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Abstract. Schemes for encrypted key exchange are designed to provide
two entities communicating over a public network, and sharing a (short)
password only, with a session key to be used to achieve data integrity
and/or message confidentiality. An example of a very efficient and “ele-
gant” scheme for encrypted key exchange considered for standardization
by the IEEE P1363 Standard working group is AuthA. This scheme was
conjectured secure when the symmetric-encryption primitive is instanti-
ated via either a cipher that closely behaves like an “ideal cipher”, or a
mask generation function that is the product of the message with a hash
of the password. While the security of this scheme in the former case has
been recently proven, the latter case was still an open problem. For the
first time we prove in this paper that this scheme is secure under the
assumptions that the hash function closely behaves like a random ora-
cle and that the computational Diffie-Hellman problem is difficult. Fur-
thermore, since Denial-of-Service (DoS) attacks have become a common
threat we enhance AuthA with a mechanism to protect against them.

1 Introduction

The need for authentication is obvious when two entities communicate on the
Internet. However, proving knowledge of a secret over a public link without
leaking any information about this secret is a complex process. One extreme
example is when a short string is used by a human as a means to get access to
a remote service. This password is used by the human to authenticate itself to
the remote service in order to establish a session key to be used to implement an
authenticated communication channel within which messages set over the wire
are cryptographically protected. Humans directly benefit from this approach
since they only need to remember a low-quality string chosen from a relatively
small dictionary (i.e. 4 decimal digits).

The seminal work in this area is the Encrypted Key Exchange (EKE) proto-
col proposed by Bellovin and Merritt in [5, 6]. EKE is a classical Diffie-Hellman
key exchange wherein the two flows are encrypted using the password as a com-
mon symmetric key. This encryption primitive can be instantiated via either a



password-keyed symmetric cipher or a mask generation function computed as
the product of the message with a hash of the password. This efficient structure
later evolved into a protocol named AuthA considered for standardization by
the IEEE P1363 Standard working group on public-key cryptography [3]. AuthA
was conjectured secure against dictionary attacks by its designers, but actually
proving it was left as an open problem.

Cryptographers have began to analyze the AuthA protocol in an ideal model
of computation wherein a hash function is modeled via a random function and a
block cipher is modeled via random permutations [2, 5, 8]. These analyses have
provided useful arguments in favor of AuthA, but do not guarantee that Au-
thA is secure in the real world. These analyses only show that AuthA is secure
against generic attacks that do not exploit a particular implementation of the
block cipher, but in practice current block ciphers are far from being random
permutations. A security proof in the random-oracle model only, while still using
ideal objects, would provide a stronger and more convincing argument in favor
of AuthA.

One should indeed note that the ideal-cipher model seems to be a stronger
model than the random-oracle one. Even if one knows constructions to build
random permutations from random functions [13], they cannot be used to build
ideal ciphers from random oracles. The difference here comes from the fact that
the inner functions (random oracles) are available to the adversary. It could
compute plaintext-ciphertext relations starting from the middle of the Feistel
network, while in the programmable ideal-cipher model, one needs to control all
these relations.

Moreover, a AuthA scheme resistant to Denial-of-Service (DoS) attacks would
be more suited to the computing environment we face every day since nowadays
through the Internet hackers make servers incapable of accepting new connec-
tions. These so-called Distributed DoS attacks exhaust the memory and compu-
tational power of the servers.

Contributions. This paper examines the security of the AuthA password-
authenticated key exchange protocol in the random-oracle model under the com-
putational Diffie-Hellman assumption; no ideal-cipher assumption is needed. We
work out our proofs by first defining the execution of AuthA in the communica-
tion model of Bellare et al. [2] and then adapting the proof techniques recently
published by Bresson et al. [8]. We exhibit very compact and “elegant” proofs to
show that the One-Mask (OMDHKE– one flow is encrypted only) and the Two-
Mask (MDHKE– both flows are encrypted) formal variants of AuthA and EKE
are secure in the random-oracle model when the encryption primitive is a mask
generation function. Because of lack of space, the latter variant is postponed to
the full version of this paper [9].

