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Abstract. In this paper, we propose a scheme to simultaneously prove
the correctness of both shuffling and decryption. Our scheme is the most
efficient of all previous schemes, as a total, in proving the correctness of
both shuffling and decryption of ElGamal ciphertexts. We also propose
a formal definition for the core requirement of unlinkability in verifiable
shuffle-decryption, and then prove that our scheme satisfies this require-
ment. The proposed definition may be also useful for proving the security
of verifiable shuffle-decryption, hybrid mix network, and other mix-nets.
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1 Introduction

A mix-net [3] scheme is useful in applications, such as voting, which require
anonymity. Crucial to a mix-net scheme is the execution of multiple rounds of
shuffling and decryption by multiple, independent mixers, so that none of the
output decryptions can be linked to any of the input encryptions.

To ensure the correctness of output, it is desirable to achieve the property of
universal verifiability. Early studies, such as those by Sako and Kilian [21] and
Abe [1], required vast amounts of computation to prove and verify the correct-
ness of a mix-net without sacrificing unlinkability, However, recently proposed
schemes [9, 8, 17, 13] were sufficiently efficient and practical. The schemes of [9,
8] use the property of permutation matrixes, and the schemes of [17, 13] use the
fact that polynomials remain invariant under the permutations of their roots.
The schemes of [9], [17], and [13] require the respective computation of 18k,
42k, and 12k modular exponentiations to prove and verify the correctness of a
shuffling of k data. The scheme of [8] requires 19k modular exponentiations to
prove and verify both shuffling and decryption. Groth’s scheme [13] is the most
efficient.

A result of these recent works is that proving the correctness of decryption
now costs as much as proving the correctness of shuffling. Hence, decreasing the
cost of proving decryption has also become important in mix-net. The scheme
of [8], which was based on the scheme of [9], made it possible to simultaneously
prove the correctness of both a shuffling and a decryption; this is more efficient



in terms of computation and communication complexity than proving each of
these separately.

However, as is mentioned in [8], the scheme of [9, 8] is not a zero-knowledge,
and this simultaneously proving technique never yields a zero-knowledge protocol
1. A simple combination of two zero-knowledge protocols of a verifiable shuffle
and of a verifiable decryption also does not yield a zero-knowledge protocol since
the intermediate state cannot be simulated. Therefore, a formal definition for the
core requirement of unlinkability in verifiable shuffle-decryption, which notion is
weaker than that of zero-knowledge, is desired.

Such a formal definition will also be useful for considering the security of
verifiable mix-net, hybrid mix network, flush mix, and other mix-net [12, 14, 15,
18]. For example, during the decryptions in a hybrid mix network, servers who
decrypt ciphertexts generate many extra data that are not themselves encryp-
tions of plain texts (e.g., encrypted secret keys, MAC code, intermediate states,
etc.). Hence, even if each component protocol of a hybrid mix network is zero-
knowledge, we must confirm that these extra data do not spoil the unlinkability
of the total hybrid mix network.

In this paper, we first propose a formal definition for the core requirement of
unlinkability in verifiable shuffle-decryption. Next, we propose the most efficient
scheme to simultaneously prove the correctness of both shuffling and decryption,
which is an improved version of the scheme of [8]. Finally, we prove that the
proposed scheme satisfies the proposed requirement.

Our scheme requires roughly 14k exponentiations to prove and verify the
correctness of both a shuffle and a decryption of k-data, 1344k bits of communi-
cation, and five rounds. To prove and verify the correctness of both a shuffle and
a decryption of k-data with Groth’s protocol [13] by using the standard tech-
nique of proving the correctness of decryption, we require 15k exponentiations,
2528k bits of communication, and seven rounds.

Although the security of the schemes of [9] and [8] have never been proven, We
are now able to prove that these schemes satisfy the proposed requirement and
are secure. Contrary, it is easy to prove that several hybrid mix-network which
are vulnerable against resending message attack, such as [15], do not satisfy the
proposed requirement.

