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Abstract. Though the multivariable cryptosystems first suggested by
Matsumoto and Imai was defeated by the linearization method of Patarin
due to the special properties of the Matsumoto-Imai (MI) cryptosystem,
many variants and extensions of the MI system were suggested mainly
by Patarin and his collaborators. In this paper, we propose a new vari-
ant of the MI system, which was inspired by the idea of “perturbation”.
This method uses a set of r (a small number) linearly independent linear
functions z; = 27:1 a;jx; + Bi, i=1,..,r, over the variables z;, which are
variables of the MI system. The perturbation is performed by adding
random quadratic function of z; to the MI systems. The difference be-
tween our idea and a very similar idea of the Hidden Field Equation and
Qil-Vinegar system is that our perturbation is internal, where we do not
introduce any new variables, while the Hidden Field Equation and Oil-
Vinegar system is an “external” perturbation of the HFE system, where
a few extra (external) new variables are introduced to perform the per-
turbation. A practical implementation example of 136 bits, its security
analysis and efficiency analysis are presented. The attack complexity of
this perturbed Matsumoto-Imai cryptosystem is estimated.

Keywords: open-key, multivariable, quadratic polynomials, perturba-
tion

1 Introduction

Since the invention of the RSA scheme, there has been great interest to seek
new public key cryptosystems, which may serve us better for different purposes.
One direction to look for such systems is based on multivariable polynomials, in
particular, quadratic polynomials. This method relies on the proven theorem that
solving a set of multivariable polynomial equations over a finite field, in general,
is an NP-hard problem, which, however, does not guarantee the security.

One of the basic ideas to design such a system was started by Matsumoto and
Imai [MI], where they suggested to use a map F over a large field K, a degree
n extension of a finite field k. Through identifying K as k", first, one would
identify this map F as a multivariable polynomial map from k" to k™, which we



call F; then, one would “hide” this map F' by composing from both sides by two
invertible affine linear maps L; and Ly on k™. This gives a quadratic map

F:LloﬁoLQ

from k™ to k™ (by o, we mean composition of two maps). The map F suggested
by Matsumoto and Imai is the map

F:X — X1+

where ¢ is the number of elements in k, X is an element in K and k is of
characteristic 2. However this scheme was proven insecure under an algebraic
attack using the linearization equations by Patarin [P].

Since then, there has been intensive developments by Patarin and his collab-
orators to find all possible modifications and extensions of the Matsumoto-Imai
systems, which are secure. Those ideas to directly extend the Matsumoto-Imai
system can be divided into three groups in accordance with the method used.

1) Minus-Plus method [CGP1]: This is the simplest idea among all, namely
one takes out (Minus method, which was first suggested in [S]) a few of the
quadratic polynomial components of F', and (or) add (Plus method) a few ran-
domly chosen quadratic polynomials. The main reason to take the “Minus” ac-
tion is due to security concerns. The Minus (only) method is very suitable for
signature schemes. One of them is Sflash [ACDG,CGP], and it was recently ac-
cepted as one of the final selections in the New European Schemes for Signatures,
Integrity, and Encryption: IST-1999-12324.

2) Hidden Field Equation Method (HFE) [P]: This method is suggested by
Patarin to be the strongest. In this case, the difference from the original Matsu-
moto-Imai system is that F' is replaced by the map (function)

A B
F:X+— Zainq’—i-qJ +sz’qu + ¢,

i, i

where the coefficients are randomly chosen and the total degree of F must be
small, otherwise the decryption process will become too slow. However a new
algebraic attack using both the Minrank method and the relinearization method
by Kipnis and Shamir [KS] shows that the number A can not be too small, but
if A is big, the system is too slow due to the process of solving the polynomial
equation in the decryption process. This is further confirmed by [C,FJ].

