
Identity-Based Threshold Decryption

Joonsang Baek1 and Yuliang Zheng2

1 School of Network Computing, Monash University, McMahons Road, Frankston,
VIC 3199, Australia

joonsang.baek@infotech.monash.edu.au
2 Dept. Software and Info. Systems, UNC Charlotte, NC 28223, USA

yzheng@uncc.edu

Abstract. In this paper, we examine issues related to the construc-
tion of identity-based threshold decryption schemes and argue that it is
important in practice to design an identity-based threshold decryption
scheme in which a private key associated with an identity is shared. A
major contribution of this paper is to construct the first identity-based
threshold decryption scheme secure against chosen-ciphertext attack. A
formal proof of security of the scheme is provided in the random oracle
model, assuming the Bilinear Diffie-Hellman problem is computation-
ally hard. Another contribution of this paper is, by extending the pro-
posed identity-based threshold decryption scheme, to construct a me-
diated identity-based encryption scheme secure against more powerful
attacks than those considered previously.

1 Introduction

Threshold decryption is particularly useful where the centralization of the power
to decrypt is a concern. And the motivation of identity (ID)-based encryption
originally proposed by Shamir [17] is to provide confidentiality without the need
of exchanging public keys or keeping public key directories. A major advantage
of ID-based encryption is that it allows one to encrypt a message by using a
recipient’s identifiers such as an email address.

A combination of these two concepts will allow one to build an “ID-based
threshold decryption” scheme. One possible application of such a scheme can
be considered in a situation where an identity denotes the name of the group
sharing a decryption key. As an example, suppose that Alice wishes to send a
confidential message to a committee in an organization. Alice can first encrypt
the message using the identity (name) of the committee and then send over the
ciphertext. Let us assume that Bob who is the committee’s president has created
the identity and hence has obtained a matching private decryption key from the
Private Key Generator (PKG). Preparing for the time when Bob is away, he can
share his private key out among a number of decryption servers in such a way
that any committee member can successfully decrypt the ciphertext if, and only
if, the committee member obtains a certain number of decryption shares from
the decryption servers.

Another application of the ID-based threshold decryption scheme is to use
it as a building block to construct a mediated ID-based encryption scheme [7].
The idea is to split a private key associated with the receiver Bob’s ID into two
parts, and give one share to Bob and the other to the Security Mediator (SEM).
Accordingly, Bob can decrypt a ciphertext only with the help of the SEM. As
a result, instantaneous revocation of Bob’s privilege to perform decryption is
possible by instructing the SEM not to help him any more.

In this paper, we deal with the problem of constructing an ID-based threshold
decryption scheme which is efficient and practical while meets a strong security
requirement. We also treat the problem of applying the ID-based threshold de-
cryption scheme to design a mediated ID-based encryption scheme secure against
more powerful attacks than those considered previously in the literature.

2 Preliminaries

We first review the “admissible bilinear map”, which is the mathematical prim-
itive that plays on central role in Boneh and Franklin’s ID-based encryption
scheme [5].

Bilinear Map. The admissible bilinear map ê [5] is defined over two groups
of the same prime-order q denoted by G and F in which the Computational
Diffie-Hellman problem is hard. (By G∗ and ZZ∗q , we denote G \ {O} where O is
the identity element of G, and ZZq \ {0} respectively.) We will use an additive
notation to describe the operation in G while we will use a multiplicative notation
for the operation in F . In practice, the group G is implemented using a group of
points on certain elliptic curves, each of which has a small MOV exponent [15],
and the group F will be implemented using a subgroup of the multiplicative
group of a finite field. The admissible bilinear map, denoted by ê : G × G → F ,
has the following properties.

– Bilinear: ê(aR1, bR2) = ê(R1, R2)ab, where R1, R2 ∈ G and a, b ∈ ZZ∗q .
– Non-degenerate: ê does not send all pairs of points in G × G to the identity

in F . (Hence, if R is a generator of G then ê(R, R) is a generator of F .)
– Computable: For all R1, R2 ∈ G, the map ê(R1, R2) is efficiently computable.

Throughout this paper, we will simply use the term “Bilinear map” to refer
to the admissible bilinear map defined above.

The “BasicIdent” Scheme. We now describe Boneh and Franklin’s basic ver-
sion of ID-based encryption scheme called “BasicIdent” which only gives semantic
security (that is, indistinguishability under chosen plaintext attack).

In the setup stage, the PKG specifies a group G generated by P ∈ G∗ and the
Bilinear map ê : G×G → F . It also specifies two hash functions H1 : {0, 1}∗ → G∗
and H2 : F → {0, 1}l, where l denotes the length of a plaintext.The PKG then
picks a master key x uniformly at random from ZZ∗q and computes a public
key YPKG = xP . The PKG publishes descriptions of the group G and F and
the hash functions H1 and H2. Bob, the receiver, then contacts the PKG to get
his private key DID = xQID where QID = H1(ID). Alice, the sender, can now

encrypt her message M ∈ {0, 1}l using Bob’s identity ID by computing U = rP
and V = H2(ê(QID, YPKG)r) ⊕ M , where r is chosen at random from ZZ∗q and
QID = H1(ID). The resulting ciphertext C = (U, V) is sent to Bob. Bob decrypts
C by computing M = V ⊕ H2(ê(DID, U)).

3 Related Work and Discussion

Boneh and Franklin’s “Distributed PKG”. In order to prevent a single PKG from
full possession of the master key in ID-based encryption, Boneh and Franklin [5]
suggested that the PKG’s master key should be shared among a number of PKGs
using the techniques of threshold cryptography, which they call “Distributed
PKG”. More precisely, the PKG’s master key x is distributed into a number
of PKGs in such a way that each of the PKG holds a share xi ∈ ZZ∗q of a
Shamir’s (t, n)-secret-sharing [16] of x ∈ ZZ∗q and responds to a user’s private
key extraction request with Di

ID = xiQID, where QID = H1(ID). If the technique
of [11] is used, one can ensure that the master key is jointly generated by PKGs
so that the master key is not stored or computed in any single location.