Our paper is organized as follows. Section 2 introduces the model of shuffle-
decryption. Section 3 proposes a definition for the requirement of unlinkability
in verifiable shuffle decryption. Section 4 proposes a protocol by which we are
able to simultaneously prove the correctness of a shuffle-decryption in an efficient
way. Section 5 compares the efficiency of our protocol to prior work.

1 Whereas, it is easy to make a perfect (and more efficient) zero-knowledge version of
the protocol proposed in [9]. This version is presented in an appendix of [7].



2 Notation and Model

2.1 Notation

Let p, q be two primes s.t. q|p− 1 and 3 6 |(q − 1), Gq be an order q subgroup of
(Z/pZ)∗, g0 be an element of Gq, and k be the number of ElGamal ciphertexts to
be shuffled, and ` be the number of shufflers. Let x′(λ) ∈R (Z/pZ)∗ be a private
key of λ-th shuffler used for the partial decryption and y(λ) = g0

x′(λ)
mod p

be the corresponding public key. Let m0
(λ) =

∏λ
κ=1 y(κ) mod p be a public key

public key used for the shuffle of λ-th shuffler.
Let (g(`)

i ,m
(`)
i ) = (g0

r̄i , m0
r̄iMi)i=1,...,k mod p be a tuple of ElGamal cipher-

texts to be input `-th shuffler where {Mi ∈ Gq}i=1,...,k is a set of plain texts
to be encrypted, {r̄i ∈R Z/qZ}i=1,...,k be uniformly and randomly chosen el-
ements of Z/qZ. Let (g(λ)

i ,m
(λ)
i )i=1,...,k be a tuple of ciphertexts to be input

to λ-th shuffler, who shuffle them with public key (g0,m
(λ)
0 ) and then partially

decrypts them with the private key x′(λ). The resulting tuple of ciphertexts is
(g(λ−1)

i ,m
(λ−1)
i )i=1,...,k which is passed to (λ − 1)-th shuffler. In the rest of the

paper, we only consider λ-th shuffler and omit the index (λ).
Treating the public key g0, m0 as if it were an element in a ciphertext vector

may be awkward, but it gives a more compact and unified representation to
variables. Here, the public key is a set, {p, q, g0,m0, y}. P is a prover who shuffles
and decrypts and proves the validity of shuffle and decryption to a verifier V .

The only shuffling we have considered in this paper is that of ElGamal cryp-
tosystem, which is the most elegant candidate cryptosystem used for mix-net.
However, extensions of the requirements of unlinkability defined in this paper to
other cryptosystems are easy.

2.2 ElGamal Shuffle decryption

ElGamal shuffling is a procedure that, given k ElGamal ciphertexts
(gi,mi)i=1,...,k, outputs ElGamal ciphertexts

(g′i,m
′
i) = (g0

sigφ−1(i), m0
simφ−1(i)) mod p i = 1, · · · , k,

where si ∈R Z/qZ for i = 1, · · · , k and a permutation of indices φ : {1, . . . , k} →
{i = 1, . . . , k} are chosen uniformly and randomly.

Shuffling of ElGamal ciphertexts results in the following two important prop-
erties:

1. There exists a permutation φ s.t. equations
Dx((g′i,m

′
i)) = Dx((gφ−1(i),mφ−1(i))) hold for all i. Here, Dx(·) is a decryp-

tion algorithm that uses the private key x.
2. As long as the decision Diffie-Hellman problem is difficult to solve, no poly-

nomially bounded algorithm, given only
p, q, g, y, (gi,mi), (g′i,m

′
i); i = 1, · · · , k, has an advantage over the random-

guessing algorithm in guessing any part of permutation φ for uniformly and
randomly chosen g0,m0, si, r̄i, φ.