3) Hidden Field Equation and Oil-Vinegar Method [CGP2]: After the Hidden
Field Equation Method, it is suggested to combine the Hidden Field Equation
Method with another new method, Oil-Vinegar method. The basic idea is, on top
of the HFE method, to add a few new variables to make the system more com-
plicated. This method is essentially to replace F with an even more complicated
function:

F:(X,X)—
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where the new Vinegar variables given by the variable X is of a small dimension.
One can see that these new variables are mixed in a special way with the original
variables (like Oil and Vinegar). The decryption process requires an exhaustive
search on these added small number of variables. For the signature case the
search becomes a random selection, which has a good probability to succeed
each time, and it continues until a correct answer is found. We recently observed
that the attack in [KS] can also be applied here to actually eliminate the small
number of added variables and attack the system. The basic idea is to use the
algebraic method to find a way to purge out the Vinegar variables.

After all the efforts mentioned above, it seems that all the possible exten-
sions and generalizations of the Matsumoto-Imai system are exhausted, but our
construction provides another alternative.

The motivation for our work is to develop new constructions that could be
strongly resistant to the algebraic attack [P,KS] and its extensions like XL, but
without much sacrifice to the efficiency of the system.

From a very general point of view, the third method above (the HFE and
Oil-Vinegar method) can also be interpreted as an extension of a commonly used
idea in mathematics and physics, perturbation. Namely a good way to deal with a
continuous system often is to “perturb” the system at a minimum scale. The HFE
and Qil-Vinegar method can be viewed as a perturbation of the HFE method by
the newly added Vinegar variables. However, because of the “Oil-Vinegar” idea,
this perturbation, in some sense, is more of an “external” perturbation, where a
few extra (external) new variables (Vinegar) are introduced to do so.

For our construction, the idea is very similar, nevertheless, what we suggest is
rather an idea of “internal” perturbation. Our perturbation is performed through
a small set of variables “inside” the space k™ (therefore they are “internal”
variables) and we do not introduce any new variables. Namely given a quadratic
multivariable system F over k", we randomly find a surjective affine linear map
Z from k™ to k™ with a small dimension r, then we try to “perturb” the system
through the small number variables related to Z.

This idea of internal perturbation is a very general idea that can be applied
to all existing multivariable cryptosystems.

A suitable example is the case of Matsumoto-Imai system. The perturbation
is performed by two steps:

1) first, we randomly choose r (small) linearly independent functions:

n
zi= Y oz + B,
i

where z; are the variables of F', which can be treated as components of a sur-
jective affine linear map Z from k™ to k";



2) then, we add randomly quadratic polynomial of z; to the components of

F to define a new map F to replace F:

F (@1, 0 @0) = (FL(&1, ooy Tn) + FL(21, 00 20), F2 (21, ooy 20) + o (21, oo 20, -

Eo(z1, .y xn) + (21, 2r))-
The rest is the same as that of the Matsumoto-Imai system.

In this case, the third method above is not applicable here due to the fact
that there are no linear terms to mix Oil and Vinegar.

We will call our method hidden perturbation equation method due to the
hidden equations that define the perturbation.

The advantages of such new systems include the facts that they may be
able to resist well existing algebraic attacks [KS,C], which may make the system
very secure, and the internal perturbation makes the process of elimination of
unnecessary candidates in the decryption process much faster.

In the first section of the paper, we will introduce in detail the applica-
tion of our general method to the Matsumoto-Imai cryptosystem. Then we will
present a practical implementation example with 136 bits for the perturbation
of a Matsumoto-Imai system, where we choose r to be 6. We will show that it
should have a very high security level against all the known attacking methods.
We will analyze the security and efficiency of the system and compare them with
other multivariable cryptosystems with similar parameters.

2 Perturbation of Matsumoto-Imai system

2.1 The original Matsumoto-Imai Cipher

Let K be a degree n extension of a finite field k of characteristic 2 with q elements,
and K = k[z]/g(z), where g(z) is a degree n irreducible polynomial over k. In
general, the condition of characteristic 2 is not necessary, then we should modify
the system slightly due to the multiplicity concern of the final map.

