more suitable
for many applications.

We divide the explanation of the new mix network into three stages. First
a prototype Mix-1 is proposed, which employs a new verification mechanism
to achieve formally proved correctness. Then Mix-1 is optimised to Mix-2 by
adopting a grouping function. Compared to Mix-1, Mix-2 improves efficiency,
strengthens correctness, and maintains strong privacy. Finally, a formally proved
batch verification technique is applied to optimize Mix-2 to Mix-3, the final
protocol achieving even higher efficiency.
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The remainder of this paper is structured as follows. In section 2, previous
work on mix networks is introduced. In section 3, a new method of correctness
verification and a new batch verification technique are proposed. In section 4,
the new mix network is presented. In section 5, security and other properties of
the proposed mix network are analysed. Section 6 is a conclusion.

Parameter settings in the remainder of this paper are as follows.

– Let q and p = 2q + 1 be large primes. G is the cyclic subgroup of Z∗

p with
order q. Let g and h be generators of G. ElGamal encryption algorithm is
applied on G with private key x ∈ Zq and public key (g, y = gx). In this
paper, when an ElGamal ciphertext (a, b) is presented for decryption, a ∈ G
and b ∈ G are not checked. If a ∈ Z∗

p and b ∈ Z∗

p , the ciphertext is decrypted
and the decryption result is only guaranteed to be in Z∗

p .
– There are n users and m servers in the mix network. The number of honest

servers is ε. If secret sharing is performed among the servers, the threshold
is t (usually m = 2t + 1).

2 Related Work

A mix network shuffles a number of ciphertext inputs, each from one user, to the
same number of plaintext outputs, so that 1) the outputs are a permutation of the
plaintexts of the inputs; 2) the permutation between the inputs and the outputs
is unknown, so that the users cannot be linked to their outputs. These two
properties are called correctness and privacy. A mix network achieves robustness
if it can still work properly in abnormal situations, such as failure of one or more
switching nodes. A mix network is publicly verifiable if its correctness can be
publicly verified. A mix network is usually composed of a few servers, working
in sequence. Each server gets its inputs from the previous server and randomly
permutes them to a set of outputs, which are inputs to the next server.

According to the processing performed by the servers, mix networks can be
classified into two types: decryption chain mix networks and re-encryption mix
networks. In the former type each input is sequentially encrypted for each server
by the user. Consequently failure of any server means that the input message
cannot be recovered if each server keeps his private key secret as required to
achieve strong privacy. Therefore decryption chain mix networks inherently lack
robustness. Only re-encryption mix networks are discussed further in this paper.

Ogata et al. [15], introduced a basic structure for re-encryption mix net-
works, which was further developed in many later papers. Suppose ElGamal
encryption scheme is employed with private key x and public key (g, y = gx).
Several decrypting authorities share x by t-out-of-m threshold verifiable se-
cret sharing. The m servers SVj for j = 1, 2, . . . , m form a mix network to
shuffle n encrypted inputs ci for i = 1, 2, . . . , n. Inputs to SVj are cj−1,i for
i = 1, 2, . . . , n while c0,i = ci for i = 1, 2, . . . , n. Outputs of SVj are cj,i for
i = 1, 2, . . . , n. On server SVj , input cj−1,i = (aj−1,i, bj−1,i) is permuted to
cj,πj(i) = (aj,πj(i), bj,πj(i)) = (grj,iaj−1,i, y

rj,ibj−1,i) where rj,i is randomly cho-
sen and πj is a secret random permutation of {1, 2, . . . , n}. The outputs of the
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mix network are c′i = cm,i for i = 1, 2, . . . , n. The shuffling from n inputs to n
outputs on every server is denoted as PN(n), correctness of which must be ver-
ified. Finally, the decrypting authorities (e.g. the servers themselves) cooperate
to decrypt c′i for i = 1, 2, . . . , n.

Mix networks can be further classified into three categories according to the
different correctness verification mechanisms.

– In the first category, correctness is not verified and the servers are trusted to
perform the shuffling correctly. Ohkubo and Abe [16] designed an example
in this category. Strong trust is necessary in such a mix network.

– Mix networks in the second category do not provide a verification of correct
shuffling by each server separately. Instead, correctness of the shuffling by
the whole mix network is verified after the mix network outputs the shuffled
results in plaintexts. Several published schemes fall into this category [6, 17,
19, 9]. Drawbacks of this category include 1) a cheating server cannot be
identified instantly; 2) in case of verification of incorrect shuffling, a mix
network in the third category must be employed to perform the shuffling
again; 3) some outputs may be revealed in plaintext even when the shuffling
is incorrect and a re-shuffling is needed.

