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Abstract. A group key agreement protocol allows a set of users, communi-
cating over a public network, to agree on a private session key. Most of the
schemes proposed so far require a linear number (with respect to the number
of participants) of communication rounds to securely achieve this goal. In this
paper we propose a new constant-round group key exchange protocol that pro-
vides e�ciency and privacy under the Decisional Di�e-Hellman assumption.
Our construction is practical, conceptually simple and it is obtained by taking
advantage of the properties of the El-Gamal encryption scheme combined with
standard secret sharing techniques.

1 Introduction

Group key agreement protocols allow several parties to come up with a common secret
from which a session key can be derived. Hence, these protocols are likely to be used in
numerous group-oriented scenarios, such as video conferencing, collaborative applica-
tions, secure replicated database, in order to achieve secure multicasting network layer
among the parties. Typically, the parties hold some long-term keys that enable them
to communicate privately from point to point, or to authenticate messages. Another
setting considers password-based authentication, which we are not dealing with in this
paper. The �nal goal of group key exchange protocols is to e�ciently implement �se-
cure� multicast channels. In order to specify what �e�ciently� and �secure� mean, one
may consider some desirable properties for a group key agreement protocol. E�ciency,
while not measuring security, is to be considered as a crucial property when designing
key agreement protocols and it is quanti�ed as the number of communication rounds,
as well as the space and computing resources required to agree on the �nal key. Indeed,
limiting the number of rounds can be of prime importance in many real-life applica-
tions. Consider for example the case of a group where some (or all the) participants
have a slow network connection. In such a situation the e�ciency of the entire protocol
can be severely degraded even if the �slow guys� constitute a very small minority of
the group. Other scenarios where reducing the number of rounds is important are all
those applications where many players are involved, or where many keys have to be
exchanged.
? Extended abstract. A full version of this paper can be found at www.di.ens.fr/�catalano.



Combining e�ciency and security is not a trivial task. One of the most basic
security property that is required to a group key agreement protocol is the so-called
contributory: all the parties are ensured to properly contribute to the �nal secret value
and to its distribution � in other words, no party should be able to impose the value
of the session key which should be uniformly distributed over the session key space.
On top of that a key agreement scheme should guarantee some privacy property for
�nal session key, i.e. that no eavesdropper should be able to gain information (at least
in some computational sense) about the key after having seen the messages exchanged
between the parties being involved in the protocol. In general, however, a group key
agreement should preserve privacy even in the case on which the network is under
control of some malicious adversary that may try to modify any message sent among
the players. Thus the main features we would like to �nd in a Group Key Agreement
scheme are security and e�ciency, in the presence of an active adversary. The typical
approach to the problem [1,5,8,9] requires some data to go through the complete set of
parties, which by sequentially adding some private contribution, �build� the actual key
in a linear number of rounds of communication. The main problem with this approach
is, of course, that it may lead to very slow protocols. To improve on communication
complexity the natural solution is to try to devise a scheme that allows for simultaneous
sending of contributions.

So, at the very end, the basic problem of group key agreement can be simpli�ed as
follows: we want a set of players to agree on some random value that they will later,
privately, reconstruct to use as shared key. Written in this way the problem seems to be
quite similar to the standard multi-party computation goal where a group of players
wants to compute the output of a public function when the input is shared among
the participants. There is a crucial di�erence however: in the multi-party computation
setting the output of the function is, in general, kept shared and may be publicly
reconstructed if some conditions are met. In the group key agreement setting, on the
other hand, we want the players to be able to privately reconstruct the secret. In other
words, the goal of the key agreement is to establish a random value that at the end of
the protocol should be disclosed to the players only. In this paper we basically combine
standard secret sharing techniques [30] with the use of El-Gamal cryptosystem [20] to
make this goal possible.