ElGamal shuffle decryption is a combination procedure of ElGamal shuffling
and partial decryption that, given k ElGamal ciphertexts (gi,mi); i = 1, · · · , k,
outputs ElGamal ciphertexts

(g′i,m
′
i) = (g0

sigφ−1(i), g
′
i
−x′m0

simφ−1(i)) mod p i = 1, · · · , k, (1)

where si ∈R Z/qZi = 1, · · · , k and φ are chosen uniformly and randomly. Here,
the multiplication by g′i

−x′ in the second term has the effect of partial decryption.
A sequence of shuffles-decryptions composes a mix-net[21]. In this paper,

we propose a formal definition for the core requirement of unlinkability in this
verifiable ElGamal shuffle-decryption, and then we propose an efficient verifiable
ElGamal shuffle-decryption.

3 Complete permutation hiding

We propose here the notion of complete permutation hiding (CPH) as a core
requirement of unlinkability in verifiable shuffle-decryption. If a verifiable shuffle-
decryption is CPH, honest verifiers will learn nothing new about its permutation
from an interaction with a prover in an overwhelming number of cases of
random tape that a prover has chosen uniformly and randomly, whereas, if the
protocol is zero-knowledge, verifiers will learn nothing new in every case of the
random tape. In other words, we define CPH so that verifiers learn nothing about
the permutation in an overwhelming number of cases of common input Xn and
witness Wn that the generator GR (defined below) outputs.

Let In be a set of domain parameters 1n, p, q, where p and q are primes and are
the lengths of the polynomial of n, private key x̄, plain texts {Mi ∈ Gq}i=1,...,k,
and random tape Zn. Let enc(U) be an encoding of a probabilistic polynomial
time (PPT) Turing machine U which generates cipher-texts (gi,mi)i=1,...,k input
to the shuffle-decryption procedure. We assume the existence of a knowledge ex-
tractor that can extract {r̄i}i=1,...,k such that g0

r̄i = gi from U . This assumption
is satisfied if all generators of cipher-texts are imposed to prove the knowledge
of r̄i, and such a compulsion prevents an adaptively chosen cipher-text attack.

Definition 1. Given In(= {1n, p, q, x̄ ∈ Z/qZ, {Mi ∈ Gq}i=1,···,k, Zn}) and
enc(U), instance Generator GR chooses g0 ∈R Gq, x

′ ∈R Z/qZ,
{si ∈R Z/qZ}i=1,...,k, and a permutation φ uniformly and randomly and com-
putes;

m0 = g0
x′+x̄, y = g0

x′ mod p

(gi,mi) = U(In, g0, y) ∈ Gq ×Gq

(g′i,m
′
i) = (g0

sigφ−1(i), gi
−x′m0

simφ−1(i)) mod p.

GR then outputs common input Xn and witness Wn:

Xn = {p, q, y, x̄, g0, m0, {(gi,mi)}i=1,···,k, {(g′i,m′
i)}i=1,···,k},

Wn = {φ, {si}i=1,···,k, x′}.



In the above definition, U is a PPT Turing machine that plays the role of
(malicious and colluding) players who generate cipher-texts {(gi,mi)}. Although
U is determined before the public parameter is generated, it does not lose gener-
ality because it has this public parameter as an input. In a case where U realizes
honest players, it outputs

(gi,mi) = (g0
r̄i ,Mim0

r̄i) mod p

using random numbers {r̄i}i=1,...,k generated from the random tape Zn.
We say Xn and Wn satisfy relation R if the following equations are satisfied:

m0 = g0
x′+x̄, y = g0

x′ (mod p)

(g′i,m
′
i) = (g0

sigφ−1(i), gi
−x′m0

simφ−1(i)) (mod p).

We denote this fact as (Xn,Wn) ∈ R. If there exists a witness Wn for a common
input Xn that satisfies (Xn,Wn) ∈ R, common input Xn is a correct shuffle-
decryption. Generator GR outputs such a Xn.