– In the third category [18, 13, 1, 2, 8, 15, 12, 4, 14, 10] each server verifies cor-
rectness of the previous servers’ shuffling before performing its own shuffling
and proves that its own shuffling is correct before sending them to the next
server. Although the schemes in the first two categories are more efficient,
the third category is still very useful because
1. it overcomes the shortcomings of the first two categories;
2. it is a necessary sub-function (to deal with the abnormal situation when

cheating in the shuffling is found) in the second category.
However, in this category, various problems exist: [13] is not publicly verifi-
able; the guarantee for correctness and privacy is not strong enough for many
applications [12, 4]; [1, 2, 15, 18] are inefficient. Among them, three recently
proposed schemes [8, 14, 10] are best. However, these three schemes are still
not efficient enough for large-scale applications (e.g. national voting) as their
computational cost is linear to the number of inputs.

In the third category, Abe’s scheme [1] has a particularly useful feature which
is an efficiency improvement on the following naive mix network. Let πj,l for
l = 1, 2, . . . , n! be all the n! possible permutations for πj . A naive method to
verify correctness of shuffling by SVj is to test the following equation.

logg (aj,πj,1(i)/aj−1,i) = logy (bj,πj,1(i)/bj−1,i) for i = 1, 2, . . . n

∨ logg (aj,πj,2(i)/aj−1,i) = logy (bj,πj,2(i)/bj−1,i) for i = 1, 2, . . . n (1)

. . . ∨ logg (aj,πj,n!(i)/aj−1,i) = logy (bj,πj,n!(i)/bj−1,i) for i = 1, 2, . . . n

This verification allows correctness to be proved without breaching privacy. Zero
knowledge proof of 1-out-of-n! equality of logarithms can be applied to imple-
ment (1), based on the zero knowledge proof of partial knowledge by Cramer et
al [7].
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This test is very inefficient because the computational cost for both the prover
and verifier on every server is O(n · n!) exponentiations. So Abe improved its
efficiency by dividing a n-input-to-n-output mixing (denoted as PN(n) in [1])
into a few 2-input-to-2-output mixing (denoted as PN(2) in [1]). However, Abe’s
schemes are still not efficent enough for many applications. Our proposal is to
design a re-encryption mix network employing correctness verification per server.
The new scheme overcomes the shortcomings of Abe’s schemes [1, 2], while re-
taining the idea that efficiency can be saved by dividing a large-scale correctness
verification into several small-scale correctness verifications. It achieves higher
computational efficiency than that of [8, 14, 10] in that the computational cost is
independent of the number of users, but determined by the extent of correctness
and privacy required by a certain application.

3 Preliminary Work

In this section we introduce the building blocks used to construct our mix net-
work. We first propose a new method for shuffling verification in a mix network
and prove that it is sufficient to guarantee validity of the shuffling. Then we
present a new batch verification technology to improve efficiency of simulta-
neous proofs of equality of logarithms, which appear in the verification of the
shuffling.

3.1 Improvement on the Naive Verification Technique

Although naive verification by Equation (1) can explicitly guarantee the cor-
rectness of SVj ’s shuffling, it is too inefficient to be practical. A more efficient
verification technique uses the following equation.

logg (aj,1/aj−1,i) = logy (bj,1/bj−1,i) ∨

logg (aj,2/aj−1,i) = logy (bj,2/bj−1,i) ∨ . . . ∨

logg (aj,n/aj−1,i) = logy (bj,n/bj−1,i) for i = 1, 2, . . . n. (2)

Equation (2) must be proved with zero knowledge proof of 1-out-of-n equality
of logarithms. The computational cost of proof and verification of this equation
is n(4n − 2) and 4n2 exponentiations respectively. The zero knowledge proof of
Equation (2) by SVj is denoted by CV (correctness verification) in the rest of
this paper.

It is proved in Theorem 1 that CV is enough for the correctness verification.

Definition 1 SVj(cj−1,µ, cj,ν) = 1 means SVj knows rj,ν satisfying aj,ν =
grj,νaj−1,µ and bj,ν = yrj,νbj−1,µ.

Theorem 1. If the shuffling by SVj is incorrect, CV can be satisfied with a
probability no more than 1/q without collusion of all the previous j − 1 servers
and at least two users, assuming DL problem is intractable.
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To prove Theorem 1, the following lemma is used.

Lemma 1. If the shuffling by SVj is incorrect and for every cj−1,µ with 1 ≤
µ ≤ n there exists some cj,ν with 1 ≤ ν ≤ n such that SVj(cj−1,µ, cj,ν) = 1, then
SVj knows logg aj−1,i′ − logg aj−1,i′′ where 1 ≤ i′ < i′′ ≤ n.

Proof: If the shuffling is incorrect and for every cj−1,µ for µ = 1, 2, . . . , n,
there exists a cj,ν with 1 ≤ ν ≤ n satisfying SVj(cj−1,µ, cj,ν) = 1, then there
must be two inputs cj−1,µ1 and cj−1,µ2 satisfying SVj(cj−1,µ1, cj,τ ) = 1 and
SVj(cj−1,µ2, cj,τ ) = 1 with 1 ≤ τ ≤ n. Otherwise there exists a permutation PM
between the inputs and outputs such that cj,ν = PM(cj−1,µ) if SVj(cj−1,µ, cj,ν),
which is contradictory to the assumption that the shuffling is incorrect.