We define the execution of AuthA in the Bellare et al.’s model wherein the
protocol entities are modeled through oracles, and the various types of attacks
are modeled by queries to these oracles. This model enables a treatment of
dictionary attacks by allowing the adversary to obtain honest executions of the



AuthA protocol. The security of AuthA against dictionary attacks depends on
how many interactions the adversary carries out against the protocol entities
rather than on the adversary’s computational power.

We furthermore enhance the schemes with a mechanism that offers protection
against Denial-of-Service (DoS) attacks. This mechanism postpones the compu-
tation of any exponentiations on the server side, as well as the storage of any
states, after that the initiator of the connection has been identified as being a le-
gitimate client. Roughly speaking, the server sends to the client a “puzzle” [12]
to solve which will require from the client to perform multiple cryptographic
computations while the server can easily and efficiently check that the solution
is correct.

Related Work. The IEEE P1363.2 Standard working group on password-based
authenticated key-exchange methods [11] has been focusing on key exchange
protocols wherein clients use short passwords in place of certificates to identify
themselves to servers. This standardization effort has its roots in the works
of Bellare et al. [2] and Boyko et al. [7], wherein formal models and security
goals for password-based key agreement were first formulated. Bellare et al.
analyzed the EKE (where EKE stands for Encrypted Key Exchange) protocol [5],
a classical Diffie-Hellman key exchange wherein the two flows are encrypted using
the password as a common symmetric key. Several proofs have already been
proposed, in various models, but all very intricate. The present paper provides
a very short and “elegant” proof of AuthA or OMDHKE (but also of EKE or
MDHKE in the full version), that is less prone to errors.

Several works have already focused on designing mechanisms to protect
against DoS attacks. Aiello et al. [1] treat the amount of Perfect Forward-Secrecy
(PFS) as an engineering parameter that can be traded off against resistance to
DoS attacks. DoS-resistance is achieved by saving the “state” of the current ses-
sion in the protocol itself (i.e., in the flows) rather than on the server side. More
precisely, the “state” of the protocol is hashed and put into a cookie, while the
server needs only to memorize the hash value. Only once this is done, the server
saves the full state and the connection is established. This technique prevents
the attacker from exhausting the server’s memory but do not prevent it from
exhausting the server’s computational power. One approach to counter the latter
threat is to make the client compute some form of proof of computational effort,
using a “puzzle” [12], also more recently used by Dwork et al. [10] to discourage
spam. The present paper builds on that latter concept.

2 The OMDHKE Protocol: One-Mask Diffie-Hellman Key
Exchange

The arithmetic is in a finite cyclic group G = 〈g〉 of order a `-bit prime number q,
where the operation is denoted multiplicatively. We also denote by G? the subset
G\{1} of the generators of G. Hash functions from {0, 1}? to {0, 1}`i are denoted
Hi, for i = 0, 1. While G denotes a full-domain hash function from {0, 1}? into G.



Client A Server S

Initialization
pw ∈ Password, PW = G(pw) ∈ G

accept ← terminate ← false accept ← terminate ← false

x
R← Zq, X ← gx

X? ← X × PW
A, X

?
−−−−−−−−−−−−−−−−−→ X ← X?/PW

y
R← Zq, Y ← gy

KS ← Xy

KA ← Y x S, Y, AuthS←−−−−−−−−−−−−−−−−− AuthS ← H1(A‖S‖X?‖Y ‖PW‖KS)

AuthS
?= H1(A‖S‖X?‖Y ‖PW‖KA)

if true, accept ← true accept ← true

skA ← H0(A‖S‖X?‖Y ‖PW‖KA) skS ← H0(A‖S‖X?‖Y ‖PW‖KS)
terminate ← true terminate ← true

Fig. 1. An execution of the protocol OMDHKE, run between a client and a server.