As an extension of the above technique, Boneh and Franklin suggested that
the distributed PKGs should function as decryption servers for threshold de-
cryption. That is, each PKG responds to a decryption query C = (U, V) in
BasicIdent with ê(xiQID, U). However, we argue that this method is not quite
practical in practice since it requires each PKG to be involved at all times (that
is, on-line) in the generation of decryption shares because the value “U” changes
whenever a new ciphertext is created. Obviously, this creates a bottleneck on the
PKGs and also violates one of the basic requirements of an ID-based encryption
scheme, “the PKG can be closed after key generation”, which was envisioned by
Shamir in his original proposal of ID-based cryptography [17]. Moreover, there
is a scalability problem when the number of available distributed PKGs is not
matched against the number of decryption servers required, say, there are only
3 available PKGs while a certain application requires 5 decryption servers.

Therefore, a better approach would be sharing a private key associated with
an identity rather than sharing a master key of the PKG. In addition to its
easy adaptability to the situation where an identity denotes a group sharing a
decryption key as described in Section 1, an advantage of this approach is that
one can fully utilize Boneh and Franklin’s Distributed PKG method without the
above-mentioned scalability problem, dividing the role of “distributed PKGs”
from that of “decryption servers”. That is, an authorized dealer (a representa-
tive of group, such as “Bob” described in Section 1, or a single PKG) may ask
an identity to each of the “distributed PKGs” for a partial private key associ-
ated the identity. Having obtained enough partial private keys, the dealer can
construct the whole private key and distribute it into the “decryption servers”
in his domain at will while the master key remains secret from any parties.

Other Related Work on ID-Based Threshold Decryption. To our knowledge,
other papers that have treated “threshold decryption” in the context of ID-based
cryptography are [8] and [13]. Dodis and Yung [8] observed how threshold de-

cryption can be realized in Gentry and Silverberg [12]’s “hierarchical ID-based
encryption” setting. Interestingly, their approach is to share a private key (not
the master key of the PKG) obtained from a user at a higher level. Although this
was inevitable in the hierarchical ID-based encryption setting and its advantage
in general ID-based cryptography was not mentioned in [8], it is more sound
approach than sharing the master key of the PKG as we discussed above. How-
ever, their threshold decryption scheme is very-sketched and chosen-ciphertext
security for the scheme was not considered in [8]. More recently, Libert and
Quisquater [13] also constructed an ID-based threshold decryption scheme. How-
ever, their approach was to share a master key of the PKG, which is different
from ours. Moreover, our scheme gives chosen ciphertext security while Libert
and Quisquater’s scheme does not.

4 Security Notion for ID-based Threshold Decryption

4.1 Description of Generic ID-Based Threshold Decryption

A generic ID-based threshold decryption scheme, which we denote by “IDT HD”,
consists of algorithms GK, EX, DK, E, D, SV, and SC. Below, we describe each
of the algorithms.

Like other ID-based cryptographic schemes, we assume the existence of a
trusted PKG. The PKG runs the key/common parameter generation algorithm
GK to generate its master/public key pair and all the necessary common pa-
rameters. The PKG’s public key and the common parameters are given to every
interested party.

On receiving a user’s private key extraction request which consists of an
identity, the PKG then runs the private key extraction algorithm EX to generate
the private key associated with the requested identity.

An authorized dealer who possesses the private key associated with an iden-
tity can run the private key distribution algorithm DK to distribute the private
key into n decryption servers. DK makes use of an appropriate secret-sharing
technique to generate shares of the private key as well as verification keys that
will be used for checking the validity of decryption shares. Each share of the
private key and its corresponding verification key are sent to an appropriate de-
cryption server. The decryption servers then keep their private key shares secret
but publish the verification keys. It is important to note here that the entity
that runs DK can vary flexibly depending on the cryptographic services that the
PKG can offer. For example, if the PKG has an only functionality of issuing
private keys, the authorized dealer that runs DK would be a normal user (such
as Bob in the example given in Section 1) other than the PKG. However, if the
PKG has other functionalities, for example, organizing threshold decryption, the
PKG can run DK.

Given a user’s identity, any user that wants to encrypt a plaintext can run
the encryption algorithm E to obtain a ciphertext. A legitimate user that wants
to decrypt a ciphertext gives it to the decryption servers requesting decryption

shares. The decryption servers then run the decryption share generation algo-
rithm D taking the ciphertext as input and send the resulting decryption shares
to the user. Note that the validity of the shares can be checked by running the
decryption share verification algorithm SV. When the user collects valid decryp-
tion shares from at least t servers, the plaintext can be reconstructed by running
the share combining algorithm SC.

4.2 Chosen Ciphertext Security for ID-Based Threshold Decryption

We now define a security notion for the IDT HD scheme against chosen-ciphertext
attack, which we call “IND-IDTHD-CCA”.

Definition 1 (IND-IDTHD-CCA). Let ACCA be an attacker assumed to be
a probabilistic Turing machine. Suppose that a security parameter k is given
to ACCA as input. Now, consider the following game in which the attacker ACCA

interacts with the “Challenger”.

