
Efficient Extension of Standard Schnorr/RSA
Signatures into Universal Designated-Verifier

Signatures

Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons,hwang,josef}@comp.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. Universal Designated-Verifier Signature (UDVS) schemes are
digital signature schemes with additional functionality which allows any
holder of a signature to designate the signature to any desired designated-
verifier such that the designated-verifier can verify that the message was
signed by the signer, but is unable to convince anyone else of this fact.
Since UDVS schemes reduce to standard signatures when no verifier des-
ignation is performed, it is natural to ask how to extend the classical
Schnorr or RSA signature schemes into UDVS schemes, so that the ex-
isting key generation and signing implementation infrastructure for these
schemes can be used without modification. We show how this can be ef-
ficiently achieved, and provide proofs of security for our schemes in the
random oracle model.

1 Introduction

Universal Designated-Verifier Signature (UDVS) schemes introduced by Stein-
feld et al [16] are digital signature schemes with additional functionality which
allows any holder of a signature to designate the signature to any desired
designated-verifier such that the designated-verifier can verify that the mes-
sage was signed by the signer, but is unable to convince anyone else of this fact,
because the verifier’s secret key allows him to forge the designated-verifier sig-
natures without the signer’s cooperation. Such signature schemes protect the
privacy of signature holders from dissemination of signatures by verifiers, and
have applications in certification systems [16].

The previous work [16] has shown how to construct efficient deterministic
UDVS schemes from Bilinear group-pairs. However, since UDVS schemes reduce
to standard signatures when no verifier designation is performed, it is natural to
ask how to extend the classical Schnorr [14] or RSA [12] signature schemes into
UDVS schemes, so that the existing key generation and signing implementation
infrastructure for these schemes can be used without modification — the UDVS
functionality can be added to such implementations as an optional feature. In
this paper we show how this can be efficiently achieved, and provide concrete
proofs of security for our schemes in the random oracle model [2].

As shown in [16], any secure efficient construction of an unconditionally-
private UDVS scheme with unique signatures (e.g. fully deterministic UDVS
schemes with unique secret keys) gives rise to a secure efficient ID-Based Encryp-
tion (IBE) scheme. Constructing secure and efficient IBE schemes from classical
Diffie-Hellman or RSA problems is a long-standing open problem [3], and until
this problem is solved we also cannot hope to construct unconditionally-private
UDVS schemes with unique signatures based on classical problems. However,
the results in this paper show that by giving up the unique signature require-
ment and allowing randomization in either the signing (in the case of Schnorr
signatures) or designation (in the case of RSA) algorithms, one can construct
efficient UDVS schemes from classical problems. Although the UDVS schemes
presented in this paper do not have unique signatures, they still achieve perfect
unconditional privacy in the sense of [16].

Due to space limitation, the proofs of all theorems in the paper are omitted.
They are included in the full version of this paper [17].

1.1 Related Work

As pointed out in [16], the concept of UDVS schemes can be viewed as an appli-
cation of the general idea of designated-verifier proofs, introduced by Jakobsson,
Sako and Impagliazzo [8], where a prover non-interactively designates a proof of
a statement to a verifier, in such a way that the verifier can simulate the proof
by himself with his secret key and thus cannot transfer the proof to convince
anyone else about the truth of the statement, yet the verifier himself is convinced
by the proof. The distinctive feature of UDVS schemes is universal designation:
anyone who obtains a signature can designate it.

Two of our proposed UDVS schemes (namely SchUDVS2 and RSAUDVS)
make use of the paradigm in [8] of using a trapdoor commitment in a non-
interactive proof of knowledge to achieve verifier designation. Since the under-
lying construction techniques used in these schemes is known, we view our main
contribution here is in providing a concrete security analysis which bounds the
insecurity of these schemes in terms of the underlying primitives. Our third pro-
posed scheme SchUDVS1 shows an alternative and more efficient approach than
the paradigm of [8], for extending the Schnorr signature scheme into a UDVS
scheme, using the Diffie-Hellman function. It is an analogoue of the the bilinear-
based approach for constructing UDVS schemes proposed in [16].

Besides providing UDVS schemes based on classical problems, another con-
tribution of this paper is in defining a stronger unforgeability notion for UDVS
schemes, which allows the forger access to the attacked designated verifier’s veri-
fication oracle, as well as to the signer’s signing oracle (whereas the model in [16]
only allows access to the signing oracle). We analyse our schemes in this stronger
model.

Further related work to UDVS schemes is discussed in [16].

2 Preliminaries

2.1 Algorithms and Probability Notation

We say that a function f : IN → IR is a negligible function if, for any c > 0, there
exists k0 ∈ IN such that f(k) < 1/kc for all k > k0. We say that a probability
function p : IN → IR is overwhelming if the function q : IN → IR defined by
q(k) = 1−p(k) is a negligible function. For various algorithms discussed, we will
define a sequence of integers to measure the resources of these algorithms (e.g.
running-time plus program length, number of oracle queries to various oracles).
All these resource parameters can in general be functions of a security parameter
k of the scheme. We say that an algorithm A with resource parameters RP =
(r1, . . . , rn) is efficient if each resource parameter ri(k) of A is bounded by a
polynomial function of the security parameter k, i.e. there exists a k0 > 0 and
c > 0 such that ri(k) < kc for all k > k0.