Related work � Some formal models for studying security of the session key were
initiated by Bellare and Rogaway [5,6] and further re�ned by Blake-Wilson et al. [7,8].
Another formal model is based on the multi-party simulatability technique and was ini-
tiated by Bellare, Canetti and Krawczyk [2], and re�ned by Shoup [31]. Some classical
examples of group key agreement protocols dealing with privacy are the generalizations
of the original Di�e-Hellman paper [16], whose �rst proposals can be traced back to
Ingemarsson et al. [23]. Some more sophisticated schemes [10,32] rely on the so-called
group Di�e-Hellman assumptions, for which some reductions can be found in [11],
while others are based on more heuristic, quite non-standard1 assumptions [18]. Let
us also mention some proposed schemes that are based on elliptic curve cryptography:
Joux [24] proposed a single round method for 3-party Di�e-Hellman key agreement

1 These assumptions make use of �multiple-decker� exponents, and are not easily related to
DH.



using pairings. However, a generalization based on multi-linear forms is still an open
problem [19].

As we said, a major issue of such protocols consists in e�ciency, and this is es-
pecially true when considering large groups or dynamic peer group key agreement.
Some protocols o�ering provable security have been recently analyzed by Bresson et
al. [9,10]; they are essentially derived from an article by Steiner et al. [32]. However they
require a linear number of communication rounds. In [12], Burmester and Desmedt
proposed a very e�cient, elegant protocol that needs only two rounds (three rounds
when considering the con�rmation step). The main advantage of constant round pro-
tocols is that the impact of �slow guys� is reduced, in the sense that 1 or several slow
connections have essentially the same impact on e�ciency. Burmester and Desmedt
provide a security proof that reduces the privacy (one-wayness) of the session key
to the (computational) Di�e-Hellman problem. However no proof of security (in the
stronger sense of semantic security [22]) is provided in the original paper. Only re-
cently, Katz and Yung [25] proposed a more general framework that provides a formal
proof of security for this protocol, based on the DDH assumption. An interesting con-
tribution of their paper is a scalable compiler that transforms any group key exchange
protocol secure against a passive adversary into one that is secure against an active
adversary, controlling the network.

In 1999, Li and Pieprzyk [26] proposed a key agreement protocol based on secret
sharing techniques. They use the well-known polynomial secret sharing à la Shamir [30]
to reconstruct a session key. While their work leads to a constant-round protocol and
may appear quite similar to ours, it is actually less e�cient. First of all they adopt
an (n+1)-out-of-2n sharing scheme and need to resort to secure channel to guarantee
secrecy. In our case, on the other hand, we can use an n-out-of-n secret sharing scheme
and no additional assumption is required. Furthermore in [26] to recover the secret the
parties are required to perform Lagrange interpolation on the exponents. We emphasize
that working in the exponents implies a relatively ine�cient scheme, requiring O(3n)
exponentiations per player.

Our contributions � In this work, we propose a constant round key exchange
protocol, based on secret sharing techniques, and using an asynchronous network.
Our scheme is very e�cient in terms of communication between the players (only two
rounds of communications � plus a con�rmation additional round � are required)
and provides security (even with respect to parallel executions) under the well known
Decisional Di�e-Hellman assumption. As noted above, only very few schemes proposed
so far o�er both authentication and privacy under standard assumptions [10, 25]. We
emphasize that our solution achieves comparable bandwidth (in terms of the number of
total bit per player exchanged) with respect to all previously proposed schemes. Also,
if preprocessing is possible our protocol requires only - roughly - 2 exponentiations per
player. Moreover we believe that our proposal allows for a more general approach to the
problem. Indeed almost all previously suggested solutions are somehow generalizations
of the basic Di�e-Hellman key exchange protocol [16], and thus are inherently related
to the underlying (computational or decisional) assumptions. Finding alternative to
existing solutions is not only a common practice in cryptography but a line of research
of fundamental importance in practice. In this sense, in our case, the reduction to the



decisional Di�e-Hellman assumption comes solely from the fact that we are adopting
the El Gamal cryptosystem as underlying encryption primitive (to take advantage, in
terms of e�ciency, of its nice properties). However, we stress here, that up to some loss
in e�ciency, it remains possible to successfully implement our protocol using a di�erent
semantically secure cryptosystem, relying on alternative intractability assumptions.
One could even imagine a scheme in which the data are encrypted point-to-point
using a symmetric encryption scheme (the drawback being there the number of secret
keys).