Definition 2. Let V iewP
V (Xn,Wn) be V ’s view of an interaction with P , which

is composed of the common input Xn, messages V receives from P , random tape
input to V , and messages V sends to P during joint computation employing Xn,
where P has auxiliary input Wn s.t., (Xn,Wn) ∈ R. V iewP

V is an abbreviation
of V iewP

V (Xn,Wn).

We consider the case when a semi-honest verifier may collude with malicious
players who encrypt the ciphertexts and other provers who shuffle and decrypt
in the same mix-net. Such a verifier and players may obtain partial information
regarding the plain texts {Mi}, private key x̄ (the sum of other prover’s private
keys in the mix-net), random tapes of players, and even a part of the permutation
φ in addition to V iewP

V . Moreover, they may obtain the results of other shuffle-
decryptions executed by the same prover.

Then it is reasonable to describe this extra information as
H(In, enc(U), Xn, φ) and input cipher-texts generated by the malicious player
as U(In, g0, y) using PPT Turing machines H(·) and U(·). Note that {si} are
not included in the arguments of H, because we consider only the case where
the prover never reveals these values to any one and the case where the prover
never uses the same {si} for other shuffle-decryptions.

Even though the verifier and the players may obtain the results of other
shuffle-decryptions executed by the same prover who uses x′, we do not include
x′ into the input of U and H. Instead, we assume that there exists a PPT Turing
machine K such that the distribution of V iewP

V for such H and U and that of
K(In, g0, y, enc(U), φ) are the same. We denote this as
V iewP

V ≈ K(In, g0, y, enc(U), φ). The exclusion of x′ is crucial because it enables
us to consider the security of shuffle-decryption over the distribution of Xn i.e.,
of x′.

We describe information about the permutation φ that verifiers try to learn
as f(φ) using PPT Turing machine f . This description can be justified because



the expression f(φ) is sufficient to express any bit of φ and any kind of check
sum for φ.

Now we can say that a verifiable shuffle-decryption protocol hides its per-
mutations completely with respect to GR - i.e., CPH occurs - if there exists a
probabilistic polynomial time algorithm E′E (which has black box access to E )
with inputs Xn and H(In, enc(U), Xn, φ) that suffers no disadvantage with re-
spect to learning anything about the permutations compared to any probabilistic
polynomial time verifier E having input V iewP

V and H(In, enc(U), Xn, φ). This
leads to,

Definition 3. (complete permutation hiding) A verifiable shuffle decryption
protocol (P, V, GR) achieves complete permutation hiding if

∃E′E ∀E ∀H ∀f ∀U ∀c > 0 ∃N ∀n > N ∀In

Pr[E(V iewP
V ,H(In, enc(U), Xn, φ)) = f(φ)]

< Pr[E′E(Xn,H(In, enc(U), Xn, φ)) = f(φ)] +
1
nc

, (2)

and
∃K V iewP

V ≈ K(In, g0, y, enc(U), φ)

where E′, E,H, f, U,K are PPT Turing machine. The left probability in Eq.(2)
is taken over the distribution of the random tapes input to GR, 2 P, V, H, and
E. The right probability in Eq.(2) is taken over the distribution of the random
tapes input to GR,H, E′, and E. E′ may use E as a black box.

If the verifiable shuffle-decryption protocol is CPH, we can say that for
every input ciphertexts set {(gi, mi)} and its corresponding output cipher-
texts set {(g′i,m′

i)}, whatever an honest verifier who has partial information
(H(In, enc(U), Xn, φ)) about the common input (Xn), can learn about the per-
mutation (φ) after interacting with a prover, can also - in an overwhelming
number of cases of common input (Xn)- be efficiently computed from that com-
mon input (Xn) and that partial information (H(In, enc(U), Xn, φ)) alone using
a PPT Turing machine E′ without interaction with the prover as long as the
prover has chosen the private key x′, permutation φ, and random numbers {si}
uniformly and randomly.