Let ¢ be the standard k-linear map that identify K with k™

b: K — k",
such that
dlap + a1z + asx® +-- -+ an_12" 1) = (a0, a1,a2, -, an_1).
Let )
F(X)= X"

over K such that g.c.d.(1 +¢¢,¢" — 1)= 1.
F is an invertible map and its inverse is given by

F1(X) = X!,



where ¢(1 + ¢*) = 1 modulo (¢" —1).
Let F' be a map over k™ and

F(@1,.ntn) =¢o0F o (21,.... Tn)

= (ﬁ’l(xl, ...,xn),ﬁ’g(wl, ey L)y Fp(X1y eeey Tp))-

Here ﬁ’,-(a:l, ...; T, ) are quadratic polynomials of n variables.
Let L; and Ly be two randomly chosen invertible affine linear maps over k™.

F(x1,...;xn) = L1 o F o Ly(xy, ..., )

= (F1 (@1, e, ), Fo(@1, ey @)y -, Fp (214 00y 7))

is the cipher suggested by Matsumoto-Imai, which was defeated by the algebraic
attack using linearization equations by Patarin.

2.2 The perturbed Matsumoto-Imai cipher

Let r» be a small number and

n
2 (21,0 Tn) = > anzi + B,
1

n
2 (T2, Tn) = Y r; + By,
1

be a set of randomly chosen linear functions of x; over k™ such that the terms
of degree one are linearly independent. Let

n n
Z(1, ) = (21,7, 20) = () cingy + By, Y iy + By),

which gives a map from k™ to k.
Let

1_7 (Z’l,...,l'n) = (}_’_’1 (mh'"axn)aﬁQ (mla"'axn)a' o 71'_771 (1171,...,.’13'”))

= (Fl (513'1, ,.CL'n) + fl(zl, ) Zr), Fg(zl, ceey Zn) + f2(21, ceey ZT), Tty
Fo(y, s @n) + fr(21,y e 20))s
where f; are randomly chosen quadratic polynomials with r variables.

Let f(z1,-52r) = (f1(21, .5 20), f2(215 00y 20), -+ fr(21, .-y 2,)) and f can be
viewed as a map from k" to k™. Let P be the set consisting of the pairs (A, p),
where ) is a point that belongs to the image of f, and p is the set of pre-images of
A under f. We call P the perturbation set. Here, we know that P has ¢" elements
probabilistically, and it does not include any pair whose first component is the
Zero vector.



We call }:7’ a perturbation of F by Z.

A

F(z1,...;xn) = Lo F oLa(Z1y ey Tn) = (Y1 (T1y ey Bn)y veey Yn (X1, ooy Tn)),s

where y; are quadratic polynomial components of F. We call F' the perturbed
Matsumoto-Imai cipher.

Let f(z1,.,zn) = f(z1(21, .., Tn), -, 2r(21, ..., Tpn)), which is a map from k"
to k™. We can see that

A

F(zy,....xn)=LioFoLy+LyofolLy(x,...,zn),

and the perturbation is performed by just adding L; o f o Ly(x1, ..., z,) to the
original Matsumoto-Imai cipher.
We can use it to establish a public key cryptosystem.

2.3 The public key

The public key include
1) the field k including its addition and multiplication structure;
2) the n quadratic polynomials y1 (Z1, .oy Tn), e, Yn (1, <oy Tnr)-

2.4 Encryption

Given a message vector M = (z},...,z}) as the plaintext, the ciphertext is the

vector
W15 Yn) = W1(@1, s T3)5 s Yn (T, s T))-

2.5 The private key and the decryption

The private key includes:
1) the map F,
2) the set of linear functions z1, ..., 2,
3) the set of points in P (or the set of the polynomials f;(21, ..., 2r)),
4) the two affine linear maps L1, Lo.