Phase 1: The Challenger runs the PKG’s key/common parameter generation algo-
rithm taking a security parameter k as input. The Challenger gives ACCA the result-
ing common parameter cp which includes the PKG’s public key pkPKG. However,
the Challenger keeps the master key skPKG secret from ACCA.
Phase 2: ACCA issues a number of private key extraction queries. We denote each
of these queries by ID. On receiving the identity query ID, the Challenger runs the
private key extraction algorithm on input ID and obtains a corresponding private
key skID. Then, the Challenger returns skID to ACCA.
Phase 3: ACCA corrupts t− 1 out of n decryption servers.
Phase 4: ACCA issues a target identity query ID∗. On receiving ID∗, the Challenger
runs the private key extraction algorithm to obtain a private key skID∗ associated
with the target identity. The Challenger then runs the private key distribution algo-
rithm on input skID∗ with parameter (t, n) and obtains a set of private/verification
key pairs {(skID∗i , vkID∗i)}, where 1 ≤ i ≤ n. Next, the Challenger gives ACCA

the private keys of corrupted decryption servers and the verifications keys of all
the decryption servers. However, the private keys of uncorrupted servers are kept
secret from ACCA.
Phase 5: ACCA issues arbitrary private key extraction queries and arbitrary de-
cryption share generation queries to the uncorrupted decryption servers. We denote
each of these queries by ID and C respectively. On receiving ID, the Challenger
runs the private key extraction algorithm to obtain a private key associated with
ID and returns it to ACCA. The only restriction here is that ACCA is not allowed to
query the target identity ID∗ to the private key extraction algorithm. On receiving
C, the Challenger runs the decryption share generation algorithm taking C and
the target identity ID∗ as input to obtain a corresponding decryption share and
returns it to ACCA.
Phase 6: ACCA outputs two equal-length plaintexts (M0, M1). Then the Challenger
chooses a bit β uniformly at random and runs the encryption algorithm on input
cp, Mβ and ID∗ to obtain a target ciphertext C∗ = E(cp, ID∗, Mβ). Finally, the
Challenger gives (C∗, ID∗) to ACCA.
Phase 7: ACCA issues arbitrary private key extraction queries and arbitrary de-
cryption share generation queries. We denote each of these queries by ID and C

respectively. On receiving ID, the Challenger runs the private key extraction algo-
rithm to obtain a private key associated with ID and returns it to ACCA. As Phase
5, the only restriction here is that ACCA is not allowed to query the target iden-
tity ID∗ to the private key extraction algorithm. On receiving C, the Challenger
runs the decryption share generation algorithm on input C to obtain a correspond-
ing decryption share and returns it to ACCA. Differently from Phase 5, the target
ciphertext C∗ is not allowed to query in this phase.
Phase 8: ACCA outputs a guess β̃ ∈ {0, 1}.
We define ACCA’s success as a function SuccIND−IDTHD−CCA

IDT HD,ACCA (k) = 2 ·Pr[β̃ =
β] − 1. The ID-based threshold decryption scheme IDT HD is said to be IND-
IDTHD-CCA secure if, for any attacker ACCA whose running time is polynomially
bounded, SuccIND−IDTHD−CCA

IDT HD,ACCA (k) is negligible in k.

5 Our ID-Based Threshold Decryption Scheme

5.1 Building Blocks

First, we present necessary building blocks that will be used to construct our ID-
based threshold decryption scheme. We remark that since our ID-based threshold
decryption scheme is also of the Diffie-Hellman (DH)-type, it follows Shoup
and Gennaro [18]’s framework for the design of DH-based threshold decryption
schemes to some extent. However, our scheme has a number of features that
distinguishes itself from the schemes in [18] due to the special property of the
underlying group G.

Publicly Checkable Encryption. Publicly checkable encryption is a particu-
larly important tool for building threshold decryption schemes secure against
chosen-ciphertext attack as discussed by Lim and Lee [14]. The main reason is
that in the threshold decryption, the attacker has decryption shares as additional
information as well as a ciphertext, hence there is a big chance for the attacker
to get enough decryption shares to recover the plaintext before the validity of
the ciphertext is checked. (Readers are referred to [14] and [18] for more detailed
discussions on this issue.)

The public checkability of ciphertexts in threshold decryption schemes is
usually given by non-interactive zero-knowledge (NIZK) proofs, e.g., [18, 10].
However, we emphasize that in our scheme, this can be done without a NIZK
proof, by simply creating a tag on the ElGamal [9] ciphertext as follows.

Let M ∈ {0, 1}l be a message. Then, encrypt M by creating a ciphertext
C = (U, V, W) = (rP, H2(κ) ⊕ M, rH3(U, V)) where κ = ê(H1(ID), YPKG)r for
hash functions H1 : {0, 1}∗ → G∗, H2 : F → {0, 1}l, and H3 : G∗ × {0, 1}l →
G∗. Without recovering M during the decryption process (that is, leaving the
ciphertext C intact), the validity of C can be checked by testing if ê(P, W) =
ê(U,H3), where H3 = H3(U, V) ∈ G∗. Note that this validity test exploits the fact
that the Decisional Diffie-Hellman (DDH) problem can be solved in polynomial
time in the group G, and passing the test implies that (P,U,H3,W) is a Diffie-
Hellman tuple since (P, U,H3,W) = (P, rP, sP, rsP) assuming that H3 = sP ∈R

G∗ for some s ∈ ZZ∗q .

Sharing a Point on G. In order to share a private key DID ∈ G, we need some
trick. In what follows, we present a Shamir’s (t, n)-secret-sharing over G.

Let q be a prime order of a group G (of points on elliptic curve). Let S ∈ G∗
be a point to share. Suppose that we have chosen integers t (a threshold) and
n satisfying 1 ≤ t ≤ n < q. First, we pick R1, R2, . . . , Rt−1 at random from G∗.
Then, we define a function F : IN ∪ {0} → G such that F (u) = S +

∑t−1
l=1 ulRl.