Note that we are considering the case even where malicious and colluding
players, who have the results of other shuffle-decryptions with the same x′, are
engaged in generating {(gi,mi)} of common input. Hence, CPH guarantees secu-
rity when shuffle-decryptions with the same private key are repeatedly executed
3.
2 Since the probability is taken over a distribution containing x′, we have excluded

any adversary who knows x′.
3 The definition of shuffle-decryption stated in [8] is “No polynomially bounded ad-

versary can compute any partial information of the permutation from the protocol”.
Unlike our new definition, this definition does not mention the case where the verifier



Extensions of the proposed definition for requirements regarding unlinkability
to other mix-net systems (in the sense that verifiers can learn nothing new about
the permutation in an overwhelming number of cases of common input) are easy.
Hence, extended-CPHs may be suitable measures of the security of verifiable
shuffle-decryptions, verifiable mix-nets, verifiable hybrid mix networks, and other
verifiable mix-nets.

4 Proposed Verifiable Shuffle Decryption

In this section, we propose a CPH verifiable shuffle decryption scheme, which is
special in the sense that the verifier’s random tape is identical to its challenge.
The proposed protocol is the most efficient of all previous schemes, as a total, to
prove the correctness of both shuffling and decryption of ElGamal ciphertexts.
The scheme requires five rounds.

4.1 Permutation Matrix

Our scheme uses the property of permutation matrix defined below.

Definition 4. Let q be a prime. A matrix (Aij)i,j=1,···,k is a permutation matrix
over Z/qZ if it satisfies

Aij =
{

1 mod q if φ(i) = j
0 mod q otherwise

for a permutation function φ : {1, . . . , k} → {1, . . . , k}.
Using a permutation matrix (Aji), which corresponds to a permutation φ,

we find that Eq. (1) can be expressed as

(g′i,m
′
i) = (g0

si

k∏

j=1

g
Aji

j , g′i
−x′msi

0

k∏

j=1

m
Aji

j ) mod p. (3)

Therefore, proving the correctness of the shuffle is equivalent to proving the
existence of a x′ ∈ Z/qZ, an si ∈ Z/qZ for i = 1, . . . , k and a permutation
matrix (Aji)i,j=1,...,k which satisfy Eq. (3).

The following theorem is the key to constructing the proposed protocol.

Theorem 1. ( [9] Theorem 1) Let q be a prime. A matrix (Aij)i,j=1,...,n is a
permutation matrix over Z/qZ ⇔

n∑

h=1

AhiAhjAhk = δijk ,
{

1 (mod q) if i = j = k
0 (mod q) if otherwise and (4)

n∑

h=1

AhiAhj = δij ,
{

1 (mod q), if i = j
0 (mod q), if i 6= j

(5)

has already obtained partial information before the protocol begins and where the
shuffle-decryptions with the same private key are repeatedly executed. These cases
seem to occur quite often.



for all i, j, and k.

Proof. See the proof of Theorem 1 in [9] or appendix of [7].

Theorem 2. For 3 6 |(q − 1), a matrix (Aij)i,j=1,...,n is a permutation matrix
over Z/qZ ⇔ Eq. (4) holds.

Proof. (⇒) is trivial. (⇐); From the proof of Theorem 1 in [9], if Eq.(4) holds,
then there is only one non-zero element ei in the i− th row and it must satisfies
e3
i = 1 mod q. Because 3 6 |(q − 1) implies that 1 is the only cubic root of 1 in
Z/qZ, ei must be 1. Therefore, matrix (Aij)i,j=1,...,n is a permutation matrix
over Z/qZ.

The soundness of our scheme depends directly on Theorem 2.