SVj(cj−1,µ1, cj,τ ) = 1 and SVj(cj−1,µ2, cj,τ ) = 1 means SVj knows λ1 and
λ2, so that aj,τ = gλ1aj−1,µ1, bj,τ = yλ1bj−1,µ1, aj,τ = gλ2aj−1,µ2 and bj,τ =
yλ2bj−1,µ2. 2

Proof of Theorem 1: As SVj cannot get collusion of all the previous j −
1 servers and at least two users, the inputs to SVj are encrypted randomly
from the viewpoint of SVj and SVj knows logg aj−1,i for at most one cj−1,i =
(aj−1,i, bj−1,i) where 1 ≤ i ≤ n if DL problem is intractable. So, if the shuffling
by SVj is incorrect, there exists cj−1,µ, so that SVj(cj−1,µ, cj,ν) 6= 1 for ν =
1, 2, . . . , n. Otherwise according to Lemma 1 SVj knows logg aj−1,i′ − logg aj−1,i′′

where 1 ≤ i′ < i′′ ≤ n, which is contradictory to the above assumption. So

logg (aj,1/aj−1,µ) = logy (bj,1/bj−1,µ) ∨ logg (aj,2/aj−1,µ) =

logy (bj,2/bj−1,µ) ∨ . . . ∨ logg (aj,n/aj−1,µ) = logy (bj,n/bj−1,i)

can be proved in CV with a probability no more than 1/q as proof of equality
of logarithms in CV implies knowledge of logarithm (without knowledge of the
logarithm, SVj can only guess the challenge and the success probability of the
guess is 1/q).

Therefore, CV can be satisfied with a probability no more than 1/q. 2

Even when SVj colludes with all previous j−1 servers and at least two users,
invalid shuffling of the honest users’ inputs will still be discovered in CV with
an overwhelmingly large probability. This conclusion is straightforward from the
proof of Lemma 1. In proof of Lemma 1, it is illustrated that the only possible
attack against correctness is for a malicious server to collude with two or more
malicious users and all the previous servers to tamper any of these malicious
users’ inputs. Since an honest user will not conspire with the malicious server
and will conceal the randomising factor in his encrypted input, the attack against
the integrity of his input can only succeed with a negligible probability if DL is
intractable. Due to space limitations, this conclusion is not proved in detail.

3.2 Batch Verification of Equality of Logarithms

A theorem for batch verification is presented in this section, which extends known
batch techniques [3, 5, 11]. This technique can batch verify equality of logarithms
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and optimize efficiency of the verification protocol in Section 3.1. Batch verifi-
cation of equality of logarithms was first mentioned in a voting scheme [18].
However, in [18], batch verification is not formally proposed or proved to be
secure.

The formal description of batch verification of equality of logarithms is pro-
vided in Theorem 2, which will be formally proved.

Definition 2 | | is the absolute-value function from Z∗

p to G defined by

|σ| =

{

σ if σ ∈ G
−σ if σ ∈ Z∗

p \ G

Theorem 2. Suppose yi ∈ Z∗

p and zi ∈ Z∗

p for i = 1, 2, . . . , n. Let l be a security

parameter and ti satisfying ti < 2l < q for i = 1, 2, . . . , n be random values. If
there exists v, such that 1 ≤ v ≤ n and logg |yv | 6= logh |zv |, then logg

∏n
i=1 yti

i 6=

logh

∏n
i=1 zti

i with a probability no less than 1 − 2−l.

To prove Theorem 2, a lemma is proved first.

Lemma 2. Suppose yi ∈ Z∗

p and zi ∈ Z∗

p for i = 1, 2, . . . , n and t1, t2, . . . ,
tv−1, tv+1, tv+2, . . . , tn are constant. If logg |yv| 6= logh |zv| with 1 ≤ v ≤ n and

logg

∏n
i=1 yti

i = logh

∏n
i=1 zti

i , then there is only one possible solution for tv.

Proof: If the lemma is not correct, the following two equations are satisfied
simultaneously where logg |yv | 6= logh |zv |, t1, t2, . . . and tv 6= t̂v.

logg

n
∏

i=1

yti

i = logh

n
∏

i=1

zti

i (3)

logg

v−1
∏

i=1

yti

i · yt̂v
v

n
∏

i=v+1

yti

i = logh

v−1
∏

i=1

zti

i · z t̂v
v

n
∏

i=v+1

zti

i (4)

Without losing generality, suppose tv > t̂v. (3) − (4):

logg ytv−t̂v
v = logh ztv−t̂v

v

As yv and zv are members of Z∗

p , there are two possibilities.

1. yv and zv are members of G. Then (tv − t̂v) logg yv = (tv − t̂v) logh zv mod q.