As illustrated on Figure 1 (with an honest execution of the OMDHKE protocol),
the protocol runs between two parties A and S, and the session-key space SK
associated to this protocol is {0, 1}`0 equipped with a uniform distribution.

The parties initially share a low-quality string pw , the password, drawn from
the dictionary Password according to the distribution Dpw . In the following, we
use the notation Dpw (q) for the probability to be in the most probable set of q
passwords:

Dpw (q) = max
P⊆Password

{
Pr

pw∈Dpw

[pw ∈ P |#P ≤ q]
}

.

Note that if we denote by UN the uniform distribution among N passwords,
UN (q) = q/N .

The protocol then runs as follows. The client chooses at random a private
random exponent x and computes the corresponding Diffie-Hellman public value
gx, but does not send this last value in the clear. The client encrypts the Diffie-
Hellman public value using a mask generation function as the product of a
Diffie-Hellman value with a full-domain hash of the password. Upon receiving
this encrypted value, the server unmasks it and computes the Diffie-Hellman
secret value gxy which is used by the server to compute its authenticator AuthS

and the session key. The server sends its Diffie-Hellman public value gy in the
clear, AuthS , and terminates the execution of the protocol. Upon receiving these
values, the client computes the secret Diffie-Hellman value and checks that the
authenticator AuthS is a valid one. If the authenticator is valid, the client com-
putes the session key, and terminates the execution of the protocol.

3 The Formal Model

The security model is the same as the one defined by Bellare et al. [2]. We briefly
review it.



The Security Model. We denote by A and S two parties that can participate
in the key exchange protocol P . Each of them may have several instances called
oracles involved in distinct, possibly concurrent, executions of P . We denote
A (resp. S) instances by Ai (resp. Sj), or by U when we consider any user
instance. The two parties share a low-entropy secret pw which is drawn from a
small dictionary Password, according to the distribution Dpw .

The key exchange algorithm P is an interactive protocol between Ai and
Sj that provides the instances of A and S with a session key sk. During the
execution of this protocol, the adversary has the entire control of the network,
and tries to break the privacy of the key, or the authentication of the players.
To this aim, several queries are available to it. Let us briefly recall the capability
that each query captures:

– Execute(Ai, Sj): This query models passive attacks, where the adversary gets
access to honest executions of P between the instances Ai and Sj by eaves-
dropping.

– Reveal(U): This query models the misuse of the session key by instance U
(known-key attacks). The query is only available to A if the attacked instance
actually “holds” a session key and it releases the latter to A.

– Send(U,m): This query enables to consider active attacks by having A send-
ing a message to instance U . The adversary A gets back the response U
generates in processing the message m according to the protocol P . A query
Send(Ai, Start) initializes the key exchange algorithm, and thus the adver-
sary receives the initial flow the player A should send out to the player S.

In the active scenario, the Execute-query may at first seem useless since using
the Send-query the adversary has the ability to carry out honest executions of
P among parties. Yet, even in this scenario, the Execute-query is essential for
properly dealing with dictionary attacks. The number qs of Send-queries directly
asked by the adversary does not take into account the number of Execute-queries.
Therefore, qs represents the number of flows the adversary has built by itself,
and therefore the number of passwords it would have tried.

Security Notions. As already noticed, the aim of the adversary is to break the
privacy of the session key (a.k.a., semantic security) or the authentication of the
players (having a player accepting while no instance facing him). The security
notions take place in the context of executing P in the presence of the adversary
A. One first draws a password pw from Password according to the distribution
Dpw , provides coin tosses to A, all oracles, and then runs the adversary by letting
it ask any number of queries as described above, in any order.