2 The model

Players and network � We consider a network of n players P1, . . . , Pn, that are
connected by point-to-point channels. We assume that each channel can be authen-
ticated by the use of an underlying secure signature scheme. Thus, as already said,
we consider an existing PKI and do not deal with password-authentication. We are
based on an asynchronous network, in which messages can be delivered in arbitrary
order. Moreover, and unless explicitly mentioned, we assume that each player can send
several messages at the same time (multi-send property); this does not imply that all
receivers will get the same message (broadcast). By saying that player A sends a mes-
sage privately to B we intend A sending an encrypted message (with respect to B's
public key) to B.

Adversary � The network is likely to be faulty, that is, not reliable because of
attacks. To take into account such attacks, including those by �malicious� adversaries,
we consider an active adversary A that has full control over the network. In particular
we model this adversary as able to read, delete, and modify any message sent on
the network. We stress that, as in previously proposed schemes, A does not have
any control on the players themselves, and in particular, can not read their private
memory2.

Rushing attacks � We will assume that no player signi�cantly deviates from the
protocol, however we enable some players (but not all of them) to choose their con-
tribution to the key according to some arbitrarily biased distribution (however we
assume the adversary does not have any knowledge of such bias). Note that this allows
for some player to adopt a rushing behavior by which he waits to receive the messages
of the remaining parties (in a given round of communication) before sending his own.
We stress, however, that this does not mean that rushing players do not follow the
intructions nor that they follow instructions in a di�erent order; it just means they
choose their nonces non-uniformly, and if possible after the others. Moreover, we will
assume that at least one player is completely honest.

Security notions � Our goal is to provide protocols allowing a pool of players to
jointly agree on a common secret session key, in a presence of a malicious adversary
(which includes the framework of a faulty network). We consider the following security
notions, most of them are de�ned in [1].
2 More precisely, A cannot access the storage of the session key; when considering forward-
secrecy, one may consider that A partially corrupts the private memory of a player, and
gets the long-term key.



Completeness means that, if the adversary is completely passive, the protocol ter-
minates with each player holding a session key, which is the same for all of them.

Privacy means that whatever the adversary does, it cannot gain any information
about the session key, if such a key is set (that is, if the protocol does not abort). In
particular, it means that nobody outside of the group is able to compute the session
key (implicit authentication).

Contributory means that each player is ensured to contribute equally to the �nal
value of the key, and in particular, nobody can bias the distribution of the key.

Con�rmation property encompasses the fact that a given player can be ensured
a message has been delivered to other players. However, note that the receiver is
not ensured that its con�rmation has been delivered to the sender (unless using a
con�rmation again, which leads to in�nite recursion). Such a network model thus
needs to use time-out methods to abort a protocol if needed. Con�rmations are used
to achieve explicit authentication, by which every player has proof the group holds the
same key.

Notations � Let ` be a security parameter. In the following we denote with N the
set of natural integers and with R+ the set of positive real numbers. We say that a
function negl : N → R+ is negligible if for every polynomial ρ(`) there exists a `0 ∈ N
s.t. for all ` > `0, negl(`) ≤ 1/ρ(`). For a, b ∈ N we write a|b if a divides b. If A is a
set, then a ← A indicates the process of selecting a at random and uniformly over A
(which in particular assumes that A can be sampled e�ciently).

2.1 The formal model

Players � We consider multiple, potentially parallel executions of the protocol; each
player involved in the group has thus many instances, also called oracles running
parallel sessions. The instances are seen as processes running on a given machine:
some data (long-term key, public parameters) are shared, some data are speci�c to
a process (eg, the session key). We assume that all signed messages are headed with
sessions IDs, which uniquely identify each parallel run. We denote by skt

i the session
key computed by player Pi in session whose ID is t. We consider a group of players
whose membership is �xed, ie, there is no �Join� or �Remove� manipulations.

Adversarial capabilities � The adversary A is formalized through several queries
describing possible interactions with oracles. Following [9], we de�ne four types of
queries: the Send-query is used to send arbitrary messages to an oracle; the Reveal-
query is used to deal with known-key attacks, by revealing to A the session skt

i key
hold by an oracle; the Corrupt-query leaks the long-term data Li and allows to consider
forward-secrecy; �nally the Test-query is used to model the semantic security: it returns
either the session key, or a random string, A being to guess which of the two cases.