Note that tv − t̂v 6= 0 mod q because 1 ≤ t̂v < tv < 2l < q. Therefore,
logg yv = logh zv mod q

2. yv or zv ∈ Z∗

p\G. Then tv − t̂v must have a factor 2 and tv−t̂v

2 logg y2
v =

tv−t̂v

2 logh z2
v mod q. Note that tv−t̂v

2 6= 0 mod q because 1 ≤ t̂v < tv < 2l <
q. Therefore, logg y2

v = logh z2
v mod q. Namely logg |yv | = logh |zv| mod q.
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In both cases, logg |yv| = logh |zv|. That is contradictory to the assumption
logg |yv| 6= logh |zv|. 2

Proof of Theorem 2: Lemma 2 means that among the (2l)n possible combinations
of ti for i = 1, 2, . . . , n, at most (2l)n−1 of them can satisfy logg

∏n
i=1 yti

i =

logh

∏n
i=1 zti

i when logg |yv| 6= logh |zv|. So if logg |yv| 6= logh |zv| and ti for

i = 1, 2, . . . , n are randomly chosen, logg

∏n
i=1 yti

i = logh

∏n
i=1 zti

i is satisfied

with probability no more than 2−l. 2

4 The Proposed Mix Network

When the server SVj performs ElGamal re-encryption and permutation πj and
Equation (2) is employed to verify the correctness of shuffling, the following
properties are achieved.

1. A dishonest server SVj can prove its incorrect shuffling to be correct with
probability no more than 1/q without collusion of all the previous j − 1
servers and at least two users. Even when SVj colludes with all the previous
j − 1 servers and at least two users, invalid shuffling of honest users’ inputs
will still be discovered in CV with an overwhelmingly large probability.

2. Identified incorrect shuffling can be removed and the mix network can recover
efficiently.

3. Computational costs for the prover and verifier of the correctness verification
of a server’s shuffling are n(4n − 2) and 4n2 exponentiations respectively.

4. If at least one server is honest, all the n! permutation are equally possible
in the mix network and if the number of malicious decrypting authorities is
no more than t, privacy is achieved.

This mix network is denoted as Mix-1. However there are still some drawbacks
of this solution:

– when two users conspire with the first server, correctness is not guaranteed;
– when n is large, O(n2) exponentiations is still a high cost.

To solve these problems, an idea of Abe[1, 2] is used: divide a PN(n) into a
few smaller shufflings, verification of whose correctness is efficient. However,
switching gate PN(2) is not applied in this paper to avoid complex construction
of gate circuit. Instead, a simpler grouping technique is used.

4.1 Group Shuffling

On each server the n inputs are divided into groups with same size k, while re-
encryption and random permutation are applied to each group. For simplicity,
suppose n = ku. There are z = ku−1 groups. Usually m ≤ u as the number of
servers is often small. The grouping function on every server is specially designed
according to a general rule: if an input to the mix network is likely to be permuted
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to a few outputs after the shuffling of the first j servers, any two of these outputs
(inputs to the j +1th server) cannot be divided into a same group on the j +1th

server. This rule can provide the greatest diffusion, and thus as strong privacy
as possible.

Before the shuffling, each server SVj randomly generates vj,i ∈ G for i =
1, 2, . . . , n. Inputs to the mix network ci for i = 1, 2, . . . , n are sorted to c0,i =
(a0,i, b0,i) for i = 1, 2, . . . , n, so that a0,i +

∑m
j=1 vj,i mod p increases as i in-

creases. On server SVj , the shuffling is as follows.

1. Grouping

– SVj get inputs cj−1,i for i = 1, 2, . . . , n from SVj−1. So far c0,kj−1w+1,
c0,kj−1w+2, . . . c0,kj−1w+kj−1 have been shuffled to cj−1,kj−1w+1, cj−1,kj−1w+2,
. . . cj−1,kj−1w+kj−1 for w = 0, 1, . . . , ku−j+1 − 1. Denote cj−1,kj−1w+1,
cj−1,kj−1w+2, . . . cj−1,kj−1w+kj−1 as a shuffling range Rj−1,w+1, then SVj

in fact receives ku−j+1 shuffling ranges Rj−1,1, Rj−1,2, . . . , Rj−1,ku−j+1 .

– SVj regroups in every k successive shuffling ranges. The k inputs in the
same position in every k successive shuffling ranges are regrouped into
the same group. Namely, input cj−1,i is mapped to cj,α,β , which is the βth

element in Group α, where α = ((i−1)/kj)kj−1 +((i−1) mod kj−1)+1
and β = ((i − 1) mod kj)/kj−1 + 1.

2. Re-encryption and permutation
cj,α,β = (aj,α,β , bj,α,β) is permuted to c′

j,α,πj,α(β) = (a′

j,α,πj,α(β), b
′

j,α,πj,α(β)) =

(grj,α,βaj,α,β ,
yrj,α,βbj,α,β) for α = 1, 2, . . . , z and β = 1, 2, . . . , k where rj,α,β is randomly

chosen and πj,α for α = 1, 2, . . . , z are random secret permutations from
{1, 2, . . . , k} to {1, 2, . . . , k}.