(Note that in practice, “picking Rl at random from G∗” can be implemented by
computing rlP for randomly chosen rl ∈ ZZ∗q , where P ∈ G∗ is a generator of G.)
We then compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th member
of the group of cardinality n. When the number of shares reaches the threshold t,
the function F (u) can be reconstructed by computing F (u) =

∑
j∈Φ cΦ

ujSj where
cΦ
uj =

∏
ι∈Φ,ι 6=j

u−ι
j−ι ∈ ZZq is the Lagrange coefficient for a set Φ ⊂ {1, . . . , n}

such that |Φ| ≥ t.
Zero Knowledge Proof for the Equality of Two Discrete Logarithms Based on

the Bilinear Map. To ensure that all decryption shares are consistent, that is, to
give robustness to threshold decryption, we need a certain checking procedure.
In contrast to the ciphertext validity checking mechanism of in our publicly
checkable encryption presented above, we need a non-interactive zero-knowledge
proof system since the share of the key κ is the element of the group F , where
the DDH problem is believed to be hard.

Motivated by [6] and [18], we construct a zero-knowledge proof of membership
system for the language LEDLogF

P,P̃

def= {(µ, µ̃) ∈ F × F| logg µ = logg̃ µ̃} where

g = ê(P, P) and g̃ = ê(P, P̃) for generators P and P̃ of G (the groups G and F
and the Bilinear map ê are as defined in Section 2) as follows.

Suppose that (P, P̃ , g, g̃) and (κ, κ̃) ∈ LEDLogF
P,P̃

are given to the Prover and
the Verifier, and the Prover knows a secret S ∈ G∗. The proof system which we
call “ZKBm” works as follows.

– The Prover chooses a non-identity element T uniformly at random from G
and computes γ = ê(T, P) and γ̃ = ê(T, P̃). The Prover sends γ and γ̃ to
the Verifier.

– The Verifier chooses h uniformly at random from ZZ∗q and sends it to the
Prover.

– On receiving h, the Prover computes L = T +hS ∈ G and sends it to the Ver-
ifier. The Verifier checks if ê(L,P) = γκh and ê(L, P̃) = γ̃κ̃h. If the equality
holds then the Verifier returns “Accept”, otherwise, returns “Reject”.

The above protocol actually satisfies completeness, soundness and zero-knowledge
against the honest Verifier (The proof is given in the full version of this pa-
per [1].) Note that ZKBm can easily be converted to a NIZK proof, making the
random challenge an output of a random oracle [2]. Note also that the above
protocol can be viewed as a proof that (g, g̃, κ, κ̃) is a Diffie-Hellman tuple since
if (κ, κ̃) ∈ LEDLogF

P,P̃
then κ = gx and κ̃ = g̃x for some x ∈ ZZ∗q and hence

(g, g̃, κ, κ̃) = (g, g̃, gx, g̃x) = (g, gy, gx, gxy) for some y ∈ ZZ∗q .

5.2 Description of Our Scheme – IdThdBm

We now describe our ID-based threshold decryption scheme. We call our scheme
“IdThdBm”, meaning “ID-based threshold decryption scheme from the bilinear
map”. IdThdBm consists of the following algorithms.

– GK(k): Given a security parameter k, this algorithm generates two groups G and F
of the same prime order q ≥ 2k and chooses a generator P of G. Then, it specifies
the Bilinear map ê : G×G → F and the hash functions H1, H2, H3 and H4 such that
H1 : {0, 1}∗ → G∗; H2 : F → {0, 1}l; H3 : G∗×{0, 1}l → G∗; H4 : F×F×F → ZZ∗q ,
where l denotes the length of a plaintext. Next, it chooses the PKG’s master key
x uniformly at random from ZZ∗q and computes the PKG’s public key YPKG = xP .
Finally, it returns a common parameter cp = (G, q, P , ê, H1, H2, H3, H4, YPKG)
while keeping the master key x secret.

– EX(cp, ID): Given an identity ID, this algorithm computes QID = H1(ID) and DID =
xQID. Then, it returns the private key DID associated with ID.

– DK(cp, ID, DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the number
of decryption servers n and a threshold parameter t, this algorithm first picks
R1, R2, . . . , Rt−1 at random from G∗ and constructs F (u) = DID +

∑t−1

j=1
ujRj

for u ∈ {0} ∪ IN. It then computes each server Γi’s private key Si = F (i) and
verification key yi = ê(Si, P) for 1 ≤ i ≤ n. Subsequently, it secretly sends the
distributed private key Si and the verification key yi to server Γi for 1 ≤ i ≤ n. Γi

then keeps Si as secret while making yi public.

– E(cp, ID, m): Given a plaintext M ∈ {0, 1}l and an identity ID, this algorithm
chooses r uniformly at random from ZZ∗q , and subsequently computes QID = H1(ID)
and κ = ê(QID, YPKG)r. It then computes

U = rP ; V = H2(κ)⊕M ; W = rH3(U, V)

and returns a ciphertext C = (U, V, W).

– D(cp, Si, C): Given a private key Si of each decryption server and a ciphertext
C = (U, V, W), this algorithm computes H3 = H3(U, V) and checks if ê(P, W) =
ê(U, H3).

If C has passed the above test, this algorithm computes κi = ê(Si, U), κ̃i =
ê(Ti, U), ỹi = ê(Ti, P), λi = H4(κi, κ̃i, ỹi), and Li = Ti + λiSi for random Ti ∈ G,
and outputs δi,C = (i, κi, κ̃i, ỹi, λi, Li). Otherwise, it returns δi,C =(i, “Invalid
Ciphertext”).