AKE Security. The privacy (semantic security) of the session key is modeled by
the game Gameake(A, P ), in which one more query is available to the adversary:
Test(U). The Test-query can be asked at most once by the adversary A and is
only available to A if the attacked instance U is Fresh (which roughly means
that the session key is not “obviously” known to the adversary.) This query



is answered as follows: one flips a (private) coin b and forwards sk (the value
Reveal(U) would output) if b = 1, or a random value if b = 0. When playing
this game, the goal of the adversary is to guess the bit b involved in the Test-
query, by outputting this guess b′. We denote the AKE advantage as the
probability that A correctly guesses the value of b. More precisely we define
Advake

P (A) = 2 Pr[b = b′]− 1. The protocol P is said to be (t, ε)-AKE-secure if
A’s advantage is smaller than ε for any adversary A running with time t.

Authentication. Another goal is to consider unilateral authentication of either A
(A-Auth) or S (S-Auth) wherein the adversary impersonates a party. We denote
by SuccA−auth

P (A) (resp. SuccS−auth
P (A)) the probability that A successfully im-

personates an A instance (resp. an S instance) in an execution of P , which means
that S (resp. A) agrees on a key, while the latter is shared with no instance of
A (resp. S). A protocol P is said to be (t, ε)-Auth-secure if A’s success for
breaking either A-Auth or S-Auth is smaller than ε for any adversary A running
with time t.

3.1 Computational Diffie-Hellman Assumption

A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with g
as a generator, is a probabilistic machine ∆ running in time t such that its
success probability Succcdh

g,G(∆), given random elements gx and gy to output
gxy, is greater than ε. As usual, we denote by Succcdh

g,G(t) the maximal success
probability over every adversaries running within time t. The CDH-Assumption
states that Succcdh

g,G(t) ≤ ε for any t/ε not too large.

4 Security Proof for the OMDHKE Protocol

In this section we show that the OMDHKE protocol distributes session keys that
are semantically-secure and provides unilateral authentication of the server S.
The specification of this protocol is found on Figure 1.

Theorem 1 (AKE/UA Security). Let us consider the protocol OMDHKE,
over a group of prime order q, where Password is a dictionary equipped with the
distribution Dpw . For any adversary A within a time bound t, with less than
qs active interactions with the parties (Send-queries) and qp passive eavesdrop-
pings (Execute-queries), and asking qg and qh hash queries to G and any Hi

respectively,

Advake
omdhke(A) ≤ 2qs

2`1
+ 12×Dpw (qs) + 12q2

h × Succcdh
g,G(t + 2τe) +

2Q2

q
,

SuccS−auth
omdhke(A) ≤ qs

2`1
+ 3×Dpw (qs) + 3q2

h × Succcdh
g,G(t + 3τe) +

Q2

2q
,

where Q = qp + qs + qg and τe denotes the computational time for an exponen-
tiation in G.



This theorem shows that the protocol is secure against dictionary attacks since
the advantage of the adversary essentially grows with the ratio of interactions
(number of Send-queries) to the number of passwords.

Proof. In this proof, we incrementally define a sequence of games starting at the
real game G0 and ending up at G5. We use the Shoup’s lemma [14] to bound
the probability of each event in these games.
Game G0: This is the real protocol, in the random-oracle model. We are
interested in the two following events:

– S0 (for semantic security), which occurs if the adversary correctly guesses
the bit b involved in the Test-query;

– A0 (for S-authentication), which occurs if an instance Ai accepts with no
partner instance Sj (with the same transcript ((A,X?), (S, Y,Auth)).)

Advake
omdhke(A) = 2 Pr[S0]− 1 SuccS−auth

omdhke(A) = Pr[A0]. (1)

Actually, in any game Gn below, we study the event An, and the restricted event
SAn = Sn ∧ ¬An.
Game G1: In this game, we simulate the hash oracles (G, H0 and H1, but
also additional hash functions, for i = 0, 1: H′

i : {0, 1}? → {0, 1}`i that will
appear in the Game G3) as usual by maintaining hash lists ΛG , ΛH and ΛH′
(see Figure 2). We also simulate all the instances, as the real players would do,
for the Send-queries and for the Execute, Reveal and Test-queries (see Figure 3).
From this simulation, we easily see that the game is perfectly indistinguishable
from the real attack.