3. De-grouping
cj,i = c′j,α,β where i = k(α − 1) + β.

Shuffling of SVj is verified by SVj+1 before it starts its own shuffling using
the following equation.

logg (a′

j,α,1/aj,α,β) = logy (b′j,α,1/bj,α,β) ∨ logg (a′

j,α,2/aj,α,β) =

logy (b′j,α,2/bj,α,β) ∨ . . . ∨ logg (a′

j,α,k/aj,α,β) = logy (b′j,α,k/bj,α,β) (5)

for α = 1, 2, . . . , z and β = 1, 2, . . . , k

Realization of verification of Equation (5) is denoted as GCV (grouped cor-
rectness verification). If the verification fails, SVj+1 gets the outputs of SVj−1,
verifies them and uses them as its inputs if they are valid. If SVj−1’s outputs
are invalid too, he gets the outputs of the previous server until he finds a set of
valid outputs as its inputs. After the shuffling of the last server, the outputs are
decrypted as in Mix-1. This mix network applying group shuffling is denoted as
Mix-2.

The following theorem can be proved in a way similar to the proof of theo-
rem 1.
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Theorem 3. If the group shuffling by SVj is incorrect, GCV can be satisfied
with a probability no more than 1/q without collusion of all the previous j − 1
servers and at least two users in a same group on SVj , assuming DL problem
is intractable.

When conspiracy of all the previous servers and at least two malicious users
is available, attack against correctness is more difficult than in Mix-1. As the
grouping function is dependent on vj,i for j = 1, 2, . . .m and i = 1, 2, . . . n, if at
least one server is honest to generate them randomly, the grouping on any server
is random. So if only static attack (all colluding users and servers are chosen
before the attack starts) is considered and at least one server SVj is honest to
choose vj,i for i = 1, 2, . . . n randomly, the probability that the colluding users
are in the same group on any server is low. For example, even if SV1 colludes
with two users, they happen to fall in a same group with a probability 1/z. That
means although attacks involving more than one user and the first few servers
against correctness is still possible, they succeed with a low probability1. Like
in Mix-1, the probability to tamper with an honest user’s input successfully is
negligible if DL is intractable. Therefore, correctness property is improved.

The computational cost to produce the proof is n(4k − 2) exponentiations.
The computational cost to verify the proof is 4nk exponentiations. Better effi-
ciency is achieved compared to Mix-1.

Privacy of Mix-2 is achieved if the number of malicious decrypting authorities
is no more than t. The extent of privacy is measured by two factors: diffusion
of any single input and diffusion of the inputs as a whole. As stated before,
in normal applications m < u. So, if a dishonest server reveals its shuffling, it
makes no difference to the situation where this server performs re-encryption
without permutation. Therefore, the only impact of this attack on the privacy
of the shuffling of the whole mix network is to degrade the mix network to a mix
network containing one fewer servers. The shuffling of the other servers is not
affected and can still provide strong privacy protection.

– Diffusion of any single input: each input may be permuted to any of a set
of kε outputs with an equal probability, where ε is the number of honest
servers.

– Diffusion of the inputs as a whole: (k!)zε possible permutations from the
inputs of the mix network to its outputs are equally likely.

If m ≥ u, greater privacy is possible.

– When ε = u, diffusion of single input may be as great as that in Mix-1 (any
input to n equally likely outputs).

– When ε > u, diffusion of the inputs as a whole may be as great as that in
Mix-1 (all n! possible permutations are equally likely).

However, it is only possible as it depends on the distribution of the honest servers.

1 As k is usually small, z is large when n is large. So the probability is very low when
n is very large as in a large-scale voting.
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4.2 Batched Group-shuffling Mix Network

Efficiency of correctness verification of Mix-2 is better compared to that of Mix-
1. However it is still costly when n is large. The batch verification technique in
Section 3.2 can be employed to improve the efficiency further. If every server
SVj uses a same permutation πj to replace πj,α for α = 1, 2, . . . , z, according to
Theorem 2 verification equation (5) can be batched as follows.

logg(
z

∏

α=1

a′tj,α

j,α,1/
z

∏

α=1

a
tj,α

j,α,β) = logy(
z

∏

α=1

b′
tj,α

j,α,1/
z

∏

α=1

b
tj,α

j,α,β)

∨ logg(

z
∏

α=1

a′tj,α

j,α,2/

z
∏

α=1

a
tj,α

j,α,β) = logy(

z
∏

α=1

b′
tj,α

j,α,2/

z
∏

α=1

b
tj,α

j,α,β) (6)

∨ . . . ∨ logg(
z

∏

α=1

a′tj,α

j,α,k/
z

∏

α=1

a
tj,α

j,α,β) = logy(
z

∏

α=1

b′
tj,α

j,α,k/
z

∏

α=1

b
tj,α

j,α,β)

for β = 1, 2, . . . , k

where tj,α for α = 1, 2, . . . , z are random integers with length l. The verification
in Equation 6 for any β is denoted as BGCVj,β . If BGCVj,β holds for β =
1, 2, . . . , k, it is denoted as BGCV (j − 1 → j), which means the correction
verification for SVj is passed. BGCV (j − 1 → j) is checked for j = 1, 2, . . . , m
to ensure the correctness of the mix network.