2.6 Decryption

Once we have the ciphertext (yi,...,¥,,), the decryption includes the following
steps:

1) compute (7, - Fn) = LT (415 - 81);

IT) take all the elements one by one (A, u) in P, compute

(yz\la ---;yz\n) = ¢_1 o F_l((gla :gn) + )‘)7

and check if Z(yx1,---,Yan) is the same as the corresponding p, if no, discard it,
if yes, go to next step;



ITT) compute (a1, -, Tan) = Ly "0 (Y1, ---, Yan)- If there is only one solution,
it is the plaintext. However, it is very possible that we have more than one
solution, then we can use the same technique as suggested for the HFE method,
namely we can use a few hash functions to differentiate which one is the right one.
In our computer experiments, it seems that, in general the multiplicity seems to
be surprisingly small, and the multiplicity of solutions behaves as expected like
that of randomly chosen functions.

We call our system a perturbed Matsumoto-Imai cryptosystem (PMI). It
is evident that our method is a very general method that it can be used to
perturb any multivariable cryptosystem, such as that the HFE cryptosystem.
After perturbation, the security should be much stronger, but the decryption
process is slower (by a factor of ¢").

3 A practical implementation

For practical use, we suggest a 136 bits implementation of the PMI system.
We choose lgto be Fj.
We choose K to be an 136 degree extension of F» and

g(x) =1+ z+ 2% + ' + 26,

We choose r to be 6, which means the dimension of the perturbation space
is 6.
We choose s
F(X)=x""",

In general, to have a security level of 289, we suggest n to be at least 96 and r

not less than 5. Our implementation example has a much stronger security level
at around 2'36,

3.1 Implementation

Public key size The public key contains 136 quadratic polynomials. Each
polynomial has 136 x 137/2 quadratic terms, 136 linear terms and one constant
term. The key size is about 100K bytes, which is rather big, but should not be
a problem for any PC.

Encryption computation complexity For encryption, we need to compute
the value of a set of quadratic polynomials for a given set of zy, ..., z,, we can
rewrite a quadratic polynomial in the following way:

n n
Zx,(bz + Z ai,jxj) + ¢,

1 j=i
which allows us to compute the value at roughly one and an half times of the
speed of a direct calculation. Therefore we need roughly 19,000 binary (including
both addition and multiplication) operations to calculate the value of each poly-
nomial. Therefore, on average, each message bit needs 19,000 binary operations.



Private key size The private key is much smaller in general, the main parts
are: the 8 linear functions z;, which is of the size 127 x 8 bits, the two linear
transformations L; and Lo and their inverses, which needs 127 x 128 x 4 bits
and the perturbation set P, which needs roughly 64 x 3 x 64 bits. The total is
around 80,000 bits.

Decryption computation complexity For decryption, we need first calculate
the action of L7 ! on the ciphertext vector, which needs roughly 136 x 136 + 136
calculations, which can be neglected compared to the computations required
for the second step. The same is true for the third step. The main part of the
decryption process is the step II, where we need to calculate 64 times the values
of F~1 and the values of z; and compare it with the second components of the
corresponding element in P. The main part surely is to calculate F—1. Due to
the linearization method by Patarin, we can actually find F—! by solving a set of
homogeneous linear equations. In this case, we will implement a fast algorithm
to accomplish this as follows.

1) We identify K as a degree 17 extension of a field K, which is a degree 8
extension over Fy. In this case we can identify K as K8.

2) The map F(X) = X2"**+! can then be identified again as a quadratic
map on K®. Then with the relinearization by Patarin, finding the inverse of K
becomes the process of solving a set of 17 homogeneous linear equations of rank
16, and then solving an equation in the form 22 = b over the field K.

3) This process can be performed by making a multiplication table for the
field K. The table takes 2'® x 24 bits and each search is on a space of 216 bits.
Overall, each F~! calculation becomes a process mainly to solve a set of 17 linear
equations over the field K. Because the message is 136 bits, one can conclude
that the decryption process will take roughly half of the time to solve a 17 linear
equations over K per bit.

We may also use the algorithm in [ACDG] to make this process even faster.