2.2 Discrete-Log and Diffie-Hellman Problems

Our schemes use the following known hard problems for their security. For all
these problems GC denotes an algorithm that on input a security parameter k,
returns an instance (DG, g) of a multiplicative group G of prime order q with
generator g (the description string DG determines the group and contains the
group order q).

1 Discrete-Log Problem (DL) [4]: Given (DG, g) = GC(k) and y1 = gx1 for
uniformly random x1 ∈ ZZ∗q , compute x1. We say that DL is hard if the
success probability SuccA,DL(k) of any efficient DL algorithm A with run-
time t(k) is upper-bounded by a negligible function InSecDL(t) of k.

2 Computational Diffie-Hellman Problem (CDH) [4]: Given (DG, g) = GC(k),
y1 = gx1 and y2 = gx2 for uniformly random x1, x2 ∈ ZZ∗q , compute

CDHg(gx1 , gx2) def= gx1x2 . We say that CDH is hard if the success proba-
bility SuccA,CDH(k) of any efficient CDH algorithm A with run-time t(k) is
upper-bounded by a negligible function InSecCDH(t) in k.

3 Strong Diffie-Hellman Problem (SDH) [1, 10]: Given (DG, g) = GC(k), y1 =
gx1 and y2 = gx2 for uniformly random x1, x2 ∈ ZZ∗q , compute gx1x2 given ac-
cess to a restricted Decision Diffie-Hellman (DDH) oracle DDHx1(., .), which
on input (w, K) ∈ G×G, returns 1 if K = wx1 and 0 else. We say that SDH is
hard if the success probability SuccA,SDH(k) of any efficient SDH algorithm
A with run-time t(k) and which makes up to q(k) queries to DDHx1(., .), is
upper-bounded by a negligible function InSecSDH(t, q) in k.

We remark that the Strong Diffie-Hellman problem (SDH) as defined above
and in [1] is a potentially harder variant of the Gap Diffie-Hellman (GDH) prob-
lem as defined in [10]. The difference between the two problems is in the DDH
oracle: In the GDH problem the DDH oracle accepts four inputs (h, z1, z2,K)
from the attacker and decides whether K = CDHh(z1, z2), whereas in the SDH
problem the attacker can only control the (z2,K) inputs to the DDH oracle and
the other two are fixed to the values h = g and z1 = y1 (we call this weaker
oracle a restricted DDH oracle).

2.3 Trapdoor Hash Functions

Some of our proposed UDVS schemes make use of a general cryptographic scheme
called a trapdoor hash function. We recall the definition and security notions for
such schemes [15]. A trapdoor hash function scheme consists of three efficient
algorithms: a key generation algorithm GKF, a hash function evaluation algo-
rithm F , and a collision solver algorithm CSF. On input a security parameter
k, the (randomized) key-gen. algorithm GKF(k) outputs a secret/public-key pair
(sk, pk). On input a public-key pk, message m ∈ M and random r ∈ R (Here
M and R are the message and randomness spaces, respectively), the hash func-
tion evaluation algorithm outputs a hash string h = Fpk(m; r) ∈ H (here H
is the hash string space). On input a key-pair (sk, pk), a message/randomizer
pair (m1, r1) ∈ M × R and a second message m2 ∈ M , the collision solver
algorithm outputs a second randomizer r2 = CSF((sk, pk), (m1, r1),m2) ∈ R
such that (m1, r1) and (m2, r2) constitute a collision for Fpk, i.e. Fpk(m1; r1) =
Fpk(m2; r2).

There are two desirable security properties for a trapdoor hash function
scheme TH = (GKF, F, CSF). The scheme TH is called collision-resistant if the
success probability SuccCR

A,TH of any efficient attacker A in the following game
is negligible. A key-pair (sk, pk) = GKF(k) is generated, and A is given k and
the public-key pk. A can run for time t and succeeds if it outputs a collision
(m1, r1) and (m2, r2) for Fpk satisfying Fpk(m1, r1) = Fpk(m2, r2) and m1 6= m2.
We denote by InSecCR

TH (t) the maximal success probability in above game over
all attackers A with run-time plus program length at most t. The scheme TH
is called perfectly-trapdoor if it has the following property: for each key-pair
(sk, pk) = GKF(k) and message pair (m1,m2) ∈ M × M , if r1 is chosen uni-
formly at random from R, then r2

def= CSF((sk, pk), (m1, r1), m2) ∈ R has a
uniform probability distribution on R.

3 Universal Designated-Verifier Signature (UDVS)
Schemes

We review the definition of UDVS schemes and their security notions [16]. For
unforgeability we also introduce a stronger notion of security than used in [16].

A Universal Designated Verifier Signature (UDVS) scheme DVS consists of
seven algorithms and a ‘Verifier Key-Registration Protocol’ PKR. All these algo-
rithms may be randomized.

1. Common Parameter Generation GC — on input a security parameter
k, outputs a string consisting of common scheme parameters cp (publicly
shared by all users).

2. Signer Key Generation GKS — on input a common parameter string cp,
outputs a secret/public key-pair (sk1, pk1) for signer.