4.2 Protocol Structure and Tricks for Efficiency

The verifiable shuffle decryption protocol we will propose in this section is almost
the same as the scheme proposed in [8]. The proposed scheme and the scheme of
[8] are roughly composed of four proofs. These are, (i) generation of {f ′i}i=1,···,k
and a proof of knowledge of si and (Aji) that satisfy

f ′i = fsi
0

k∏

j=1

f
Aji

j mod p i = 1, · · · , k, (6)

for uniformly and randomly chosen fµ ∈R Gq; (µ = 0, . . . , k), (ii) proof that (Aji)
whose knowledge proved in (i) is a permutation matrix (using Theorem 1 or 2),
(iii) proof that si and (Aji) whose knowledge proved in (i) also satisfies Eq. (3),
and (iv) proof of knowledge of the decryption key.

In Proof (ii), there are commitment, challenge, and response phase. The main
difference between our scheme and the scheme of [8] is that we have introduced
the values f−2, f−1 in the proposed scheme. Because of these values f ′is in the
commitment are modified from f ′i = fA0i

0 fφ−1(i) to f ′i = f
A−2i

−2 f
A−1i

−1 fA0i
0 fφ−1(i).

As a results, we have more redundancy (A−2i, A−1i) to generate the f ′i . Then we
adjusted A−2i, A−1i so that some values in the commitment to be zero, which
decreased the number of terms in checking equations in the response phase 4.
Another difference between them is that the proposed scheme adopts the prime q
such that 3 6 |q−1. Because of this, verifiers do not need to confirm that Equation
(5) holds 5 any more. The other difference between them is with respect to the
verification of Eq. (9). A verifying that Eq. (9) holds, is equivalent to verifying
equations

k∏
ν=−2

fν
rν = f ′0

k∏

i=1

f ′i
ci ,

k∏
ν=−2

fν
r′ν = f̃ ′0

k∏

i=1

f ′i
ci

2
(mod p)

4 The equation related to Equation 12 is the 7-th equation in the verification phase of
the scheme of [8]. We can see that terms quadratic and linear to the challenge are
disappeared in the proposed protocol.

5 8-th equation in the verification phase of the scheme of [8].



hold, where the former is more efficient 6.

4.3 Proposed Protocol

We now describe our verifiable ElGamal shuffle decryption and our scheme. Let
public parameters p, q, g0, y, m0 and private key x′ be as described before. We
assume another public key Fn , {fν ∈R Gq}ν=−2,...,k are k +3 Gq elements that
are uniformly and randomly generated so that neither P nor V can generate
non-trivial integers a, {aν}ν=−2,...,k satisfying ga

0

∏k
ν=−2 fν

aν = 1 (mod p) with
non-negligible probability.

ElGamal shuffle decryption P uniformly and randomly chooses A0i ∈R Z/qZ
for i = 1, · · · , k and a permutation matrix (Aji)i,j=1,···,k and then shuffles and
decrypts k ElGamal ciphertexts {(gi,mi)}i=1,···,k to {(g′i,m′

i)}i=1,···,k as

(g′i,m
′
i) = (g0

A0igφ−1(i), g
′
i
−x′m0

A0imφ−1(i)) mod p

= (
k∏

ν=0

gν
Aνi , g′i

−x′
k∏

ν=0

mν
Aνi) mod p. (7)

In our protocol, the witness Wn is a set {x′, (Aji)i,j=1,...,k, {A0i}i=1,...,k}, and
the common input Xn is a set {p, q, g0, y,m0, Fn, (gi, mi)i=1,...,k, (g′i,m

′
i)i=1,...,k}.

P is given Xn and Wn, and V is given Xn.