3.2 Security Analysis

In general, a set of 136 quadratic polynomials with 136 variables, are difficult
to solve. However, special methods are invented to attack specially designed
systems. The Matsumoto-Imai system itself is not secure, which mainly is due
to the linearization attack. Namely, any given a plaintext (x1,...,2,) and its
ciphertext (y1,...,yn) satisfy a set of linearization equations in the form

Z Z; Z a; Y; = 0.
J

i

These equations essentially allow us to find enough linear equations satisfied by
the plaintext from a ciphertext to defeat the system. Since then, new methods
have been invented to attack multivariable cryptosystems, mainly the algebraic
method [KS] and its extension the XL method, and for the case of Matsumoto-
Imai Minus system, a method to search for “missing” terms.



Next, we will analyze one by one the impact of all the existing attacking
methods on the perturbed Matsumoto-Imai system.

The attack by linearization method From the name, we can see the PMI
system should have a lot in common with the original MI system.
Let
H, = {YlY = z U/iFi(wl; "'7$n)}a
2

where F; are components of the original Matsumoto-Imai cipher.
Let

Hy ={Y|Y =) aifii(1, ., zn)},
i

where §; are components of the perturbed Matsumoto-Imai cipher.
Let
H. 3 = H 1 N Hz.

Because the perturbation dimension is 6, the dimension of all the linear and
quadratic polynomials of a dimension 6 space of Fj is 21, where 15 are from
quadratic terms and 6 are from linear terms, the dimension of Hj is, therefore
115=136-21. Intuitively, one can view our system as if we take out 21 terms out
of the total 136 public polynomials. This clearly eliminates all the possible lin-
earization equations, which we confirm by our computer experiment. Therefore,
the linearization method cannot be applied here to attack the system.

The attack methods related to the MI Minus systems The MI Minus
systems are suggested for signature purpose. The method simply takes out a few
public quadratic polynomials (Minus method) to improve the security. The main
attack method of this system is to search for quadratic polynomials we can add
to the system such that it becomes the original MI system. The search process
uses the property that the map F is a permutation polynomial on the field K.
This will allow the algebraic attack using linearization equations by Patarin to
be applied successfully again.

For the PMI case, this method is not applicable due to mainly two reasons.

1) In the PMI systems, the perturbed map is not any more an injective (also
not surjective) map, therefore the properties of permutation polynomials can
no longer be applied here to search for the missing terms, because no terms is
actually missing.

2) For our case, finding the “missing terms” is essentially to purge out the
perturbation. For the pure Matsumoto-Imai Minus system, the attacker uses
the fact that there is a good set of polynomials, namely the given polynomials
actually come from the original MI system. For our case this is no longer the
case, as all terms are mixed together. Therefore, there does not exist a good
way to find the subspace of dimension 115 of the polynomials from the original
MI system, namely the subspace Hs. One possible way is certainly just to guess
which one is from Hs and the probability to guess a right one is 1/64, which is



not bad at all. The problem is that we have no way to judge if anyone is the
right guess or not. We conclude it is essentially impossible to find the missing
terms through this way.

The PMI and the Matsumoto-Imai Plus-Minus systems can be viewed in
a very similar way. The similarity is that in the PMI system, we take out 21
quadratic polynomials, and add 21 new polynomials, except that in our case,
we did not add randomly 21 polynomials, but 21 perturbed polynomials. The
attack on the Matsumoto-Imai Plus-Minus system is essentially the XL method,
which we will discuss below.