This mix network is denoted as Mix-3.

Definition 3 In Mix-3, group shuffling by SVj is correct if for any 1 ≤ α ≤ z,
the same permutation exists between |D(cj,α,β)| for β = 1, 2, . . . , k and |D(c′j,α,β)|
for β = 1, 2, . . . , k where D() denotes decryption.

To apply equation (6), the construction of the mix network must be changed
slightly as follows. After the shuffling of all the servers, the outputs of the mix
network are decrypted. Every decrypted message Mi for i = 1, 2, . . . , n is checked
to be in G by testing whether M q

i = 1. If M q
i 6= 1, an additional computation is

performed: Mi = −Mi = gq
0Mi.

5 Analysis

5.1 Correctness Analysis

Correctness of Mix-3 is proved in this subsection.

Definition 4 Inputs of SVj are divided into k vectors Vβ =
(cj,1,β , cj,2,β, . . . , cj,z,β) for β = 1, 2, . . . , k where cj,α,β = (aj,α,β , bj,α,β) is in
(Z∗

p )2. Outputs of SVj are divided into k vectors V ′

β = (c′j,1,β , c′j,2,β , . . . , c′j,z,β)

for β = 1, 2, . . . , k where c′j,α,β = (a′

j,α,β , b′j,α,β) is in (Z∗

p )2.

Definition 5 SVj(Vµ, V ′

ν ) = 1 means SVj knows rα satisfying |a′

j,α,ν | = grα |aj,α,µ|
and |b′j,α,ν | = yrα |bj,α,µ| for α = 1, 2, . . . , z.
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Lemma 3. If the shuffling by SVj in Mix-3 is incorrect and for every Vµ with
1 ≤ µ ≤ k there exists some V ′

ν with 1 ≤ ν ≤ k satisfying SVj(Vµ, V ′

ν) = 1, then
SVj knows logg aj−1,α,i′−logg aj−1,α,i′′ for α = 1, 2, . . . , z where 1 ≤ i′ < i′′ ≤ k.

Proof of Lemma 3 is very similar to that of Lemma 1, so is left to the reader.

Lemma 4. yi ∈ Z∗

p for i = 1, 2, . . . , n. 1 ≤ ti < 2l < p for i = 1, 2, . . . , n where
ti are random values and l is a security parameter. If there exists v, such that
1 ≤ v ≤ n and the logarithm logg |yv| is not known, then logg

∏n
i=1 yti

i is known

only with a probability no more than 2−l.

Proof : First we prove a statement: if there exists v, such that 1 ≤ v ≤ n and
logg |yv| is not known, given a definite set S = {ti | ti < 2l and i = 1, 2, . . . v −

1, v + 1, . . . n}, then logg

∏n
i=1 yti

i is known for at most one tv.

If this statement is not correct, logg (
∏v−1

i=1 yti

i · ytv
v ·

∏n
i=v+1 yti

i ) and

logg (
∏v−1

i=1 yti

i · yt̂v
v ·

∏n
i=v+1 yti

i ) are known where logg |yv| is not known and tv 6=

t̂v.
So logg (

∏v−1
i=1 yti

i · ytv
v ·

∏n
i=v+1 yti

i ) − logg (
∏v−1

i=1 yti

i · yt̂v
v ·

∏n
i=v+1 yti

i )

= logg

∏

v−1

i=1
y

ti
i
·ytv

v ·

∏

n

i=v+1
y

ti
i

∏

v−1

i=1
y

ti
i
·y

t̂v
v ·

∏

n

i=v+1
y

ti
i

= logg ytv−t̂v
v = (tv − t̂v) logg |yv| is known.

Since tv − t̂v is public, logg |yv| is known. A contradiction is found, which

means the statement is correct. So for every definite set {ti | ti < 2l, i =
1, 2, . . . , n}, the probability that tv happens to be the unique possible value, so
that logg

∏n
i=1 yti

i is known, is no more than 2−l as there are 2l choices for tv . 2

Theorem 4. If the shuffling by SVj is incorrect according to Definition 3, BGCV (j−
1 → j) holds with a probability no more than 1− (q−1)(1−2−l)/q without collu-
sion of all the previous j−1 servers and at least 2z users with their re-encrypted
inputs as cj,α,ρ and cj,α,δ for α = 1, 2, . . . , z where 1 ≤ ρ < δ ≤ k if DL problem
is intractable.

Proof: The following denotations are used.
C denotes the shuffling is correct.
Eµ denotes BGCV (j, µ) holds.
Q denotes BGCV (j − 1 → j) holds.
N1µ denotes D(cj,α,µ) 6= D(c′j,α,ν) for 1 ≤ ν ≤ k.
N2µ denotes D(cj,α,µ) = D(c′j,α,ν), but SVj does not know logg |a

′

j,α,ν/aj,α,µ|
for 1 ≤ ν ≤ k.