3. Verifier Key Generation GKV — on input a common parameter string
cp, outputs a secret/public key-pair (sk3, pk3) for verifier.

4. Signing S — on input signing secret key sk1, message m, outputs signer ’s
publicly-verifiable (PV) signature σ.

5. Public Verification V — on input signer ’s public key pk1 and message/PV-
signature pair (m,σ), outputs verification decision d ∈ {Acc,Rej}.

6. Designation CDV — on input a signer ’s public key pk1, a verifier ’s pub-
lic key pk3 and a message/PV-signature pair (m, σ), outputs a designated-
verifier (DV) signature σ̂.

7. Designated Verification VDV — on input a signer ’s public key pk1, veri-
fier ’s secret key sk3, and message/DV-signature pair (m, σ̂), outputs verifi-
cation decision d ∈ {Acc,Rej}.

8. Verifier Key-Registration PKR = (KRA, VER) — a protocol between a
‘Key Registration Authority’ (KRA) and a ‘Verifier’ (VER) who wishes to
register a verifier’s public key. On common input cp, the algorithms KRA
and VER interact by sending messages alternately from one to another. At
the end of the protocol, KRA outputs a pair (pk3, Auth), where pk3 is a ver-
ifier’s public-key, and Auth ∈ {Acc,Rej} is a key-registration authorization
decision. We write PKR(KRA, VER) = (pk3, Auth) to denote this protocol’s
output.

Verifier Key-Reg. Protocol. The purpose of the ‘Verifier Key-Registration’ proto-
col is to force the verifier to ‘know’ the secret-key corresponding to his public-key,
in order to enforce the non-transferability privacy property. In this paper we as-
sume, following [16], the direct key reg. protocol, in which the verifier simply
reveals his secret/public key to the KRA, who authorizes the public-key only if
the provided secret-key matches the public key.

3.1 Unforgeability

In the case of a UDVS scheme there are actually two types of unforgeability
properties to consider. The first property, called called ‘PV-Unforgeability’, is
just the usual existential unforgeability notion under chosen-message attack [6]
for the standard PV signature scheme D = (GC, GKS, S, V) induced by the UDVS
scheme (this prevents attacks to fool the designator). The second property, called
‘DV-Unforgeability’, requires that it is difficult for an attacker to forge a DV-
signature σ̂∗ by the signer on a ‘new’ message m∗, such that the pair (m∗, σ̂∗)
passes the DV-verification test with respect to a given designated-verifier’s public
key pk3 (this prevents attacks to fool the designated verifier, possibly mounted
by a dishonest designator). As pointed out in [16], it is sufficient to prove the DV
unforgeability of a UDVS scheme, since the ‘DV-unforgeability’ property implies
the ‘PV-unforgeability’ property.

In this paper we introduce a stronger version of DV-unforgeability than used
in [16], which we call ST-DV-UF. This model allows the forger also access to
the verification oracle of the designated-verifier (this oracle may help the forger
because it uses the designated-verifier’s secret key, which in turn can be used to
forge DV signatures, as required by the privacy property). Note that the model
in [16] does not provide this oracle. We believe it is desirable for UDVS schemes

to be secure even under such attacks, and place no restrictions on the attacker in
accessing the verifier’s oracle — in particular the attacker can control both the
message/DV sig. pair as well as the signer’s public key in accessing this oracle. We
remark (proof omitted) that the strong DV-unforgeability of the UDVS scheme
in [16] follows (in the random-oracle model) from the hardness of a gap version
of the Bilinear Diffie-Hellman (BDH) problem, in which the attacker has access
to a BDH decision oracle (whereas just hardness of BDH suffices for this scheme
to achieve the weaker DV-unforgeability notion in [16]).

Definition 1 (Strong DV-Unforgeability). Let DVS =
(GC, GKS, GKV, S, V,CDV, VDV, PKR) be a UDVS scheme. Let A denote a
forger attacking the unforgeability of DVS. The Strong DV-Unforgeability notion
ST-UF-DV for this scheme is defined as follows:
1. Attacker Input: Signer and Verifier’s public-keys (pk1, pk3) (where

(sk1, pk1) = GKS(cp), (sk3, pk3) = GKV(cp) and cp = GC(k)).
2. Attacker Resources: Run-time plus program-length at most t, Oracle

access to signer’s signing oracle S(sk1, .) (qs queries), oracle access to
designated-verifier’s verification oracle VDV(., sk3, ., .) (qv queries) and, if
scheme DVS makes use of n random oracles RO1, . . . , ROn, allow qROi

queries to the ith oracle ROi for i = 1, . . . , n. We write attacker’s Resource
Parameters (RPs) as RP = (t, qs, qv, qRO1 , . . . , qROn).

3. Attacker Goal: Output a forgery message/DV-signature pair (m∗, σ̂∗) such
that:
(1) The forgery is valid, i.e. VDV(pk1, sk3,m

∗, σ̂∗) = Acc.
(2) Message m∗ is ‘new’, i.e. has not been queried by attacker to S.