– SV(cp, {yi}1≤i≤n, C, δi,C): Given a ciphertext C = (U, V, W), a set of verification
keys {y1, . . . , yn}, and a decryption share δi,C , this algorithm computes H3 =
H3(U, V) and checks if ê(P, W) = ê(U, H3).

If C has passed the above test then this algorithm does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”) then return “Invalid Share”.

- Else parse δi,C as (i, κi, κ̃i, ỹi, λi, Li) and compute λ′i = H4(κi, κ̃i, ỹi).

- Check if λ′i = λi, ê(Li, U)/κ
λ′i
i = κ̃i and ê(Li, P)/y

λ′i
i = ỹi.

- If the test above holds, return “Valid Share”, else output “Invalid Share”.

Otherwise, does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”), return “Valid Share”, else output
“Invalid Share”.

– SC(cp, C, {δj,C}j∈Φ): Given a ciphertext C and a set of valid decryption shares
{δj,C}j∈Φ where |Φ| ≥ t, this algorithm computes H3 = H3(U, V) and checks if
ê(P, W) = ê(U, H3).
If C has not passed the above test, this algorithm returns “Invalid Ciphertext”.
(In this case, all the decryption shares are of the form (i, “Invalid Ciphertext”).)

Otherwise, it computes κ =
∏

j∈Φ
κ

cΦ
0j

j and M = H2(κ)⊕ V , and returns M .

5.3 Security Analysis – IdThdBm

Bilinear Diffie-Hellman Problem. First, we review the Bilinear Diffie-Hellman
(BDH) problem, which was introduced by Boneh and Franklin [5].

Definition 2 (BDH). Let G and F be two groups of order q where q is prime,
as defined in Section 2. Let P ∈ G∗ be a generator of G. Suppose that there
exists a Bilinear map ê : G × G → F . Let ABDH be an attacker modelled as a
probabilistic Turing machine.

The BDH problem refers to the computational problem in which ABDH is to
compute the BDH key ê(P, P)abc given (G, q, P, aP, bP, cP) and a security param-
eter k. We define ABDH’s success as a function SuccBDH

G,ABDH(k)=Pr[ABDH outputs
ê(P, P)abc]. The BDH problem is said to be computationally intractable if, for
any attacker ABDH whose running time is polynomially bounded, SuccBDH

G,ABDH(k)
is negligible in k.

Proof of Security. Regarding the security of the IdThdBm scheme, we obtain the
following theorem. (For a more detailed proof, we refer readers to the full version
of this paper [1].)

Theorem 1. In the random oracle model, the IdThdBm scheme is IND-IDTHD-
CCA secure if the BDH problem is computationally intractable.

Proof. (Sketch) To prove the above theorem, we derive a non-ID-based threshold
decryption scheme, which we call “ThdBm”, from the IdThdBm scheme. Actually,
ThdBm is the same as IdThdBm except that it does not have a private key ex-
traction algorithm and hence the hash function H1 : {0, 1}∗ → G∗ is not used.
The private key D of this scheme is generated by choosing Q and x uniformly
at random from G∗ and ZZ∗q respectively, and computing D = xQ. The public
key of this scheme consists of (Q,Y), where Y = xP . Note that the private key
D is shared among n decryption servers. The encryption of a plaintext message
m ∈ {0, 1}l can be done by choosing r uniformly at random from ZZ∗q and com-
puting U = rP , V = H2(κ) ⊕m, and W = rH3(U, V), where d = ê(Q,Y) and
κ = dr.

As a first step, we show how to use the IND-IDTHD-CCA attacker ACCA for
IdThdBm to construct an IND-THD-CCA attacker BCCA for ThdBm. (IND-THD-
CCA denotes the chosen-ciphertext security notion for non-ID-based threshold
decryption defined in [18].) First, BCCA gives Y as the PKG’s public key ACCA.
BCCA then randomly chooses an index µ from the range [1, qH1] where qH1 denotes
the maximum number of queries made by ACCA to the random oracle H1. By

IDµ, we denote the µ-th query to the random oracle H1. BCCA hopes IDµ to be
a target identity ID∗ that ACCA outputs at some stage. Now, if ACCA queries
H1 at ID 6= IDµ, BCCA responds with τP , where τ is randomly chosen from ZZ∗q .
Otherwise, BCCA responds with Q. Similarly, if ACCA issues ID 6= IDµ as a private
key extraction query, BCCA responds to the query with τY , where τ is randomly
chosen from ZZ∗q , and stops the simulation otherwise. (However, if IDµ = ID∗,
this query is not allowed.) If ACCA issues decryption share generation queries
after it submits the target identity, BCCA uses its decryption servers to answer
those queries. Notice that if IDµ = ID∗, which happens with probability 1/qH1 ,
the simulation is perfect.

The next step is to show how to use the IND-THD-CCA attacker BCCA

for ThdBm to construct an attacker ABDH for solving the BDH problem. Sup-
pose that (G, q, ê, P, aP, bP, cP) for random a, b, c ∈ ZZ∗q are given to ABDH.
Assume that BCCA has access to the common parameter (G, q, P , ê, H2, H3,
H4, Y , Q). First, ABDH replaces Y by bP and Q by cP . If BCCA corrupts a sub-
set of t − 1 servers, where t is a threshold parameter, ABDH assumes that the
servers Γ1, Γ2, . . . , Γt−1 have been corrupted without loss of generality. ABDH

then chooses S1, S2, . . . , St−1 uniformly at random from G and computes yi =
ê(Q,Y)cΦ

i0
∏t−1

j=1 ê(Sj , P)cΦ
ij , where t ≤ i ≤ n and cΦ

ij denotes the Lagrange coef-
ficient for a set Φ = {0, 1, . . . , t − 1}. ABDH sends yi to each of the uncorrupted
decryption servers, that is, ABDH replaces the verification keys with the new yi

computed above.