Necessary conditions � A few straightforward conditions must be satis�ed in order
to properly use this model. These conditions are used in [1,9] to de�ne the Freshness of
a session key. First, a Reveal-query makes sense only if an oracle has already accepted
a session key. Second a Test-query can be asked only once in the entire attack. Third,
a Test-query must be asked before any Corrupt-query (asked to the Test-ed oracle or
not). Four, a Test-query cannot be asked on a session for which some oracles have



accepted and have been Reveal-ed. The last three requirements ensure that the Test

makes sense, that is, the session key is not �obviously� known by the adversary through
basic means.

De�nitions � We say that A disrupts an (instance of) player if it does not honestly
relay the messages sent by this oracle (i.e., A is an active adversary generating faults
on the network), but is still unable to access this player's internal data. When dealing
with forward-secrecy, we say that A corrupts a player if it can get his long-term key.
We denote Li the long-term key used by player Pi.

We say that a Group Key Agreement Protocol, is secure if for any adversary A
controlling the network the following four conditions are met.

Completeness: If A does not disrupt any oracle in a session t, then at the end of
the protocol, there exists skt (which is e�ciently computable) such that for all
i ∈ {1, . . . , n} we have skt

i = skt.
Contributory (uniformity): If A does not disrupt any oracle in a session, then sk

is uniformly distributed in the key space K.
Privacy: We formalize this property as follows. Let B be a challenger facing the

adversary and that runs the protocol, controlling all the players involved in the
key exchange protocol being attacked. Let κ1 be the corresponding session key
computed by the members. On a Test-query, B chooses a random string κ0 in the
key space K. Then it gives to the adversary either κ0 or κ1 (with equal probability).
When terminating its attack, A should output a �guess� for the hidden bit b. We
say that the protocol establishes a private session key sk if there exists a negligible
function negl such that for su�ciently large `, we have:

Adv(A) = 2
(

Pr
[
A(V, κb) = b

∣∣∣∣κ0 ← K; κ1 = sk
b← {0, 1}

]
− 1

2

)
= negl(`)

Assumption 1 (DDH Assumption) Let p and q two primes such that |q| = ` and
q|p − 1 and g an element of order q in Z?

p. Let Q = 〈g〉. There exists a negligible
function negl such that for su�ciently large `, for any probabilistic polynomial-time
distinguisher ∆, we have:

Adv
ddh(∆) =

∣∣∣∣Pr
x,y

[∆(g, gx, gy, gxy) = 1]− Pr
x,y,z

[∆(g, gx, gy, gz) = 1]
∣∣∣∣ = negl(`)

Informally this assumption states that given the two elements X = gx mod p and
Y = gy mod p the value Z = gxy mod p is indistinguishable from a random one in Q
(see [22] for a de�nition of computational indistinguishability).

3 The Proposed Scheme

We start with an informal description of our protocol. The goal here is to highlight the
main ideas underlying our construction without going too much into technical details.

Overview of the protocol � We will assume that each player Pi holds a pair of
matching private/public key (xi, hi), where hi = gxi mod p. We denote by Ci,j(m,α)



an El-Gamal encryption of a message m under key hj , using random α. Intuitively
Ci,j can be seen as an encrypted message sent from player Pi to player Pj .

The proposed protocol goes as follows. Every player Pi uniformly chooses a random
value ai as his own contribution to the key exchange protocol and a randomizer pad
ri. Pi proceeds by encrypting ai, under the public key of every remaining player, and
sends the ciphertext Ci,j to player Pj . Moreover Pi randomly chooses a polynomial
fi(z) of degree n− 1 in Z?

q such that fi(0) = ri and sends to player Pj the value fi(j).
Once this �rst stage is over every player Pj sums the received fi(j) and multiplies
the received ciphertexts (that is, corresponding to all indices but its own). Let us
call Cj the resulting product and let δj be the plaintext corresponding to Cj . Note
that, because of the homomorphic properties of the El-Gamal encryption scheme, the
quantity δj · aj mod p, is exactly a = a1 · · · an mod p, and, of course, it is the same
for all the players involved in the protocol. Similarly the quantity f(i), obtained by
summing up all the fj(i)'s, will be a share of a unique polynomial f(z) such that
f(0) = r where r = r1 + . . . + rn mod q. So to conclude the protocol the parties
compute r, by interpolating f(z) over Z?

q and set their session key sk = a · gr.