As supposed, SVj cannot get collusion of all the previous j−1 servers and at
least 2z users with their re-encrypted inputs as cj,α,ρ and cj,α,δ for α = 1, 2, . . . , z
where 1 ≤ ρ < δ ≤ k. So for any logg aj,α,ρ and logg aj,α,δ for α = 1, 2, . . . , z
where 1 ≤ ρ < δ ≤ k, SVj knows at most 2z − 1 of them and the left one is
independent of these 2z − 1 values in the viewpoint of SVj if DL problem is
intractable. According to Lemma 3, if the shuffling by server SVj is incorrect
and DL problem is intractable, there exists a vector Vµ and no V ′

ν with 1 ≤ ν ≤ k
can satisfy SVj(Vµ, V ′

ν) = 1, where vector Vµ = (cj,1,µ, cj,2,µ, . . . , cj−1,z,µ) and
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V ′

ν = (c′j,1,ν , c′j,2,ν , . . . , c′j,z,ν). Otherwise, SVj knows logg aj−1,α,i′ − logg aj−1,α,i′′

for α = 1, 2, . . . , z where 1 ≤ i′ < i′′ ≤ k, which is contradictory to the fact that
for any logg aj,α,ρ and logg aj,α,δ for α = 1, 2, . . . , z where 1 ≤ ρ < δ ≤ k SVj

knows at most 2z − 1 of them and the left one is independent of those 2z − 1
values in the viewpoint of SVj .

SVj(Vµ, V ′

ν) 6= 1 means there exists α, such that 1 ≤ α ≤ k and N1µ ∨ N2µ

is true. Namely, P (N1µ/C̄) + P (N2µ/C̄) = 1.

According to Theorem 2, P (Ēµ, N1µ) ≥ 1− 2−l − (1− 2−l)/q = (q − 1)(1−
2−l)/q.

According to Lemma 4, when N2µ happens, logg

∏z
α=1(aj,α/aj−1,α,µ)tα is

known to SVj with a probability no more than 2−l. So P (Ēµ, N2µ) ≥ 1− 2−l −
(1 − 2−l)/q = (q − 1)(1 − 2−l)/q.

So, P (Ēµ/C̄) = P (N1µ/C̄)P (Ēµ/N1µ) + P (N2µ/C̄)P (Ēµ/N2µ) = (q −
1)(1 − 2−l)/q.

Therefore, P (Q̄/C̄) = P (Ē1/C̄) ∨ P (Ē2/C̄) . . . ∨ P (Ēk/C̄) ≥ P (Ēµ/C̄) =
(q − 1)(1 − 2−l)/q.
Namely P (Q/C̄) ≤ 1 − (q − 1)(1 − 2−l)/q. 2

According to Theorem 4, Mix-3 can provide correctness on every server with
an overwhelmingly large probability if DL problem is intractable and on a con-
dition that this server cannot obtain the collusion of all the previous j−1 servers
and users with at least 2 inputs in each group on two same positions. This con-
dition is much weaker than the conditions for correctness in Mix-1 and Mix-2 as
even though collusion of 2z or more users is available, the probability of their
inputs are in each group on two same positions is very small if at least one server
SVj is honest to choose vj,i for i = 1, 2, . . . n randomly. Like in Mix-1 and Mix-2,
the probability to tamper with an honest user’s input is negligible. If the shuf-
fling on every server is correct, the plaintexts in the inputs to the mix network
{m1, m2, . . . , mn} and its plaintext outputs {M1, M2, . . . , Mn} have a relation-
ship {m1, m2, . . . , mn} = {|M1|, |M2|, . . . , |Mn|}. If M q

i 6= 1, an additional com-
putation Mi = Mig

q
0 is performed to obtain correct outputs. Therefore, stronger

correctness is achieved in Mix-3 than in Mix-1 and Mix-2 as less trust on the
users is needed in Mix-3.

5.2 Other Properties

Shuffling by every server can be verified publicly and efficiently and a cheating
server can be identified immediately. Any identified cheating server is deleted
and its inputs become inputs to the next server. So abnormal situations can be
dealt with efficiently and the proposed scheme is robust.

Recall that as defined in Section 1 and Section 4 there are n users and m
servers in the mix network; the number of honest servers is ε; t-out-of-m threshold
distributed decryption is used; k is the size of a group, z is the number of groups
and ku = n.
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The computational cost for correctness proof and verification on a server
in Mix-3 are k(4k − 2) and 4k2 exponentiations respectively. These costs are
independent of the number of inputs and more efficient than those in Mix-2.

Extent of Diffusion of Diffusion of Is the diffusion

Correctness a single input all the inputs uniform?