Whenever the random oracle H3 is queried at some point by BCCA, ABDH picks
s uniformly at random from ZZ∗q , computes H3 = sY , and responds BCCA with
it. On receiving queries to other random oracles, ABDH picks values at random
from the ranges of the random oracles, and responds with them.

When BCCA submits two plaintexts (M0, M1) to the encryption oracle, ABDH

creates a target ciphertext C∗ = (U∗, V ∗,W ∗) as follows. First, ABDH sets U∗ =
aP . ABDH then picks a string V ∗ at random from {0, 1}l, computes H∗

3 = s∗P for
random s∗ ∈ ZZ∗q , and sets H∗

3 = H3(U∗, V ∗). ABDH also computes W ∗ = s∗U∗.
Having created C∗, ABDH returns it to BCCA as a target ciphertext. Note here that
ê(P, W ∗) = ê(U∗, H∗

3) since (P, U∗, H∗
3 ,W ∗) = (P, aP, s∗P, s∗aP) and hence is

a legitimate Diffie-Hellman tuple. Therefore, as long as BCCA does not query the
random oracle H2 at the point ê(P, P)abc, the simulation is perfect. However,
happening such an event means that ABDH is able to solve the BDH problem. So
ABDH simulates BCCA’s view up to this event.

Now, suppose that ACCA has already made a query (U, V) to the random
oracle H3. By the construction of the simulator for H3, we have H3 = H(U, V) =
sY for random s ∈ ZZ∗q . Since ABDH knows the value s, ABDH can compute K =
(1/s)W and hence κ = ê(Q,K). Note here that (1/s)W = (1/s)rsY = rY =
rxP and Q = cP . Then, ABDH computes κi = κcΦ

i0
∏t−1

j=1 ê(Sj , U)cΦ
ij for t ≤ i ≤ n.

It is easy to check κi is a correct i-th share of the BDH key κ = ê(Q,Y)r.

The rest is a simulation of a full decryption share δi,C = (i, κi, κ̃i, ỹi, Li). This
can easily be done by the zero-knowledge simulation technique, responding to
queries to the random oracle H4 with an element randomly chosen from ZZ∗q . ut

6 Application to Mediated ID-Based Encryption

6.1 Security Issues in Mediated ID-Based Encryption

The main motivation of mediated cryptography [4] is to revoke a user’s privilege
to perform cryptographic operations such as decrypting ciphertexts or signing
messages instantaneously. In [4], Boneh et al. constructed the first mediated
encryption and signature schemes using the RSA primitive. Their idea is to split
a user’s private key into two parts and give one piece to the on-line Security
Mediator (SEM) and the other to the user. To decrypt or sign, the user must
acquire a message-specific token which is associated with the SEM part of private
key from the SEM. As a result, revocation is achieved by instructing the SEM
not to issue tokens for the user.

Recently, the problem of realizing mediated encryption in the ID-based set-
ting was considered by Ding and Tsudik [7]. They proposed an ID-based medi-
ated encryption scheme based on RSA-OAEP [3]. Although their scheme offers
good performance and practicality, it has a drawback which stems from the fact
that a common RSA modulus is used for all the users within the system and
hence, to guarantee the security of Ding and Tsudik’s scheme, one should assume
that the SEM’s private key must be protected throughout the life of the system.

As an alternative to Ding and Tsudik’s solution, Libert and Quisquater [13]
proposed a new mediated ID-based encryption scheme based on Boneh and
Franklin’s ID-based encryption scheme. In term of security, it has an advan-
tage over Ding and Tsudik’s scheme in a sense that a compromise of the SEM’s
private key does not lead to a break of the whole system. In contrast to this pos-
itive result, Libert and Quisquater observed that even though the SEM’s private
key is protected, their scheme as well as Ding and Tsudik’s scheme are not se-
cure against “inside attack” in which the attacker who possesses the user part of
private key conducts chosen-ciphertext attack. As a result, it should be strictly
assumed in those schemes that users’ private keys must be protected to ensure
chosen-ciphertext security. In practice, this assumption is fairly strong in that
there may be more chance for users to compromise their private keys than the
SEM does since the SEM is usually assumed to be a trusted entity configured
by a system administrator.

However, in the following section, we present a new mediated ID-based en-
cryption scheme based on our IdThdBm scheme, which is secure against cipher-
text attack in a strong sense, that is, secure against chosen-ciphertext attack
conducted by the attacker that obtains the user part of private key.

6.2 Description of Our Scheme – mIdeBm

We describe our mediated ID-based encryption scheme “mIdeBm” based on the
IdThdBm scheme with (t, n) = (2, 2) as follows.

– Setup: Given a security parameter k, the PKG runs the key generation algorithm
of IdThdBm. The output of this algorithm cp = (G, q, P , ê, H1, H2, H3, H4, YPKG)
is as defined in the description of IdThdBm. Note that cp is given to all interested
parties while the master key x is kept secret within the PKG.

– Keygen: Given a user’s identity ID, the PKG computes QID = H1(ID) and DID =
xQID. It then splits DID using the (2, 2)-secret-sharing technique as follows3.
• Pick R at random from G∗ and construct F (u) = DID + uR for u ∈ {0} ∪ IN.
• Compute DID,sem = F (1) and DID,user = F (2).

The PKG gives DID,sem to the SEM and DID,user to the user.
– Encrypt: Given a plaintext M ∈ {0, 1}l and a user’s identity ID, a sender creates

a ciphertext C = (U, V, W) such that

U = rP ; V = H2(κ)⊕M ; W = rH3(U, V),

where κ = ê(H1(ID), YPKG)r for random r ∈ ZZ∗q .
– Decrypt: When receiving C = (U, V, W), a user forwards it to the SEM. The SEM

and the user perform the following in parallel.