The attack methods on the HFE The special advantage of the perturbed MI
system, is its resistance to the algebraic attack methods that first was suggested
for attacking the HFE systems. The basic attacking point of the algebraic attack
method [KS] is that the quadratic part of the HFE: Zf}j aij X9+ can be viewed

as a quadratic form with its variables being X7, and the attack is to find a
transformation to reduce a quadratic form into the above form with low rank
using Minrank method. For the PMI systems, this method is not applicable due
to the fact that there is no way that when using the above method, the perturbed
polynomials can be rewritten into low rank quadratic form. The reason for this
is that, in the attack process using the algebraic method in [KS], the map Z
from k'3 to kS is lifted as an embedding map Z from k™ to k™:

Z(21,eyn) = (Z(21, ey 2n), 0, .., 0);

then it is further lifted as a k affine linear map from K to K in the form of
~ A i
Z(X) =) a;X7,
i

where the highest term A should be at least 130, because the dimension of the
pre-image of any point of this map is 130. Therefore, from the analysis of the
efficiency of this method [KS,C], we know it should take much more than 2!36
computations to defeat the system by this method. This suggests that it should
resist other related attacks as well [CDF,FJ].

XL attack The XL method is a very general method for solving multivariable
equations. This method can be viewed as a generalization of the algebraic attack
using linearization equations, where one basically has to search for functions of
only one variable in the ideal generated by Y; = y;(z1, ..., ) — y; by looking at
linear combinations of terms like

E Qirinig...i1 Tiy Tig Tigo-Tiy Y5,
I<D—2

where y; is the i-th public polynomial and y; is the corresponding component
of the ciphertext. The success of this method depends on the degree D. In



[CKPS], there is an argument about asymptotic growth of the complexity to
attack a system with more equations than variables, but no final conclusion about
the complexity is given. What is given are estimates based on some computer
experiments, in particular, the case when there are 2 or more equations than
variables, which for our case can be easily achieved by guessing values of any
2 variables. According to their estimate, for our case, D should be 12, which
is given by the square root of 136, and the XL attack needs to do a Gaussian
elimination on about 136!/124!12! roughly 2°% variables, which requires more
than 2136 operations.

For the case of F3, there exist improved versions of XL [CP], for example, by
adding the equations z? = z; into the system and one may argue that the PMI
system is not a general system, but a system based on the perturbation of the
MI system. Therefore the attack complexity might be different. It is reasonable
to believe that D should be determined by r in our case. For this, we did some
computer experiments, which suggests that the security level is about the level
mentioned above. But our experiment is on a much smaller scale (n = 27, r = 3).
There is some evidence suggesting that D should be roughly r(r — 1)/2, when
n is much bigger than r. According to such an estimate, the complexity of the
attack is bigger than 2190, However this formula is not a proven formula, but a
conjecture, and it is an open question to find a precise formula of D for the PMI
system in terms of both n and r, which then will tell us how we should choose
r given n to ensure the desired security.

From, the argument, we believe (not proven) that, with all the known attack
methods, the security of our system has the attack complexity of 210,

3.3 Comparison with other cryptosystem

In this section, we would like to compare our system with other cryptosystems.

Comparison with RSA In the case of RSA, we know that a minimum of
512 bits is required at this moment to ensure a security level of 2190, First the
key size of RSA surely is very small for both private key and public keys, much
smaller than the PMI system.

The case of public and private computation complexity is however a different
story. In the encryption and decryption process, each needs roughly 512 multi-
plications of two numbers of 512 bits modulo a number of 512 bits to process a
message 512 bits long. Therefore, each bit of information requires two operations
of multiplying two numbers with 512 bits modulo a 512 bits long number.

The conclusion is that the public key size for the PMI system is much bigger
than for the RSA system, (1M versus 1.5K) which however should not be a
problem for any PC. In terms of per bit efficiency, the comparison is between,
on one hand, the RSA, which requires two multiplications of two 512 bit number
modulo another 512 bit number, on the other hand, the PMI system, which is
an operation to solve 17 linear equation over a finite field of size 28 with a given
multiplication table. Our preliminary test indicates that the PMI is much faster.



However this is based on our own implementation and the assumption of the
security of the system. The situation will be different if we have to increase r
for security purpose. If we assume that our system is secure, and since the key
transmission is only a one time transaction, when substantial use is required,
the PMI system could be better than the RSA system.

Comparison with other multivariable cryptosystems The implementa-
tion of multivariable cryptosystem is for either authentication purpose or en-
cryption purpose.