Dealing with rushing scenarios � One may wonder why we need to distribute
encryptions of ai, shares of ri and then de�ne the session key as sk =

∏n
i=1 ai ·

gr mod p rather than simply distribute encryptions of ai and set the �nal key as
sk =

∏n
i=1 ai mod p. As a matter of fact, this second solution may be possible in a

non-rushing scenario where all the parties are assumed to maintain a completely honest
behavior, and using un-biaised pseudo-random generators. In our case, as sketched in
section 2 a player may decide to choose his contribution after having received all those
of the remaining parties. Thus he could, arbitrarily, set the value for the �nal key. In
order to avoid such a situation, in our protocol we distinguish two stages: during the
�rst one every player sends encryptions of ai and waits for all the other guys to do
the same. Then, once he has received all the shares he proceeds to the second stage
by disclosing his f(i). Such such a two round separation has the e�ect of forcing the
players to choose their ri without having any clue (in a strong information-theoretic
sense) about the ri's chosen by the remaining players. In this way the produced key is
uniformly distributed if at least one of the players chooses his contributions uniformly
and at random (and we stress that in our model we assume that at least one player
mantains a fully honest behavior).

In practice, we implement this idea by assuming the second round starts when
each player has received all the n − 1 contributions from the remaining parties. The
underlying intuition is that if a player has received n − 1 ciphertexts, then he can
safely start the second round, because he is ensured that every other party has already
chosen his own share. Interestingly this approach allows for some modularity in error
detection. Indeed, if at least one player aborted after round one (for instance, because
he did not correctly receive all the expected ciphertexts) such a situation can be
e�ciently detected in round two as follows. If after round one some party aborted
(i.e. quit) the protocol then the remaining players cannot reconstruct the polynomial
f(·) � simply because not enough shares are available � and the protocol can be
immediately aborted. On the other hand the fact of receiving all the expected shares
in round two, can be seen as a �so far, so good� guarantee: if a player sends his share



Authenticated Group Key Agreement Protocol
Public Parameters: Two primes p, q such that q|p − 1. A subgroup Q = 〈g〉 of order q.
An hash function H modeled as a random oracle, and ID be the current session ID.
Public inputs: The players'public keys hi, for i = 1, . . . , n.
Private input (for player i): A value xi such that hi = gxi mod p.
In a preprocessing stage player Pi runs a signature generation algorithm SigGen to obtain
a couple of matching signing and veri�cation keys (SKi, V Ki).

First Round � Each player Pi does the following:
1. Choose ai ← Q
2. Choose ri, bi,1, . . . , bi,n−1 ← Zq.
3. De�ne fi(z) = ri + bi,1z + . . . + bi,n−1z

n−1 mod q
4. For each j = 1 . . . n (j 6= i)

Choose k ← Zq and set Ci,j = (Ai,j , Bi,j) = (gk mod p, hk
j ai mod p).

5. Send to player Pj the values Ci,j , fi(j) and σi,j =SignSKi(Ci,j ||fi(j)||ID).

Second Round � Once having received all the values above each player Pi does the
following: (if Pi receives less than n−1 triplets (Cj,i, fj(i), σj,i) he aborts the protocol)
1. Check the authentication (signature) of all received values. If the check fails the

player aborts the protocol.
2. Multiply the received ciphertexts: let Ai =

∏
j 6=i Aj,i mod p and Bi = ai ·∏

j 6=i Bj,i mod p.
3. Decrypt the result to de�ne the value a(i) = Bi/A

xi
i .

4. Compute
fi = fi(i) +

∑
j 6=i

fj(i) mod q

as his share of a (n− 1)-degree polynomial f(z) whose free term we indicate with
r.

5. Send to other players the values fi and ωi =SignSKi(fi||ID).

Third Round �
1. The players interpolate f(z) and retrieve r.
2. Player Pi de�nes its session seed as

sk(i) = a(i) · gr mod p.

Con�rmation Step: Compute si = H(sk(i)||ID) and broadcast this value together with
its signature γi =SignSKi(si||ID).
If the n broadcasted values are all the same, set the �nal key as

sk = H(sk(i))

Fig. 1. Pseudo-code description for the Group Key Agreement Protocol



of the polynomial, it means that he must have been happy with what he has received
so far.