Proving a shuffle decryption Commitment-1: P uniformly and randomly
chooses {Aν0, A

′
ν ∈R Z/qZ}ν=−2,...,k and then computes:

A−1i =
k∑

j=1

3Aj0Aji mod q , A−2i =
k∑

j=1

3Aj0
2Aji mod q i = 1, · · · , k

f ′µ =
k∏

ν=−2

fν
Aνµ mod p µ = 0, · · · , k

f̃ ′0 =
k∏

ν=−2

fν
A′ν mod p , g′0 =

k∏
ν=0

gν
Aν0 mod p

m′
0 =

k∏
ν=0

mν
Aν0 mod p , w =

k∑

j=1

Aj0
3 −A−20 −A′−1 mod q

Then, P sends g′0,m
′
0, w, f̃ ′0, {f ′µ}µ=0,···,kto V as a commitment.

Challenge-1: V uniformly and randomly chooses {ci}i=1,···,k from Z/qZ and
sends it to P .
6 r′µ plays the role of λ′ in [8].



Response-1: P sends V the following response:

rν =
k∑

µ=0

Aνµcµ mod q , r′ν =
k∑

i=1

Aνici
2 + A′ν mod q ν = −2, · · · , k

where c0 = 1 mod p.
Commitment-2: P then computes

ζ =
k∏

i=1

g′i
ci mod p.

P uniformly and randomly chooses β ∈R Z/qZ, computes the following commit-
ment, and sends it to V :

η = ζx′ mod p , η′ = ζβ mod p

y′ = g0
β mod p. (8)

Challenge-2: V uniformly and randomly chooses c′ from Z/qZ and sends it to
P .
Response-2: P sends V the following response: r′ = c′x′ + β mod q
Verification: V computes

ζ =
k∏

i=1

g′i
ci mod p.

V accepts the shuffle if the following equations hold for a uniformly and randomly
generated α ∈R Z/qZ:

k∏
ν=−2

fν
rν+αr′ν = f ′0f̃

′
0
α

k∏

i=1

f ′i
ci+αci

2
(mod p) (9)

k∏
ν=0

gν
rν = ζg′0 (mod p) (10)

k∏
ν=0

mν
rν = η

k∏
µ=0

m′
µ

cµ (mod p) (11)

k∑

j=1

(r3
j − c3

j ) = r−2 + r′−1 + w (mod q) (12)

g0
r′ = yc′y′ (mod p) (13)

ζr′ = ηc′η′ (mod p) (14)



The view V iewP
V (Xn,Wn) of this protocol is

p, q, y, g0,m0, {(gi,mi)}i=1,...,k, {(g′i, m′
i)}i=1,...,k,

{fν}ν=−2,...,k, f ′0, {f ′i}i=1,...,k, f̃ ′0, g
′
0,m

′
0, w, {ci}i=1,...,k,

{rν}ν=−2,...,k, {r′ν}ν=−2,...,k, η, η′, y′, c′, r′.

4.4 Properties of the proposed scheme

Theorem 3. The protocol is complete.

Theorem 4. The protocol is special sound as long as the discrete logarithm
problem is difficult to solve.

Theorem 3 and 4 can be proved along the lines with [9]. Proof are given in
the appendix of [7].

Theorem 5. If the decision Diffie-Hellman problem is difficult to solve, the
verifiable shuffle-decryption protocol (P, V, GR) is special complete-permutation-
hiding.

Proof. The proof is given in the appendix of [7].

4.5 Threshold Decryption

Although it is possible to achieve threshold decryption with the proposed proto-
col, it does not work as well as ordinary threshold decryption. If we assume that
only honest shufflers participate in the shuffle-decryption protocol, there is no
disadvantage when using our protocol. However, if a malicious shuffler quits de-
cryption after some other shufflers have finished their decryptions, our protocol
gets into trouble.

Suppose we are decrypting or shuffle-decrypting k ElGamal cipher-texts, λ
shufflers have finished their partial decryptions, and one shuffler quits its de-
cryption procedure. In the ordinary threshold decryption protocol, the rest of
the shufflers and one substituting (new) shuffler are able to continue the thresh-
old decryption protocol only with little modification. However, computation of
kλ extra modular exponentiations is required to complete the decryption, and
the verifier must compute kλ extra modular exponentiations to verify the cor-
rectness of the decryption.