4. Security Notion Definition: Scheme is said to be unforgeable in
the sense of ST-UF-DV if, for any efficient attacker A, the probability
SuccST−UF−DV

A,DVS (k) that A succeeds in achieving above goal is a negligi-
ble function of k. We quantify the insecurity of DVS in the sense of
ST-UF-DV against arbitrary attackers with resource parameters RP =
(t, qs, qv, qRO1 , . . . , qROn) by the probability

InSecST−UF−DV
DVS (t, qs, qv, qRO1 , . . . , qROn) def= max

A∈ASRP

SuccST−UF−DV
A,DVS (k),

where the set ASRP contains all attackers with resource parameters RP .

3.2 Non-Transferability Privacy

Informally, the purpose of the privacy property for a UDVS scheme is to prevent
a designated-verifier from using the DV signature σdv on a message m to produce
evidence which convinces a third-party that the message m was signed by the
signer. The privacy is achieved because the designated-verifier can forge DV
signatures using his secret-key, so even if the designated-verifier reveals his secret
key to the third-party, the third-party cannot distinguish whether a DV signature
was produced by the designator or forged by the designated-verifier.

We review the privacy model from [16]. The attacker is modelled as a pair
of interacting algorithms (A1, A2) representing the designated-verifier (DV) and

Third-Party (TP), respectively. Let Â1 denote a forgery strategy. The goal of
A2 is to distinguish whether it is interacting with A1 who has access to desig-
nated signatures (game yes) or with Â1, who doesn’t have access to designated
signatures (game no). More precisely, the game yes runs in two stages as follows.

Stage 1. (A1,A2) are run on input pk1, where (sk1, pk1) = GKS(cp) and
cp = GC(k). In this stage, A1 has access to: (1) signing oracle S(sk1, .), (2) KRA
key-reg. oracle to register verifier public keys pk via PKR interactions, (3) A2

oracle for querying a message to A2 and receiving a response. At end of stage 1,
A1 outputs a message m∗ not queried to S during the game (m∗ is given to A2).
Let σ∗ = S(sk1,m

∗).
Stage 2. A1 continues to make S,KRA and A2 queries as in stage 1, but also

has access to a designation oracle CDV(pk1, .,m
∗, σ∗) which it can query with

any verifier public-key pk which was answered Acc by a previous KRA key-reg.
query. At end of stage 2, A2 outputs a decision d ∈ {yes, no}.

The game no is defined in the same way except that (1) A1 is replaced by Â1,
(2) Â1 receives as input pk1 and the program for A1, (3) Â1 cannot make any
designation queries, (4) Â1 makes same number of sign queries as A1 (possibly
0).

Let Pyes and Pno denote the probability that A2 outputs yes in games yes and

no, respectively. We let C
Â1

(A1, A2)
def= |Pyes − Pno| denote A2’s distinguishing

advantage.

Definition 2. A UDVS scheme is said to achieve complete and perfect uncon-
ditional privacy (PR notion) if there exists an efficient forgery strategy Â1 such
that C

Â1
(A1, A2) = 0 for any efficient A1 and computationally unbounded A2.

4 Two Extensions of Schnorr Signature Scheme into
UDVS Schemes

We will present two UDVS schemes which are both extensions of the Schnorr [14]
signature scheme (that is, the signer key-generation, signing and public-verification
algorithms in both schemes are identical to those of the Schnorr signature). The
first UDVS scheme SchUDVS1 has an efficient and deterministic designation
algorithm and its unforgeability relies on the Strong Diffie-Hellman (SDH) as-
sumption. The second UDVS scheme SchUDVS2 has a less efficient randomized
designation algorithm, but its unforgeability follows from the weaker Discrete-
Logarithm (DL) assumption (in the random-oracle model).

4.1 First Scheme: SchUDVS1

Our first UDVS scheme SchUDVS1 is defined as follows. Let {0, 1}≤` denote the
message space of all bit strings of length at most ` bits. The scheme makes use
of a cryptographic hash function H : {0, 1}≤` × {0, 1}lG → {0, 1}lH , modelled
as a random-oracle [2] in our security analysis. We assume that elements of the

group G output by algorithm GC are represented by bit strings of length lG ≥ lq

bits, where lq
def= blog2 qc+ 1 is the bit length of q.

1. Common Parameter Generation GC. (Identical to Schnorr). Choose a
group G of prime order q > 2lH with description string DG (e.g. if G is a
subgroup of ZZ∗p, the string DG would contain (p, q)), and let g ∈ G denote
a generator for G. The common parameters are cp = (DG, g).

2. Signer Key Generation GKS. (Identical to Schnorr). Given the common
parameters cp, pick random x1 ∈ ZZ∗q and compute y1 = gx1 . The public key
is pk1 = (cp, y1). The secret key is sk1 = (cp, x1).

3. Verifier Key Generation GKV. Given the common parameters cp, pick
random x3 ∈ ZZ∗q and compute y3 = gx3 . The public key is pk3 = (cp, y3).
The secret key is sk3 = (cp, x3).

4. Signing S. (Identical to Schnorr). Given the signer’s secret key (cp, x1), and
message m, choose a random k ∈ ZZq and compute u = gk, r = H(m,u) and
s = k + r · x1 (mod q). The PV signature is σ = (r, s).