Disclosing the polynomial's shares � We notice that in the �rst round (step 5), a
player can safely send his �own� shares fi(j) (the shares for his private polynomial fi),
without encrypting them, since this does not reveal any information at all about his
randomizer ri = fi(0): in fact the value fi(i) is never disclosed at any time. Moreover,
and for the same reason, it is important to note that the entire transcript of the
�rst round does not reveal anything about the �global� shares f(i) neither. More
precisely, recall that the �global� share for player Pi (i.e., his share of f(·)) is de�ned
as f(i) =

∑n
j=1 fj(i), but only the values fj 6=i(i) are disclosed. Thus, until the second

round, step 5, all �global� shares f(i) are still information-theoretically hidden to the
adversary, and each player Pi knows exactly f(i), that is, no more at all about other
f(j)'s. During the second round, the shares will be disclosed (keep in mind that is
done once the contributions ai's have been received by each player).

Key con�rmatory � There remains one �nal problem to discuss in our protocol,
because of which we yet need a con�rmation step at the very end of round two. Actu-
ally, to be sure that all parties correctly recover the session key, we use the following
technique, known as key con�rmatory, that allows each player to check that the re-
maining participants have computed the key. This additional con�rmation step makes
use of an asynchronous broadcast, which means that we need to assume that the net-
work is equipped with such primitive. Using a broadcast, either everybody received
the con�rmation messages, or nobody did and the protocol aborts.

We can obtain the key con�rmatory property by having each player computing
and broadcasting an additional value to other players. Every player sends a �receipt�
which is computed from the session key, thus playing the role of an authenticator.
The technique is described with more details in [9] and requires the assumption of
random oracle3 in order for the authenticator not to leak any information about the
session key. In particular, such an authenticator, should not be computed directly from
the �nal session key, but rather from an intermediate common secret (otherwise, an
eavesdropper would be able to gain some partial information about sk � for instance
the hash of sk � and to distinguish it from a random string).

4 Security of the scheme

In this section we prove the following security theorem.

Theorem 1. The protocol presented in �gure 1 is a secure Authenticated Group Key
Agreement protocol, achieving completeness, contributory and privacy (under the DDH
assumption).

Completeness � Obvious by inspection.

3 Actually the random oracle is considered for e�ciency reasons only and it is not necessary
for the [9] technique to work. In particular the random oracle can be replaced by a pseudo-
random function [21].



Privacy � We consider a simulator S that emulates the protocol to the adversary
in such way that the simulation is indistinguishable from the real attack. Formally
the simulator goes as follows. It receives as input a triplet (X, Y, Z), for which it has
to decide whether it is a Di�e-Hellman triplet or not. Let Q be the total number of
interactions the adversary is likely to make. S starts by choosing at random an integer
q0 in [1,Q], hoping the q0-th interaction will be the attacked session. Then it chooses
uniformly and at random an index i0 in [1, n]. After that, it initializes the protocol by
choosing n random exponents ξ1 through ξn. It sets the public key hi = Y gξi mod p
for every player Pi. Finally it gives g and all the hi's to the adversary A, as the public
input of the protocol.

To take into account the rushing scenarios, we consider two di�erent pseudo-
random generators R and R?, assuming the latter is biased. In particular, R?, when
called by a player, takes as input all previous data used by this player. We denote, to
formalize our simulation, by Rj the pseudo-random generator used by Pj , and we set
Ri0 = R and Rj = R? for all j 6= i0.

Then (for each parallel sessions), the simulator S simulates the players in the �rst
round as follows. On receiving a Send(Uj , start)-query, the simulator chooses a secret
contribution aj and n coe�cients rj , (bj,k)1≤k≤n−1, using the pseudo-random generator
Rj . The ciphertexts in step 4 are computed straightforwardly, except if j = i0 and
q = q0. In that later case, the simulator chooses (uniformly) n − 1 random values ρj

(for j = 1, . . . , n but j 6= i0) and computes Ai0,j = Xgρj and Bi0,j = ZY ρj Xξj gρjξj ai0

as an encryption of ai0 . The query is answered with the n−1 (signed) �ows to be sent
to others.