Abe[1] not specified 1 among n if ε > t n! permutations if ε > t No

Abe[2] not specified 1 among n if ε > t n! permutations if ε > t Yes

Furukawa[8] not specified 1 among n n! permutations Yes

Neff[14] not specified 1 among n n! permutations Yes

Groth[10] not specified 1 among n n! permutations Yes

Mix-1 P (P/C̄) ≤ 1/q 1 among n n! permutations Yes

Mix-2 P (P/C̄) ≤ 1/q 1 among kε (k!)zε permutations Yes

Mix-3 P (P/C̄) ≤ 1 − (q − 1)(1 − 2−l)/q 1 among kε (k!)ε permutations Yes

Table 1. Comparison of the mix networks

Privacy of Mix-3 is achieved if the number of malicious decrypting authorities
is no more than t. Extent of privacy in Mix-3 is as follows when m < u is assumed.

– Diffusion of any single input in Mix-3 is the same as that in Mix-2 (each
input may be permuted to any of kε outputs with an equal probability).

– Diffusion of the inputs as a whole in Mix-3 is weaker: (k!)ε possible permu-
tation from the inputs of the mix network to its outputs are equally likely.

So, stronger correctness and higher efficiency in Mix-3 compared to in Mix-2 is
achieved by sacrificing some privacy. By selecting appropriate k and m, a good
trade-off between efficiency and privacy can be achieved. When m ≥ u, as in
the case of Mix-2, privacy may be improved in both factors if the distribution
of honest servers is appropriate.

In Table 1 and Table 2, the proposed scheme is compared against the best
mix networks in the third category (defined in Section 2). Note the following
points

– “not specified” in Table 1 means the probability of correctness (with how
much a probability the mix network is correct)is not provided.

– In [1] only t + 1 out of the m servers take part in the shuffling.
– Re-encryption on each server cost 4(n log2 n−n+1) exponentiations in [1] if

ElGamal encryption is employed, while in other shuffling schemes this cost
is usually 2n. That is another aspect of inefficiency in [1].

– In [14], it was declared that the total computational cost of proof and ver-
ification of shuffling correctness is 8k + 5. However, the shuffling scheme in
[14] is not concrete and it is commonly believed that Neff’s scheme is not
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so efficient as he claimed. Like Groth’s analysis in [10], in this paper it is
concluded that Neff’s shuffling scheme costs ςn exponentiations (where ς is
a small integer) and is not as efficient as [8] or [10].

In [1] only t+1 out of the m servers take part in the shuffling. The final version of
the proposed scheme, Mix-3, achieves correctness more clearly (with a concrete
extent) than the other schemes. Suppose in the proposed scheme, the decrypting
authorities are chosen from the shuffling servers and the decryption key is shared
among them with a t-out-of-m threshold like in most other mix networks. Then,
when ε ≤ t, there is no privacy in either Abe’s schemes [1, 2] or the proposed
scheme as the inputs can be decrypted by t + 1 malicious servers. When ε > t,
privacy in Mix-3 is sufficient for most applications although dependent on ε it
may not achieve the maximum privacy as in [1]. The proposed scheme is more
efficient than all the other schemes, especially when n is large. Moreover, the
proposed scheme is simpler than Abe’s schemes as complex gate circuit is not
employed and the achieved properties are not dependent on theorems in gate
circuit theory.

Correctness proof on a server Correctness verification on a server

Abe[1] 12(n log
2
n − n + 1) 16(n log

2
n − n + 1)

Furukawa[8] 8n 10n

Neff[14] o(n) o(n)

Groth[10]a 6n + 3n/κ + 3 6n + 3n/κ + 6

Mix-3 k(4k − 2) 4k2

a κ is a parameter smaller than n.

Table 2. Comparison of computation cost in full-length exponentiations

In Table 3, an example is given to make a clearer comparison where |q| =
1024, n = 10000, m = 5, t = 2, k = 10, ε = 4 > t, κ = 100 and SV5 is assumed to
be dishonest. Note that computational cost in Table 3 is in full-length exponen-
tiations while some multiplications and short-length exponentiations are ignored
as they are trivial compared to the costs of the full-length exponentiations . The
results of this table clearly demonstrate enormous improvement on efficiency in
the proposed scheme without losing strong correctness and privacy when there
are a large number of users. In a national wide election involving millions of
voters, the efficiency advantage of the proposed scheme is greater.

6 Conclusion

The proposed mix network provides strong and precise correctness and privacy.
With the help of a grouping function and a batch verification technique, the mix
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Extent of Diffusion of Diffusion of Cost of proof Cost of server

Correctness a single input all the inputs on a server verification

Abe[1] not specified 1 among 10000 10000! permutations 1474537 1966050

Furukawa[8] not specified 1 among 10000 10000! permutations 80000 100000

Groth[10] not specified 1 among 10000 10000! permutations 60303 60306

Mix-3 P (P/C̄) is extremely small 1 among 10000 1.734 × 1026 permutations 380 400

Table 3. Example for comparison

network is very efficient. The mix network is robust and can deal with dishonest
servers efficiently.
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