5. Public Verification V. (Identical to Schnorr). Given the signer’s public key
y1 and a message/PV sig. pair (m, (r, s)), accept if and only if H(m,u) = r,
where u = gs · y−r

1 .
6. Designation CDV. Given the signer’s public key y1, a verifier’s public key

y3 and a message/PV-signature pair (m, (r, s)), compute u = gs · y−r
1 and

K = ys
3. The DV signature is σ̂ = (u,K).

7. Designated Verification VDV. Given a signer’s public key y1, a verifier’s
secret key x3, and message/DV-sig. pair (m, (u,K)), accept if and only if
K = (u · yr

1)
x3 , where r = H(m,u).

Unforgeability. The PV-Unforgeability of SchUDVS1 is equivalent to the un-
forgeability of the Schnorr signature, which in turn is equivalent to the Discrete-
Logarithm (DL) assumption in G, assuming the random-oracle model for H(.) [11].
However, for the DV-Unforgeability of SchUDVS1, it is clear that the stronger
‘Computational Diffie-Hellman’ (CDH) assumption in G is certainly necessary —
an attacker can forge a DV signature (u, K) on a message m by choosing a ran-
dom u ∈ G, computing r = H(m,u) and then K = CDHg(u · yr

1, y3) (indeed this
is the idea behind the proof of the privacy of SchUDVS1 — see below). Moreover,
in the strong DV-unforgeability attack setting, the even stronger ‘Strong Diffie-
Hellman’ (SDH) assumption in G is necessary. This is because the forger’s access
to the verifier’s VDV oracle allows him to simulate the fixed-input DDH oracle
DDHx3(w,K) which decides whether K = wx3 or not (see Sec. 2.2), namely we
have DDHx3(w, K) = VDV(y′1, x3,m, (u, K)) with y′1 = (w · u−1)r−1 mod q and
r = H(m,u). Note that this does not rule out the possibility that there may
be another attack which even bypasses the need to break SDH. Fortunately, the
following theorem shows that this is not the case and SDH is also a sufficient con-
dition for Strong DV-Unforgeability of SchUDVS1, assuming the random-oracle
model for H(.). The proof uses the forking technique, as used in the proof in [11]
of PV-Unforgeability of the Schnorr signature.

Theorem 1 (Strong DV-Unforg. of SchUDVS1). If the Strong Diffie-Hellman
problem (SDH) is hard in groups generated by the common-parameter algorithm

GC, then the scheme SchUDVS1 achieves Strong DV-unforgeability (ST-UF-DV
notion) in the random-oracle model for H(.). Concretely, the following insecurity
bound holds:

InSecST−UF−DV
SchUDVS1

(t, qs, qv, qH) ≤ 2 [(qH + qv)InSecSDH(t[S], q[S])]1/2

+
qs(qH + qs + qv) + 2(qH + qv) + 1

2lH
,

where t[S] = 2t + 2(qH + qs + qv + 1)(TS + O(lH)) + (qs + 1)O(lqTg) + O(l2q),
where TS = O(log2(qH + qs + qv) · (` + lG)) and q[S] = 2qv. Here we denote by
Tg the time needed to perform a group operation in G.

Privacy. The privacy of SchUDVS1 follows from the existence of an algorithm
for forging DV signatures (with identical probability distribution as that of real
DV signatures) using the verifier’s secret key, which is a trapdoor for solving the
CDH problem on which the DV-Unforgeability relies.

Theorem 2 (Privacy of SchUDVS1). The scheme SchUDVS1 achieves com-
plete and perfect unconditional privacy (PR notion).

4.2 Second Scheme: SchUDVS2

Our second UDVS scheme SchUDVS2 trades off efficiency for a better provable
unforgeability security guarantee. Rather than using the Diffie-Hellman trapdoor
function to achieve privacy, we instead get the designator to produce a Schnorr
proof of knowledge of the PV signature (r, s). This proof of knowledge is made
non-interactive in the random-oracle model using the Fiat-Shamir heuristic [5],
but using a trapdoor hash function [9, 15] Fy3(.; .) composed with a random oracle
J(.) in producing the ‘verifier random challenge’ r̂ for this proof of knowledge.
The designated-verifier’s secret key consists of the trapdoor for the hash function
Fy3 , which suffices for forging the DV signatures, thus providing the privacy
property. We remark that a similar technique was used by Jakobsson Sako and
Impagliazzo [8], who used a trapdoor commitment scheme in constructing a
designated-verifier undeniable signature scheme. Our scheme can use any secure
trapdoor hash function.

The resulting scheme is defined as follows. Let {0, 1}≤` denote the mes-
sage space of all bit strings of length at most ` bits. The scheme makes use
of two cryptographic hash functions H : {0, 1}≤` × {0, 1}lG → {0, 1}lH and
J : {0, 1}≤` × ZZ2lH × {0, 1}lG × {0, 1}lF → {0, 1}lJ , both modelled as random-
oracles [2] in our security analysis. We also use a trapdoor hash function scheme
TH = (GKF, F, CSF) with Fy3 : {0, 1}lG ×RF → {0, 1}lF (we refer the reader to
Section 2 for a definition of trapdoor hash function schemes). We assume that
elements of the group G output by algorithm GC are represented by bit strings
of length lG ≥ lq bits, where lq

def= blog2 qc+ 1 is the bit length of q.
1. Common Parameter Generation GC. (Identical to Schnorr). Choose a

group G of prime order q with description string DG (e.g. if G is a subgroup of
ZZ∗p, the string DG would contain (p, q)), and let g ∈ G denote a generator for
G. The common parameters are cp = (k, DG, g) (k is the security parameter).