G
a
n
d
H

i
o
ra

cl
es

For a hash-query Hi(q) (resp. H′
i(q)), such that a record (i, q, r) appears in

ΛH (resp. ΛH′), the answer is r. Otherwise one chooses a random element
r ∈ {0, 1}`, answers with it, and adds the record (i, q, r) to ΛH (resp. ΛH′).
For a hash-query G(q) such that a record (q, r, ?) appears in ΛG , the answer
is r. Otherwise the answer r is defined according to the following rule:

IRule G(1)

Choose a random element r ∈ G. The record (q, r,⊥) is
added to ΛG .

Note: the third component of the elements of this list will be explained later.

Fig. 2. Simulation of the hash functions

Game G2: For an easier analysis in the following, we cancel games in which
some (unlikely) collisions appear:

– collisions on the partial transcripts ((A,X?), (S, Y )). Note that transcripts
involve at least one honest party, and thus one of X? or Y is truly uniformly
distributed;
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We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
IRule A1(1)

Choose a random exponent θ ∈ Zq, compute X = gθ and
X? = X × PW.

Then the query is answered with (A, X?), and the instance goes to an
expecting state.

– If the instance Ai is in an expecting state, a query Send(Ai, (S, Y, Auth))
is processed by computing the authenticator and the session key. We
apply the following rules:

IRule A2(1)

Compute KA = Y θ.

IRule A3(1)

Compute the authenticator and the session key:
Auth′ = H1(A‖S‖X?‖Y ‖PW‖KA);
skA = H0(A‖S‖X?‖Y ‖PW‖KA).

If Auth = Auth′, the instance accepts. In any case, the instance termi-
nates.

S
en

d
-q

u
er
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s

to
S

We answer to the Send-queries to a S-instance as follows:

– A Send(Sj , (A, X?))-query is processed according to the following rules:
IRule S1(1)

Choose a random exponent ϕ ∈ Zq, compute Y = gϕ.
Then, the instance compute the authenticator and session key. We apply
the following rules:

IRule S2(1)

Compute X = X?/PW and KS = Xϕ.

IRule S3(1)

Compute the authenticator and the session key:
Auth = H1(A‖S‖X?‖Y ‖PW‖KS);
skS = H0(A‖S‖X?‖Y ‖PW‖KS).

Then the query is answered with (S, Y, Auth), and the instance accepts
and terminates.

O
th

er
q
u
er

ie
s An Execute(Ai, Sj)-query is processed using successively the above simula-

tions of the Send-queries: (A, X?) ← Send(Ai, Start) and (S, Y, Auth) ←
Send(Sj , (A, X?)), and then outputting the transcript ((A, X?), (S, Y, Auth)).
A Reveal(U)-query returns the session key (skA or skS) computed by the
instance U (if the latter has accepted).
A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we
return the value of the session key sk, otherwise we return a random value
drawn from {0, 1}`.

Fig. 3. Simulation of the OMDHKE protocol



– collisions on the output of G.

Both probabilities are bounded by the birthday paradox:

Pr[Coll2] ≤
(qp + qs)2

2q
+

q2
g

2q
. (2)

Game G3: We compute the session key sk and the authenticator Auth using
the private oracles H′

0 and H′
1 respectively:

IRule A3/S3(3)

Compute the authenticator Auth = H′
1(A‖S‖X?‖Y ).

Compute the session key skA/S = H′
0(A‖S‖X?‖Y ).

Since we do no longer need to compute the values KA and KS , we can simplify
the second rules:

IRule A2/S2(3)

Do nothing.

Finally, one can note that the password is not used anymore either, then we can
also simplify the generation of X?, using the group property of G:

IRule A1(3)

Choose a random element x ∈ Zq and compute X? = gx.