The second round starts (for player Uj) after having received n − 1 queries, from
n − 1 other players (within a given concurrent session). Before that, the simulator
just stores the received �ows. The simulator checks the authenticity of the received
�ows, then de�nes a(j) as the product of all ai. Note, in particular, S does not perform
the multiplication of ciphertexts (step 2), nor the decryption (step 3), since it does
not know the private key xj = logg hj . Steps 4 and 5 of round 2 are performed
straightforwardly, and the query is �nally answered by fj , together with its signature.

Round 3 is simulated as in the real protocol. The con�rmation step is processed
straightforwardly. After the third Round, a Reveal-query is answered straightforwardly,
except if asked to Ui0 within the q0-session. In that case S aborts.

If the Test-query does not occur within the q0-th session, the simulator aborts. This
happens with probability at most (Q−1)/Q. Otherwise, it is processed as follows. Let
κ = a·gr =

∏n
i=1 ai ·g

∑n
i=1 ri . When the Test-query occurs, the simulator �ips a private

coin β and set κ0 ← K, κ1 = κ, where K is the session key space (and in our case
K = Q). Then it gives κβ to the adversary. The interaction might continue then; at
the end of the attack, the adversary answers with a bit b′, that the simulator relays
back as its own guess. The theorem then follows immediately from the following two
claims.

Claim 1 If the simulator's input is a Di�e-Hellman triplet (that is b = 1) the adver-
sary's view is perfectly indistinguishable from the real protocol.

It is easy to see that, in this case, the simulation is perfectly identical to the real
protocol with player Pi using private contribution ai, and thus the value κ is actually



the session key sk. This means that an in�nitely powerful adversary, which would be
able to recover all plaintexts, would necessarily lead to sk = κ. Indeed, the secret key
of player Pj is implicitly y + ξj , where y = logg Y . And any ciphertext Ci0,j is an
honest encryption of ai0 , using randomness x + ρj , where x = logg X. Of course, any
other Ci,j is an encryption of ai under public key hj .

Then we have (AV denotes the adversary together with its view):

Pr [AV(κβ) = 1|β = 1 ∧ b = 1] = Pr
[
AV(κβ) = 1

∣∣ β = 1 ∧ κ1 = sk
]

= Pr
[
AV(κ1) = 1

∣∣ κ1 = sk
]

(1)

Pr[AV(κβ) = 1|β = 0 ∧ b = 1] = Pr
[
AV(κβ) = 1

∣∣ β = 0 ∧ κ0 ← K
]

= Pr
[
AV(κ0) = 1

∣∣ κ0 ← K
]

(2)

Then using the fact that Pr[β = 1] = Pr[β = 0] = 1/2, we have:

Pr [AV(κβ) = 1|b = 1] =
1
2

Pr [AV(κ1) = 1|κ1 = sk] +
1
2

Pr [AV(κ0) = 1|κ0 ← K]

Claim 2 If the simulator's input is a random triplet (that is b = 0) the adversary's
view is independent from ai0 .

In such a case, all the values are correctly computed, except that the ciphertexts
Ci0,j encrypt random values. More precisely, the value computationally hidden in Ci0,j

under public key hj = Y gξj is (implicitly):

âi0,j =
Bi0,j

(Ai0,j)
y+ξj

=
ZY ρj Xξj gρjξj ai0

(Xgρj )y+ξj
=

gz+yρj+xξj+ρjξj ai0

(gx+ρj )y+ξj
= gz−xyai0

where z = logg Z. Note that this value does not depend from the index j of the
receiver. This is due to the fact we use the additive random self-reducibility property
of the Di�e-Hellman problem.

Consequently, the plaintext that an in�nitely powerful adversary would recover by
decrypting all the ciphertexts is (for any j): â(j) = gz−xy

∏
k ak = gz−xya(j); thus, the

adversary learns no information at all about a(j) when eavesdropping the messages.
According to adversary's view, the session key sk associated to this simulated execution
of the protocol is thus

â · g
∑n

j=1 rj = gz−xya · gr.

On the other hand, the simulation makes all players setting their key to a(j). Then,
the value �recovered� (according to the simulation) by every player Pi, including Pi0 ,
is κ1 = agr; moreover ai0 and, thus κ1, is uniformly distributed over Q, exactly as κ0

is. Consequently, the value of β is information-theoretically hidden to A.