2. Signer Key Generation GKS. (Identical to Schnorr). Given the common
parameters cp, pick random x1 ∈ ZZq and compute y1 = gx1 . The public key
is pk1 = (cp, y1). The secret key is sk1 = (cp, x1).

3. Verifier Key Generation GKV. Given the common parameters cp = k,
run TH’s key-gen. algorithm to compute (sk, pk) = GKF(k). The public key
is pk3 = (cp, pk). The secret key is sk3 = (cp, sk, pk).

4. Signing S. (Identical to Schnorr). Given the signer’s secret key (cp, x1), and
message m, choose a random k ∈ ZZq and compute u = gk, r = H(m,u) and
s = k + r · x1 (mod q). The PV signature is σ = (r, s).

5. Public Verification V. (Identical to Schnorr). Given the signer’s public key
y1 and a message/PV sig. pair (m, (r, s)), accept if and only if H(m,u) = r,
where u = gs · y−r

1 .
6. Designation CDV. Given the signer’s public key y1, a verifier’s public key

pk3 = (cp, pk) and a message/PV-signature pair (m, (r, s)), compute u =
gs ·y−r

1 , û = gk̂ for a random k̂ ∈ ZZq, ĥ = Fpk(û; r̂F) for a random r̂F ∈ RF ,
r̂ = J(m, r, u, ĥ) and ŝ = k̂+r̂·s mod q. The DV signature is σ̂ = (u, r̂F , r̂, ŝ).

7. Designated Verification VDV. Given a signer’s public key y1, a verifier’s
secret key sk3 = (cp, sk, pk), and message/DV-sig. pair (m, (u, r̂F , r̂, ŝ)), ac-
cept if and only if J(m, r, u, ĥ) = r̂, where r = H(m,u), ĥ = Fpk(û; r̂F) and
û = gŝ · (u · yr

1)
−r̂.

Unforgeability. The idea behind the DV-Unforgeability of SchUDVS2, is that
the DV signature is effectively a proof of knowledge of the s portion of the PV
Schnorr signature (r, s) by the signer on m. Namely, using the forking technique
we can use a forger for SchUDVS2 to extract s and hence forge a Schnorr PV
signature for some unsigned message m, or alternately to break the collision-
resistance of the trapdoor hash scheme TH. We have the following concrete
result. Note that we need only assume that J(.) is a random-oracle in proving this
result, but we provide a count of H(.) queries to allow the use of our reduction
bound in conjunction with known results on the unforgeability of the Schnorr
signature which assume the random-oracle model for H(.).

Theorem 3 (Strong DV-Unforg. of SchUDVS2). If SchUDVS2 is PV-
unforgeable (UF-PV notion) and TH is collision-resistant (CR notion) then
SchUDVS2 achieves Strong DV-unforgeability (ST-UF-DV notion) in the
random-oracle model for J(.). Concretely, the following insecurity bound holds:

InSecST−UF−DV
SchUDVS2

(t, qs, qv, qJ , qH) ≤

2[(qJ + qv)qs]1/2
[
InSecUF−PV

SchUDVS2
(t[S], qs[S], qH [S]) + InSecCR

TH (t[T])
]1/2

+
2(qJ + qv)qs + 1

2lJ
,

where t[S] = t[T] = 2t + O((qJ + qv)(` + lF + lG) + lqTg + l2q), qs[S] = 2qs and
qH [S] = 2qH . Here we denote by Tg the time needed to perform a group operation
in G.

Privacy. The privacy of SchUDVS2 follows from the existence of an algorithm
for forging DV signatures (with identical probability distribution as that of real
DV signatures) using the verifier’s secret key, which is a trapdoor for solving
collisions in TH. In particular we need here the perfectly-trapdoor property of
TH. This result holds in the standard model (no random-oracle assumptions).

Theorem 4 (Privacy of SchUDVS2). If the scheme TH is perfectly-trapdoor
then SchUDVS2 achieves complete and perfect unconditional privacy (PR no-
tion).

5 RSA-Based Scheme: RSAUDVS

The idea for the construction of an RSA-based UDVS scheme is analogous to the
second Schnorr-based scheme SchUDVS2, and is described as follows. The PV
RSA signature known to the designator is the eth root σ = h1/e mod N of the
message hash h, where (N, e) is the signer’s RSA public key. To produce a DV
signature on m, the designator computes a zero-knowledge proof of knowledge of
the PV signature σ (made non-interactive using Fiat-Shamir method [5]), which
is forgeable by the verifier. The Guilliou-Quisquater ID-based signature [7] is
based on such a proof and is applied here for this purpose. To make the proof
forgeable by the verifier, we use a trapdoor hash function in the computation of
the challenge, as done in the SchUDVS2 scheme. We note that a restriction of the
GQ proof that we use is that the random challenge r must be smaller than the
public exponent e. To allow for small public exponents and achieve high security
level, we apply α proofs in ‘parallel’, where α is chosen to achieve a sufficient
security level — see security bound in our security analysis (a similar technique
is used in the Fiat-Shamir signature scheme [5]).