The games G3 and G2 are indistinguishable unless some specific hash queries
are asked, denoted by event AskH3 = AskH0w13 ∨ AskH13:

– AskH13: A queries H1(A‖S‖X?‖Y ‖PW‖KA) or H1(A‖S‖X?‖Y ‖PW‖KS)
for some execution transcript ((A,X?), (S, Y,Auth));

– AskH0w13:A queriesH0(A‖S‖X?‖Y ‖PW‖KA) orH0(A‖S‖X?‖Y ‖PW‖KS)
for some execution transcript ((A,X?), (S, Y,Auth)), where some party has
accepted, but event AskH13 did not happen.

The authenticator is computed with a random oracle that is private to the
simulator, then one can remark that it cannot be guessed by the adversary,
better than at random for each attempt, unless the same partial transcript
((A,X?), (S, Y )) appeared in another session with a real instance Sj . But such
a case has already been excluded (in Game G2). A similar remark can be led
about the session key:

Pr[A3] ≤
qs

2`1
Pr[SA3] =

1
2
. (3)

When collisions of partial transcripts have been excluded, the event AskH1
can be split in 3 disjoint sub-cases:

– AskH1-Passive3: the transcript ((A,X?), (S, Y,Auth)) comes from an execu-
tion between instances of A and S (Execute-queries or forward of Send-
queries, replay of part of them). This means that both X? and Y have been
simulated;



– AskH1-WithA3: the execution involved an instance of A, but Y has not been
sent by any instance of S. This means that X? has been simulated, but Y
has been produced by the adversary;

– AskH1-WithS3: the execution involved an instance of S, but X? has not been
sent by any instance of A. This means that Y has been simulated, but X?

has been produced by the adversary.

Game G4: In order to evaluate the above events, we introduce a random
Diffie-Hellman instance (P,Q), (with both P ∈ G? and Q ∈ G?, which are
thus generators of G. Otherwise, the Diffie-Hellman problem is easy.) We first
modify the simulation of the oracle G, involving the element Q. The simulation
introduces values in the third component of the elements of ΛG , but does not
use it.

IRule G(4)

Choose a random element k ∈ Z?
q and compute r = Q−k.

The record (q, r, k) is added to ΛG .

We introduce the other part P of the Diffie-Hellman instance in the simulation
of the party S.

IRule S1(4)

Choose a random element y ∈ Z?
q and compute Y = P y.

It would let the probabilities unchanged, but note that we excluded the cases
PW = 1 and Y = 1:

|Pr[AskH4]− Pr[AskH3] | ≤
qs + qp

q
+

qg

q
. (4)

Game G5: It is now possible to evaluate the probability of the event AskH
(or more precisely, the sub-cases). Indeed, one can remark that the password is
never used during the simulation, it can be chosen at the very end only. Then, an
information-theoretic analysis can be performed, which simply uses cardinalities
of some sets.

To this aim, we first cancel a few more games, wherein for some pairs
(X?, Y ) ∈ G2, involved in a communication between an instance Sj and ei-
ther the adversary or an instance Ai, there are two distinct elements PW such
that the tuple (X?, Y,PW,CDHg,G(X?/PW, Y )) is in ΛH (which event is denoted
CollH5):

|Pr[AskH5]− Pr[AskH4] | ≤ Pr[CollH5]. (5)

Hopefully, event CollH5 can be upper-bounded, granted the following Lemma:

Lemma 2. If for some pair (X?, Y ) ∈ G2, involved in a communication with an
instance Sj, there are two elements PW0 and PW1 such that (X?, Y,PWi, Zi)
are in ΛH with Zi = CDHg,G(X?/PWi, Y )), one can solve the computational
Diffie-Hellman problem:

Pr[CollH5] ≤ q2
h × Succcdh

g,G(t + τe). (6)



Proof. Assume there exist such elements (X?, Y = P y) ∈ G2, PW0 = Q−k0 , and
PW1 = Q−k1 . Note that

Zi = CDHg,G(X?/PWi, Y ) = CDHg,G(X? ×Qki , Y )
= CDHg,G(X?, Y )× CDHg,G(Q,Y )ki = CDHg,G(X?, Y )× CDHg,G(P,Q)yki .