The main examples of signature schemes are Quartz schemes, which are based
on the HFE and Oil-Vinegar method, and the Sflash schemes, which are based on
the Matsumoto-Imai Minus Method. Both of them were accepted for submission
to the New European Schemes for Signatures, Integrity, and Encryption: IST-
1999-12324, and Sflash was accepted in the final selection.

Current multivariable schemes that are still deemed secure and practical for
encryption purpose are basically the HFE scheme, and the HFE and Oil-Vinegar
schemes.

In terms of a broader point of view, the Matsumoto-Imai Minus-Plus method
can also be viewed as a form of perturbation, except that the perturbation is
done through taking out components and adding randomly more components.
In this case, each component taken out means a one dimensional exhaustive
search in the decryption process and if r components are taken out then a search
on an r dimensional space is needed. However for our case, if we perturb by
an r dimensional space, we basically perform an r(r + 1)/2 dimensional Minus
and then Plus operation, except here the Plus operation is not just to add
randomly a set of components, rather a set of “perturbed” components. In this
context, we believe our perturbation method is a better choice compared with
the Matsumoto-Imai Minus-Plus system.

It is surely possible to modify the PMI system by the Minus method for a
signature scheme as well. What we believe is that it will be a more secure but
slower scheme. This is because the perturbed map is not bijective as is case for
MI, and therefore one might have to go through a random search process during
the signature process.

As we explained above, the idea of HFE is to replace the map F' by a small
degree map

F:Xr— Y ag X't + 3 b X7 +¢,

4,7 i

but the degree cannot be too small due to the algebraic attack [KS] and the XL
attack. For the case of a 128 bits implementation over F5, the degree needs to be
2'! to ensure security level as in our implementation example. However to solve
a degree 2! polynomial equation on the 128 bits field, it needs about 222 x 128
computations over the field to solve the equation for the decryption process,
which is much slower than our scheme. Therefore, we believe that the PMI is



a better scheme if our claim on the security is right, otherwise some version of
HFE mixed with PMI will be even better.

Due to the fact that the HFE and Oil-Vinegar scheme is an “external” per-
turbation, namely a new set of variables is introduced to perturb the system.
However, our recent observation shows that due to the nature of the “external”
perturbation, we can extend the algebraic method [KS] from one variable to
two variables case. It seems that we can actually use this generalized algebraic
method of that in [KS] to purge out the perturbation if the polynomial F' for
the HFE equation before the perturbation is small. Once this is done, the origi-
nal algebraic method [KS] and the XL can be used to attack the system again.
Therefore, we think the security of the HFE and Oil-Vinegar scheme is based on
the security of HFE part not the oil vinegar part [CDF,FJ]. The detail of this
work will be given in a separate paper.

4 Discussion

This paper is a suggestion of a new multivariable cryptosystem, the Perturbed
Matsumoto-Imai system, the PMI system. This new system is based on a new
theoretical idea of “internal” perturbation. The practical scheme we suggest is
an implementation of the idea that creates a 136 bits open-key cryptosystem
and the key size is big (1M). However the main purpose of this paper is to
introduce the theoretical idea of “internal” perturbation, which, we believe, is
a very general and applicable idea. Actually our perturbation idea is not just
restricted to the MI systems. We realizes actually it may be a much better idea
to combine the HFE method with our “internal” perturbation method, rather
than the “external” Oil-Vinegar scheme, namely we will perturb the HFE with a
small subspace inside and we do not introduce any new variables. The security is
improved because of the perturbation and the impossible task to purge out the
perturbation. The reason for this is exactly due to the fact that it is internal,
which therefore is fully mixed into the system unlike the case of Oil-Vinegar
mixing.

The argument about security and efficiency in this paper is based on intuitive
and rough ideas and not on strict mathematical arguments. We do not under-
stand why we can do so as well and we believe it is a very interesting problem.
Therefore, we plan to perform more computer simulations, which may give some
ideas how things really are.
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