In our protocol, shufflers that have finished their partial decryptions need to
help other players complete the protocol. Each of the shufflers needs to compute
k modular exponentiations to modify the cipher-texts that are already shuffle-
decrypted by λ shufflers. Each of them needs to prove the correctness of the above
computation which requires another computation of k modular exponentiations.
Moreover, the verifier needs to compute an extra 2kλ modular exponentiations
to verify the correctness of the protocol.



5 Efficiency

In this section, we compare the efficiency of the proposed protocol described in
Section 4 to (FS) the protocol proposed in [9], (FMMOS) the protocol proposed
in [8], and (Groth) the protocol proposed in [13]. We have assumed the lengths
of p and q to be 1024 and 160. We have denoted the protocol in Section 4 as
(proposed).

Let us first compare them, in Table 1, by the number of exponentiations used
in each protocol when the number of ciphertexts is k. “shuffle P” and “shuffle
V ” denote the number of exponentiations required for P and V to prove and
verify a shuffle. “shuffle-decrypt P” and “shuffle-decrypt V ” denote the number
of exponentiations required for P and V to prove and verify a shuffle-decryption.
The numbers for (FS), (FMMOS), and (Groth) are those required to prove a
shuffle-decryption in a standard technique

If we adopt the computation tools described in [16], such as the simultaneous
multiple exponentiation algorithm and the fixed-base comb method, the number
of exponentiations can be heuristically reduced. We estimated that multiple
exponentiations cost a 1/3 and fixed-base comb method costs 1/12 (when the
number of ciphertexts is large) of that of single exponentiation. Estimates done
in this way are in Table 2. Here, “shuffle P”, “shuffle V ” , “shuffle-decrypt P”,
and “shuffle-decrypt V ” denote the same items as in Table 1.

Table 3 lists the number of communication bits and number of rounds re-
quired for protocols. “shuffle” denotes the number of communication bits used
when proving a shuffle, “shuffle-decrypt” denotes the number of communication
bits used when proving a shuffle-decryption, and “rounds” denotes the number of
rounds required for protocols. The numbers for (FS), (FMMOS), and (Groth)
include intermediate state data bits, i.e., those of shuffled data.

(FS) (FMMOS) (Groth) (proposed)

shuffle P 8k 6k

shuffle V 10k 6k

shuffle-decrypt P (9k) 9k (7k) 8k

shuffle-decrypt V (12k) 10k (8k) 6k
Table 1. Numbers of exponentiations required in each protocol

Our protocol and the protocols of [9, 8] require a rather long public parameter
Fn. Although the protocol of [13] also requires such a parameter, it can be
reduced greatly at the cost of increasing the amount of both computation and
communication.

From Tables 2 and 3, we can conclude that computational complexity with
our proposed protocol represents a 32% improvement in efficiency over that of
(Groth)[13], while communication complexity improves by 47%. Our protocol
require two rounds less than that of Groth’s [13].



(FS) (FMMOS) (Groth) (proposed)

shuffle P 1.4k 1.75k

shuffle V 3.3k 1.75k

shuffle-decrypt P (2.4k) 1.75k (2.75k) 1.9k

shuffle-decrypt V (4.5k) 3.3k (3k) 2k
Table 2. Cost of computation required in each protocol

(FS) (FMMOS) (Groth) (proposed)

shuffle 5044k 1184k

shuffle-decrypt (6388k) 5044k (2528k) 1344k

rounds 3 5 7 5
Table 3. Communication bits required in each protocols

6 Conclusion

In this paper, I have proposed formal definition for the core requirement of
unlinkability in verifiable shuffle-decryption. I have also presented a novel method
of simultaneously proving both the correctness of both a shuffle and a decryption,
and then have proved its security and demonstrated its superior efficiency over
that of [13] and [8].
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