• SEM (We call this procedure “SEM oracle”):
1. Check if the user’s identity ID is revoked. If it is, return “ID Revoked”.
2. Otherwise, do the following:

∗ Compute H3 = H3(U, V) and check if ê(P, W) = ê(U, H3). If C has
passed this test, compute κsem = ê(DID,sem, U) and send δID,sem,C =
(sem, κsem) to the user. Otherwise, send δID,sem,C = (sem, “Invalid
Ciphertext”) to the user.

• User (We call this procedure “User oracle”):
1. Compute H3 = H3(U, V) and check if ê(P, W) = ê(U, H3). If C has passed

this test, compute κuser = ê(DID,user, U). Otherwise, return “Reject” and
terminate.

2. Get δID,sem,C from the SEM and do the following:
∗ If δID,sem,C is of the form (sem, “Invalid Ciphertext”), return “Reject”

and terminate. Otherwise, compute κ = κ
cΦ
01

semκ
cΦ
02

user where cΦ
01 and cΦ

02

denote the Lagrange coefficients for the set Φ = {1, 2} and M =
H2(κ)⊕ V , and return M .

Notice that in the SEM oracle of the above scheme, the validity of a ciphertext
is checked before generating a token in the same way as the decryption share
generation algorithm of IdThdBm does.

6.3 Security Analysis – mIdeBm

In this section, we show that the chosen-ciphertext security of the above scheme
against the strong attacker that obtains the user part of private key is relative
to the IND-IDTHD-CCA (Definition 1) security of the (2, 2)-IdThdBm scheme.

To begin with, we define IND-mID-sCCA (indistinguishability of mediated
ID-based encryption against strong chosen-ciphertext attack), which is similar
to IND-mID-wCCA (“w” stands for “weak”) defined in [13] but assumes the
stronger attacker that can corrupt users to get their private keys.
3 In this particular case of (2, 2)-secret-sharing, one may share DID by taking a random

DID,sem and computing DID,user = DID −DID,sem for efficiency.

Definition 3 (IND-mID-sCCA). Let ACCA′ be an attacker that defeats the
IND-mID-sCCA security of an mediated ID-based encryption scheme MIDE
which consists of Setup, Keygen, Encrypt and Decrypt algorithms. (For details
of these algorithms, readers are referred to mIdeBm given in Section 6.2.) We
assume that ACCA′ is a probabilistic Turing machine taking a security parameter
k as input. Consider the following game in which the attacker ACCA′ interacts
with the “Challenger”.

Phase 1: The Challenger runs the Setup algorithm taking a security parameter
k. The Challenger then gives the common parameter to ACCA′.
Phase 2: Having obtained the common parameter, ACCA′ issues the following
queries.

• “User key extraction” query ID: On receiving this query, the Challenger runs
the Keygen algorithm to obtain the user part of private key and sends it to
ACCA′.

• “SEM key extraction” query ID: On receiving this query, the Challenger runs
the Keygen algorithm to obtain the SEM part of private key and sends it to
ACCA′.

• “SEM oracle” query (ID, C): On receiving this query, the Challenger runs the
Keygen algorithm to obtain a SEM part of private key. Taking the result-
ing private key as input, the Challenger runs the SEM oracle in the Decrypt
algorithm to obtain a decryption token for C and sends it to ACCA′.

• “User oracle” query (ID, C): On receiving this query, the Challenger runs the
Keygen algorithm to obtain a User part of private key. Taking the resulting
private key as input, the Challenger runs the User oracle in the Decrypt algo-
rithm to obtain a decryption token for C and sends it to ACCA′.

Phase 3: ACCA′ selects two equal-length plaintexts (M0, M1) and a target identity
ID∗ which was not queried before. On receiving (M0, M1) and ID∗, the Challenger
runs the Keygen algorithm to obtain User and SEM parts of the private key asso-
ciated with ID∗. The Challenger then chooses β ∈ {0, 1} at random and creates a
target ciphertext C∗ by encrypting Mβ under the target identity ID∗. The Chal-

lenger gives the target ciphertext and the User part of the private key to ACCA′.
Phase 4: ACCA′ continues to issue “User key extraction” query ID 6= ID∗, “SEM key
extraction” query ID 6= ID∗, “SEM oracle” query (ID, C) 6= (ID∗, C∗), and “User
oracle” query (ID, C) 6= (ID∗, C∗). The details of these queries are as described in
Phase 2.
Phase 5: ACCA′ outputs a guess β̃ ∈ {0, 1}.

We define ACCA′’s success as a function SuccIND−mID−sCCA
MIDE,ACCA′ (k) = 2 · Pr[β̃ =

β] − 1. The mediated ID-based encryption scheme MIDE is said to be IND-
mID-sCCA secure if, for any attacker ACCA whose running time is polynomially
bounded, SuccIND−mID−sCCA

MIDE,ACCA′ (k) is negligible in k.

We now state and prove the following theorem. (Readers are referred to [1]
for a more detailed proof.)

Theorem 2. If the (2, 2)-IdThdBm scheme is IND-IDTHD-CCA secure then the
mIdeBm scheme is IND-mID-sCCA secure.

Proof. (Sketch) We show how to use the IND-mID-sCCA attacker ACCA′ for
mIdeBm to construct an IND-IDTHD-CCA attacker ACCA for IdThdBm.