Pr [AV(κβ) = 1|b = 0] =
1
2

Pr [AV(κ1) = 1|κ1 ← K] +
1
2

Pr [AV(κ0) = 1|κ0 ← K]



By subtraction, we get:

Adv
ddh(S) = Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]

= Pr [AV(κβ) = 1|b = 1]− Pr [AV(κβ) = 1|b = 0]

=
1
2

(
Pr

[
AV(κ1) = 1

∣∣∣κ1 = sk
]
− Pr

[
AV(κ1) = 1

∣∣∣κ1 ← K
])

+
1
2
× 0

=
Adv(A)

2

Assuming the DDH assumption, this quantity is a negligible amount.
In fact, we have conditioned by the fact the Test-query has been correctly guessed,

so we must divide by 1/Q.
Contributory � Contributory trivially follows from the fact that every player is
forced to choose his share ai having no information at all (in an information theoretic
sense!) about the actual value of the randomizer r.

5 Comments, Optimizations and Variants

E�ciency of the protocol � Our protocol is very e�cient both in terms of band-
width and in term of number of rounds required. The number of bits sent by each
player is bounded by 3|p|n plus n + 2 times the size of the employed signature scheme
(used for the authentication). The protocol requires 2 rounds of communication, one
asynchronous broadcast for the con�rmation step and roughly 2n exponentiations per
player (plus the cost of computing the signatures). If precomputations are possible (in
a context where, for example, the participants public keys are all known in advance),
all the exponentiations in Round 1 can be done o�-line and the number of total ex-
ponentiations (per player) reduces to 2 (plus the cost of the signatures, and the cost
of multiplying the received ciphertexts of course). To our knowledge, in this case (and
for this speci�c aspect) our scheme is one of the most e�cient group key agreement
solutions known. Moreover, being a constant round protocol, it has the property that
the number of �slow guys� is not a major e�ciency issue. Indeed, a n round protocol
is like a token ring network: a player does its work then passes the token to the next
one; hence the delays induced by slow parties go cumulating. In our case, everybody
works in parallel so we have the same delay whatever the number of slow guys is (more
precisely, the delay is essentially that of the slowest guy).

Considering forward-secrecy � The forward-secrecy property [10, 17, 29] encom-
passes that the privacy (semantic security) of the session key is not compromised even
in case of a further leakage of the long-term El-Gamal key. In other words, if the
adversary learns a private key xi at some time, then the knowledge of xi, as well as
the view of previous session key establishments, does not help him to get information
about these previously established session keys. We state informally that our protocol
provides forward-secrecy if at most one private key, say x1, is revealed. Indeed, if an
adversary A knows x1, it can decrypt all ciphertexts sent to P1, thus learning all con-
tributions a2, . . . , an. However, P1's contribution, namely a1, is never encrypted under
h1 = gx1 , and then, remains (computationally) hidden to A, and so does the session



key. In order to cover larger scenarios, we have to consider forward-secure public-key
encryption schemes [14].

Resistance to known-key attacks � A key exchange protocol is said to be resistant
to known-key attacks [32] if the exposure of a session key gives no advantage to an
adversary for breaking the privacy of future session keys. This property takes some
importance in dynamic groups, in which future session keys are computed from private
data among which is the current session key. Our protocol trivially provides resistance
to such attacks, since all values are one-time used and picked (�fresh�) at the beginning
of a key exchange.

A General Solution � Up to some loss in e�ciency it is possible to generalize
our construction in order to obtain a constant round authenticated group key agree-
ment scheme provably secure under the sole assumption that trapdoor functions exist
(indeed, this assumption ensures that a semantically secure encryption scheme and a
secure signature scheme exist). Details will appear in the �nal version of this paper.

6 Conclusions

In this paper we presented a new protocol that achieves strong properties of e�ciency
and security under standard assumptions. The protocol is e�cient both in communica-
tion rounds and in bandwidth: the number of communication rounds is constant, and
the bandwidth is comparable with that of previously proposed schemes. Our scheme
is provably secure under the Decisional Di�e-Hellman assumption, and enjoys several
additional properties such as forward-secrecy or an increased e�ciency when prepro-
cessing is allowed. An intriguing, still open, research problem is to establish a secure
key agreement scheme that provides some kind of �resistance� with respect to active
adversaries (i.e. for example a protocol that allows to the non corrupted players to
eliminate the bad guys and to agree on a key.
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