As a consequence, Z1/Z0 = CDHg,G(P,Q)y(k1−k0), and thus CDHg,G(P,Q) =
(Z1/Z0)u, where u is the inverse of y(k1 − k0) in Zq. The latter exists since
PW1 6= PW2, and y 6= 0. By guessing the two queries asked to the Hi, one
concludes the proof. ut

In order to conclude, let us study separately the three sub-cases of AskH1 and
then AskH0w1 (keeping in mind the absence of several kinds of collisions: for
partial transcripts, for G, and for PW in H-queries):

– AskH1-Passive: About the passive transcripts (in which both X? and Y have
been simulated), one can state the following lemma:

Lemma 3. If for some pair (X?, Y ) ∈ G2, involved in a passive tran-
script, there is an element PW such that (X?, Y,PW, Z) is in ΛH, with
Z = CDHg,G(X?/PW, Y )), one can solve the computational Diffie-Hellman
problem:

Pr[AskH1-Passive5] ≤ qh × Succcdh
g,G(t + 2τe).

Proof. Assume there exist such elements (X? = gx, Y = P y) ∈ G2 and
PW = Q−k. As above,

Z = CDHg,G(X?, Y )× CDHg,G(Q, Y )k = P xy × CDHg,G(P,Q)yk.

As a consequence, CDHg,G(P,Q) = (Z/P xy)u, where u is the inverse of yk in
Zq. The latter exists since we have excluded the cases where y = 0 or k = 0.
By guessing the query asked to the Hi, one concludes the proof. ut

– AskH1-WithA: this event may correspond to an attack where the adversary
tries to impersonate S to A (break unilateral authentication). But each au-
thenticator sent by the adversary has been computed with at most one PW
value. Without any G-collision, it corresponds to at most one pw :

Pr[AskH1-WithA5] ≤ Dpw (qs).

– AskH1-WithS: The above Lemma 2, when applied to games where the event
CollH5 did not happen (and without G-collision), states that for each pair
(X?, Y ) involved in a transcript with an instance Sj , there is at most one
element pw such that for PW = G(pw) the corresponding tuple is in ΛH:
the probability over a random password is thus less than Dpw (qs). As a
consequence,

Pr[AskH1-WithS5] ≤ Dpw (qs).



Client A Server S

Initialization
pw ∈ Password, PW = G(pw) ∈ G

f : {0, 1}k0+k1+k2 −→ {0, 1}k, a random function with k0 + k1 + k2 ≤ k

skS
R← {0, 1}mac

accept ← terminate ← false
A−−−−−−−−−−−−−−−−−→ nS

R← {0, 1}k0 , NS = nS‖date ∈ {0, 1}k0+k1
S, NS, cookie

←−−−−−−−−−−−−−−−−− cookie ← MACskS(A, S, NS)

accept ← terminate ← false

Find r ∈ {0, 1}k2 , f(NS‖r) = 0k

x
R← Zq, X ← gx, X? ← X × PW

A, X
?

, NS, r, cookie
−−−−−−−−−−−−−−−−−→ Lock record NS in List

Check whether (NS, ?, ?) 6∈ List?
date is fine?f(NS‖r) = 0k?
and cookie = MACskS(A, S, NS)?

X ← X?/PW,

y
R← Zq, Y ← gy

KS ← Xy

AuthS ← H1(A‖S‖X?‖Y ‖PW‖KS)
Auth′A ← H2(A‖S‖X?‖Y ‖PW‖KS)
skS ← H0(A‖S‖X?‖Y ‖PW‖KS)

KA ← Y x S, Y, AuthS, NS←−−−−−−−−−−−−−−−−− Just store (NS, Auth′A, skS) in List

AuthS
?= H1(A‖S‖X?‖Y ‖PW‖KA)

if true, accept ← true

AuthA ← H2(A‖S‖X?‖Y ‖PW‖KA)
A, AuthA, NS−−−−−−−−−−−−−−−−−→ AuthA

?= Auth′A
if true, accept ← true

skA ← H0(A‖S‖X?‖Y ‖PW‖KA)
terminate ← true terminate ← true

Fig. 4. An execution of the protocol OMDHKE, run between a client and a server,
enhanced with mutual authentication and a denial-of-service protection.