The resulting scheme is defined as follows. Let {0, 1}≤` denote the message
space of all bit strings of length at most ` bits. The scheme makes use of two
cryptographic hash functions H : {0, 1}≤` × RS → {0, 1}lH and J : {0, 1}≤` ×
ZZα

lN × {0, 1}lF → ZZα
2lJ /α . Note that we only need to assume that J(.) is a

random-oracle model in our security analysis, and that we allow randomized RSA
signatures with hash generation h = H(m; s) for random s. The corresponding
verification is to check if R(h,m) = Acc or not, where R(.) is a binary relation
function that outputs Acc if h is a valid hash of message m and outputs Rej
else. Thus by a suitable choice of H(., .) and R(., .) our scheme can instantiated
with any of the standardised variants of RSA signatures such as RSASSA-PSS
or RSASSA-PKCS1-v15, as specified in the PKCS1 standard [13]. We also use a
trapdoor hash function scheme TH = (GKF, F, CSF) with Fy3 : {0, 1}lG ×RF →
{0, 1}lF (we refer the reader to Section 2 for a definition of trapdoor hash function
schemes). Here lN denotes the length of RSA modulus N of the signer’s public
key.

1. Common Parameter Generation GC. (Identical to RSA). The comm.
pars. are cp = k (k is the security parameter).

2. Signer Key Generation GKS. (Identical to RSA). Given the common
parameters cp, choose a prime e > 2lJ/α. Pick random primes p and q such
that N = pq has bit-length lN and gcd(e, φ(N)) = 1, where φ(N) = (p −
1)(q − 1). Compute d = e−1 mod φ(N). The public key is pk1 = (cp,N, e).
The secret key is sk1 = (cp,N, e, d).

3. Verifier Key Generation GKV. Given the comm. pars. cp = k, run TH’s
key-gen. algorithm to compute (sk, pk) = GKF(k). The public key is pk3 =
(cp, pk). The secret key is sk3 = (cp, sk, pk).

4. Signing S. (Identical to RSA). Given the signer’s secret key (cp,N, e, d),
and message m, choose a random s ∈ RS and compute h = H(m, s) and
σ = hd mod N . The PV signature is σ.

5. Public Verification V. (Identical to RSA). Given the signer’s public key
(cp,N, e) and a message/PV sig. pair (m,σ), accept if and only if R(m,h) =
Acc, where h = σe mod N .

6. Designation CDV. Given the signer’s public key (cp,N, e), a verifier’s public
key pk3 = (cp, pk) and a message/PV-signature pair (m,σ), choose α random
elements ki ∈ ZZ∗N and compute û = (û1, . . . , ûα), where ûi = ke

i mod N

for i = 1, . . . , α. Compute ĥ = Fpk(û; r̂F) for random r̂F ∈ RF . Compute
r̂ = (r̂1, . . . , r̂α) = J(m,h, ĥ), where h = σe mod N and r̂i ∈ ZZ2lJ /α for
i = 1, . . . , α. Compute ŝ = (ŝ1, . . . , ŝα), where ŝi = ki · σr̂i mod N for all
i = 1, . . . , α. The DV signature is σ̂ = (h, r̂F , r̂, ŝ).

7. Designated Verification VDV. Given a signer’s public key (cp,N, e), a ver-
ifier’s secret key sk3 = (cp, sk, pk), and message/DV-sig. pair (m, (h, r̂F , r̂, ŝ)),
accept if and only if J(m,h, ĥ) = r̂ and R(m,h) = Acc, where ĥ = Fpk(û; r̂F)
with û = (û1, . . . , ûα) and ûi = ŝe

i · h−r̂i mod N for i = 1, . . . , α.

Unforgeability. Similar to the scheme SchUDVS2, thanks to the soundness of
the GQ proof of knowledge of RSA inverses, we can prove the DV unforgeability
of RSAUDVS assuming the PV-unforgeability of RSAUDVS (i.e. the existential
unforgeability under chosen-message attack of the underlying standard RSA sig-
nature (GKS,S,V)) and the collision-resistance of the trapdoor hash TH. The
concrete result is the following.

Theorem 5 (Strong DV-Unforg. of RSAUDVS). If RSAUDVS is PV-
unforgeable (UF-PV notion) and TH is collision-resistant (CR notion) then
RSAUDVS achieves Strong DV-unforgeability (ST-UF-DV notion) in the
random-oracle model for J(.). Concretely, the following insecurity bound holds:

InSecST−UF−DV
RSAUDVS (t, qs, qv, qJ , qH) ≤

2[(qJ + qv)qs]1/2
[
InSecUF−PV

RSAUDVS(t[S], qs[S], qH [S]) + InSecCR
TH (t[T])

]1/2

+
2(qJ + qv)qs + 1

2lJ
,

where t[S] = t[T] = 2t + O((qJ + qv)(lF + lN) + l2e + leTN), qs[S] = 2qs and
qH [S] = 2qH . Here we denote by TN the time needed to perform a multiplication
in ZZ∗N and le = log2(e).