When ACCA′ issues a new “User key extraction” or “SEM key extraction”
query, which is an ID, ACCA forwards ID to its Challenger as a private key ex-
traction query, obtains a private key DID associated with ID, and gives DID to
ACCA′. Having done this, ACCA splits DID into DID,sem and DID,user using the (2,
2)-secret-sharing technique. ACCA then adds 〈ID, DID,user〉 and 〈ID, DID,sem〉 to
UserKeyList and SEMKeyList respectively. Using these lists, ACCA answers ACCA′’s
“SEM oracle” and “User oracle” queries, each of which consists of (ID, C). If nec-
essary, ACCA forwards the ID in those queries to its Challenger to get a private
key associated with it. It should be emphasized here that ACCA always checks
the validity of the ciphertext C = (U, V,W) by testing whether ê(P, W) equals
to ê(U,H3(U, V)). If C does not pass this test, ACCA rejects it.

Once ACCA′ issues two equal-length plaintexts (M0,M1) and a target identity
ID∗, ACCA forwards (M0,M1, ID∗) to its Challenger. On receiving (M0,M1, ID∗),
the Challenger runs the private key extraction algorithm of IdThdBm to get a
private key DID∗ associated with ID∗ and runs the private key distribution al-
gorithm of IdThdBm to split DID∗ into DID∗,sem and DID∗,user. The Challenger
gives DID∗,user to ACCA as a corrupted party’s private key. ACCA then sends this
back to ACCA′. In doing so, the strong attacker ACCA′ possesses the user part
of private key. Now, the Challenger chooses β ∈ {0, 1} at random and runs the
encryption algorithm E of IdThdBm taking (Mβ , ID∗) as input and gets a target
ciphertext C∗. The Challenger gives it to ACCA. Then, ACCA sends C∗ back to
ACCA′.

ACCA answers “User key extraction”, “SEM key extraction”, “SEM oracle”,
and “User oracle” queries in the same way it did before. Note, however, that the
cases when (ID, C∗) and (ID∗, C) are asked as “SEM oracle” and “User oracle”
queries should be handled at this stage. Especially, ACCA uses its decryption
servers to handle the query (ID∗, C).

Finally, if ACCA′ outputs a guess β′ ∈ {0, 1}, ACCA returns it as its guess. ut

7 Concluding Remarks

In this paper, we discussed the issues related to the realization of ID-based
threshold decryption and proposed the first threshold ID-based decryption scheme
provably secure against chosen-ciphertext attack. We also showed how our ID-
based threshold decryption scheme can result in a mediated ID-based encryption
scheme secure against “inside attack”, whereby an attacker who possesses a user
part of private key conducts chosen-ciphertext attack.

Interesting future research would be finding more security applications where
“ID-based threshold decryption” is particularly useful.

Acknowledgement

The authors are grateful to anonymous referees for their helpful comments. The
first author also thanks Ron Steinfeld and John Malone-Lee for their valuable
comments on the earlier version of this paper.

References

1. J. Baek and, Y. Zheng, Identity-Based Threshold Decryption, IACR ePrint Archive
Report 2003/164.

2. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, Proceedings of the First ACM Conference on Computer
and Communications Security 1993, pages 62–73.

3. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Advances in Cryptol-
ogy -Proceedings of Eurocrypt ’94, LNCS 950, Springer-Verlag 1994, pages 92–111.

4. D. Boneh, X. Ding, G. Tsudik and C. Wong, A Method for Fast Revocation of
Public Key Certificates and Security Capabilities, Proceedings of the 10th USENIX
Security Symposium, USENIX, 2001.

5. D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, Pro-
ceedings of CRYPTO 2001, LNCS 2139, Springer-Verlag 2001, pages 213–229.

6. D. Chaum and T. Perderson, Wallet Databases with Observers, Proceedings of
CRYPTO ’92, LNCS 740, Springer-Verlag 1992, pages 89–105.

7. X. Ding and G. Tsudik, Simple Identity-Based Cryptography with Mediated RSA,
Proceedings CT-RSA 2003, LNCS 2612, Springer-Verlag 2003, pages 192–209.

8. Y. Dodis and M Yung, Exposure-Resilience for Free: The Hierarchical ID-based
Encryption Case, Proceedings of IEEE Security in Storage Workshop 2002, pages
45–52.

9. T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Trans. Info. Theory, 31, 1985, pages 469–472.

10. P. Fouque and D. Pointcheval, Threshold Cryptosystems Secure Chosen-Ciphertext
Attacks, Proceedings of ASIACRYPT 2001, LNCS 2248, Springer-Verlag 2001,
pages 351–368.

11. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure Distributed Key Gen-
eration for Discrete-Log Based Cryptosystem, Proceedings of EUROCRYPT ’99,
LNCS 1592, Springer-Verlag 1999, pages 295–310.

12. C. Gentry and A. Silverberg, Hierarchical ID-Based Cryptography, Proceedings of
ASIACRYPT 2002, LNCS 2501, Springer-Verlag 2002, pages 548–566.

13. B. Libert and J. Quisquater, Efficient Revocation and Threshold Pairing Based
Cryptosystems, Principles of Distributed Computing (PODC) 2003.

14. C. Lim and P. Lee, Another Method for Attaining Security Against Adaptively Cho-
sen Ciphertext Attack, Proceedings of CRYPTO ’93, LNCS 773, Springer-Verlag
1993, pages 410–434.

15. A. J. Menezes, T. Okamoto, and S. A. Vanstone: Reducing Elliptic Curve Loga-
rithms to a Finite Field, IEEE Tran. on Info. Theory, Vol. 31, pages 1639–1646,
IEEE, 1993.

16. A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22, 1979,
pages 612–613.

17. A. Shamir, Identity-based Cryptosystems and Signature Schemes, Proceedings of
CRYPTO ’84, LNCS 196, Springer-Verlag 1984, pages 47–53.

18. V. Shoup and R. Gennaro, Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack, Journal of Cryptology, Vol. 15, Springer-Verlag 2002, pages 75–96.