About AskH0w1 (when the three above events did not happen), it means that
only executions with an instance of S (and either A or the adversary) may lead
to acceptation. Exactly the same analysis as for AskH1-Passive and AskH1-WithS
leads to Pr[AskH0w15] ≤ Dpw (qs) + qh × Succcdh

g,G(t + 2τe). As a conclusion,

Pr[AskH5] ≤ 3Dpw (qs) + 2qh × Succcdh
g,G(t + 2τe). (7)

Combining all the above equations, one gets the announced result. ut

5 The DoS-Resistant OMDHKE Protocol

In a computing environment where Distributed DoS attacks are a continual
threat, a server needs to protect itself from non-legitimate clients that will ex-
haust its memory and computational power. Intensive cryptographic computa-
tions (i.e. exponentiation), as well as states, are only performed after a client
proves to the server that it was able to solve a given “puzzle”. The “puzzle” is
chosen so that the client can only solve it by exhaustive search while the server
can quickly checks whether a given proposition solves it. This “puzzle” is chosen
as follows.

The server first picks at random a MAC-symmetric key that it will use to
authenticate cookie; the MAC-key is used across multiple connections. The server



then forms the authenticated cookie which is the MAC of a random nonce and
the date, and sends it to the client. The precision of the date is determined
according to the level of DoS required. The use of a cookie makes the protocol
stateless on the server side. Upon receiving the cookie, the client tries to find
an input which hashes to the NULL value. Since this hash function is seen as a
random oracle, the only way for the client to solve this “puzzle” is to run through
all possible prefixed strings and query the random oracle [4]. Later in practice
this function is instantiated using specific functions derived from standard hash
functions such as SHA1. Once the client has found such a proof of computational
effort, it sends it back with the authenticated cookie and its Diffie-Hellman public
value to the server. Upon receiving these values the server checks whether the
client is launching a DoS attack by initiating several connections in parallel and
replaying this proof of computational effort on another connection. The server
reaches this aim by locking the cookie and not admitting the same cookie twice
(hence the date in this challenge is used to tune the size of the database). If all
the checks verify, the server starts saving states and computing the necessary
exponentiations to establish a session key. From this point on the protocol works
as the original AuthA protocol, adding mutual authentication [2].

6 Conclusion

The above proof does not deal with forward-secrecy. Forward-secrecy entails that
the corruption of the password does not compromise the semantic security of pre-
viously established session keys.One could easily prove that this scheme achieves
forward secrecy, as in [8], while loosing a quadratic factor in the reduction.

In conclusion, this paper provides strong security arguments that support the
standardization of the AuthA protocol by the IEEE P1363.2 Standard working
group on password-based public key cryptography . We have presented a compact
and “elegant” proof of security for the AuthA protocol [3] when the symmetric-
encryption primitive is instantiated using a mask generation function, which
extends our previous work when the symmetric-encryption primitive is assumed
to behave like an ideal cipher [8]. The security of the protocol was indeed stated
as an open problem by its designers. In our study, the symmetric encryption
basic block takes the form of a multiplication in the Diffie-Hellman group. Our
result is a significant departure from previous known results since the security of
AuthA can now be based on weaker and more reasonable assumptions involving
both the random-oracle model and the computational Diffie-Hellman problem.
Moreover, we investigate and propose a practical, reasonable solution to make
the protocol secure against DoS attacks. One can also find further studies on the
variant in which both flows are encrypted between the client and the server in
the full version of this paper [9].
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