Privacy. The privacy of RSAUDVS is unconditional, assuming the perfectly-
trapdoor property of the trapdoor hash scheme TH.

Theorem 6 (Privacy of RSAUDVS). If the scheme TH is perfectly-trapdoor
then RSAUDVS achieves complete and perfect unconditional privacy (PR no-
tion).

6 Scheme Comparison

The following tables compare the security and performance features of the pro-
posed schemes (also shown for comparison is an entry for the bilinear-based
UDVS scheme DVSBM [16]). It is evident that SchUDVS1 is more computation-
ally efficient than SchUDVS2 but its security relies on a stronger assumption and
it also produces slightly longer DV signatures. The RSA-based scheme RSAUDVS
has a disadvantage of long DV signature length, assuming a low public exponent.
However, the computation is about the same as in the Schnorr-based schemes.

Scheme Extended Sig. Hard Problem Det. Desig? DV Sig. Length (typ)

SchUDVS1 Schnorr SDH Yes 2.0 kb
SchUDVS2 Schnorr DL No 1.5 kb
RSAUDVS RSA RSA No 11.6 kb
DVSBM BLS BDH Yes 1.0 kb

Table 1. Comparison of UDVS Schemes. The column ‘Det Desig?’ indicates if the
schemes designation algorithm is deterministic. Refer to [17] for assumptions used to
compute typical DV sig. lengths.

Scheme Desig. Time Ver. Time

SchUDVS1 2 exp. 1 exp.
SchUDVS2 2 exp. + TH 1 exp. + TH
RSAUDVS 2(dlJ/ log2(e)e+ 1) exp. + TH dlJ/ log2(e)e+ 1 exp. + TH
DVSBM 1 pairing 1 pairing + 1 exp.

Table 2. Comparison of UDVS Schemes Approximate Computation Time. Here we
count the cost of computing a product axbycz as equivalent to a single exponentiation
(exp.) in the underlying group. For RSAUDVS exponent lengths are all log2(e). TH
denotes the cost of evaluating the trapdoor hash function Fpk (typ. 1 exp.).

7 Conclusions

We have shown how to efficiently extend the standard Schnorr and RSA signature
schemes into Universal Designated-Verifier Signature schemes, and provided a
concrete security analysis of the resulting schemes. One problem of our RSA
scheme is that the length of designated signatures is larger than standard RSA
signatures by a factor roughly proportional to k/ log2(e), where k is the security
parameter and e is the public exponent. An interesting open problem is to find
an RSA based UDVS scheme with designated signatures only a constant factor
longer than standard RSA signatures, independent of e.

Acknowledgments. The work of Ron Steinfeld, Huaxiong Wang and Josef
Pieprzyk was supported by ARC Discovery Grant DP0345366. Huaxiong Wang’s
work was also supported in part by ARC Discovery Grant DP0344444.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In Topics in Cryptology - CT-RSA 2001, volume 2020
of LNCS, pages 143–158, Berlin, 2001. Springer-Verlag. See full paper available at
www-cse.ucsd.edu/users/mihir.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proc. 1-st ACM Conf. on Comp. and Comm. Security, pages
62–73, New York, November 1993. ACM.

3. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
In CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Berlin, 2001. Springer-
Verlag.

4. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. on
Information Theory, 22:644–654, 1976.

5. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. In CRYPTO’86, volume 263 of LNCS, pages 186–194,
Berlin, 1987. Springer-Verlag.

6. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against
Adaptively Chosen Message Attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

7. L.C. Guillou and J.J. Quisquater. A “Paradoxical” Identity-Based Signature
Scheme Resulting from Zero-Knowledge. In CRYPTO ’88, volume 403 of LNCS,
pages 216–231, Berlin, 1990. Springer-Verlag.

8. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their
Applications. In Eurocrypt ’96, volume 1070 of LNCS, pages 143–154, Berlin, 1996.
Springer-Verlag.

9. H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS 2000, 2000. Available
at http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/.

10. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Problems
for the Security of Cryptographic Schemes. In PKC2001, volume 1992 of LNCS,
pages 104–118, Berlin, 2000. Springer-Verlag.

11. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. of Cryptology, 13(3):361–396, 2000.

12. R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–128,
1978.

13. RSA Laboratories. PKCS]1 v. 2.1: RSA Cryptography Standard, 2002.
14. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In

CRYPTO’89, volume 435 of LNCS, pages 239–251, Berlin, 1990. Springer-Verlag.
15. A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In

CRYPTO 2001, volume 2139 of LNCS, pages 355–367, Berlin, 2001. Springer-
Verlag.

16. R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal Designated-Verifier
Signatures. In Asiacrypt 2003, volume 2894 of LNCS, pages 523–542, Berlin, 2003.
Springer-Verlag. Full version available at http://www.comp.mq.edu.au/∼rons.

17. R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient Extension of Standard
Schnorr/RSA signatures into Universal Designated-Verifier Signatures. Cryptology
ePrint Archive, Report 2003/193, 2003. http://eprint.iacr.org/.

