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Abstract. We propose a scalar multiplication algorithm for elliptic and
hyperelliptic curve cryptosystems, which uses affine arithmetic and is re-
sistant against simple power attacks. Also, using a modification of known
techniques the algorithm can be made immune against differential power
attacks. The algorithm uses Montgomery’s trick and a precomputed ta-
ble consisting of multiples of the base point. Consequently, the algorithm
is useful in a scenario where the base point is fixed, like Elgamal encryp-
tion or signature generation. Under such circumstances, for hyperelliptic
curves, the algorithm compares favourably with other known algorithms
over all fields. For elliptic curves, under similar circumstances, the al-
gorithm performs better than other algorithms over prime fields. The
increase in speed is due to a proper application of Montgomery’s trick to
efficiently perform the simultaneous inversion of several field elements.
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1 Introduction

Elliptic curve cryptosystems (ECC) in recent years are gradually being inducted
into many standards like ANSI, IEEE, NIST etc. The main advantage of these
cryptosystems is that the key size is quite small in comparison to other cryp-
tosystems like RSA, making these suitable for resource constrained devices, like
smart card. Hyperelliptic curve cryptosystems (HECC) are also attractive, as
the underlying field size is smaller and there are many more curves to choose
from. ECC has already established itself as a popular public key cryptosystem.
However, computational complexity of the HECC has till now come in the way
of its commercial utilisation. Several research groups around the world have now
diverted their attention to HECC to reduce its complexity and make it available
for popular applications.

Both ECC and HECC are based on the discrete logarithm problem. The
underlying group in ECC is provided by the set of points on the curve over a
finite field on which an additive group operation is defined. On the other hand,



cryptography using hyperelliptic curves is carried out in the Jacobian of such
curves. The Jacobian is an additively written group and the elements of the
Jacobian are called divisors. In this paper, we will use the term point to mean
both a point on an elliptic curve and a divisor in the Jacobian of a hyperelliptic
curve. The most important and computationally costly operation in (H)ECC is
the scalar multiplication. Scalar multiplication is the operation of multiplying a
point X with a scalar (an integer) m i.e. computing mX.

The efficiency of scalar multiplication depends to a large extent on the ef-
ficiency of addition and doubling operation of points. For elliptic curves point
addition and doubling are relatively simple. Various co-ordinate systems have
been proposed in the literature to reduce the complexity further. Divisors can
be added in the Jacobian of hyperelliptic curves by Cantor’s algorithm. However,
this approach is not very efficient. One approach to improve the efficiency is to
fix the genus of the curve and compute addition and doubling by explicit formu-
lae. Such addition and doubling formulae were first described by Spallek [23] and
have gone through many changes since then (see [6], [16], [24], [18], [19], [20]).
For genus 2 curves an efficient set of formulae have been described by Lange
in [12] and [13].

In the first paper [12], the author presents algorithms for addition and dou-
bling, which involve the inversion of a field element along with some squarings
and multiplications. In [13], algorithms are presented for addition and doubling
which do not require inversion. Avoiding the inversion leads to some extra squar-
ings and multiplications. This extra cost in terms of multiplications and squar-
ings is not always desirable. Particularly in binary fields, where the the ratio
of cost of inversion to cost of multiplication is not so high (between 3 and 8),
inversion-free arithmetic is unnecessary. In prime fields, where this ratio is quite
higher (> 30), inversion-free arithmetic seems to be more appropriate.

Side-channel attacks (SCA) were first proposed by Paul Kocher in 1996. The
aim of SCA is to attack a specific implementation by measuring side-channel
data like timing, power consumption traces, electro-magnetic radiation etc. One
important class of these attacks, called power analysis attacks, uses the power
consumption traces of the execution(s) of the implementation. Several measures
have been proposed to defeat SCA in ECC.

In the current work, we present a new algorithm for computing the scalar
multiplication for both elliptic and hyperelliptic curve cryptosystems. Our ap-
proach uses arithmetic with inversion and performs better than algorithms us-
ing inversion-free arithmetic in prime fields, where the cost of inversion is much
higher than in binary fields. Moreover, the proposed algorithm is SCA resistant.

The efficiency of the algorithm is derived from the fact that, while computing
the scalar multiplication, instead of scanning one bit at a time, several bits can
be scanned from different locations in the binary representation of the multiplier
and the point additions and doublings can be done simultaneously. As each of
the additions and doublings involve one inversion, all these inversions can be
computed simultaneously by Montgomery’s trick (see Section 2.2) with only one
inversion and some extra multiplications. The partial results so obtained are



added by another point addition algorithm, TreeADD, which computes addi-
tion of several points in a tree structure. The partial sums at the nodes of a
particular level of the tree are computed together and the involved inversions
are computed simultaneously by Montgomery’s trick. This yields a very efficient
scalar multiplication algorithm.

Our algorithm uses a precomputed table. So, it is useful in applications where
the base point is fixed, like Elgamal encryption and signature generation etc.
Also, the use of Montgomery’s trick requires storage of several points which
increases the memory requirement. In Section 5, it can be seen that for HECC
over prime fields, when the base point is fixed, the algorithm is 77% faster than
DPA resistant version of Coron’s dummy addition method. Over binary fields
the speed enhancement is about 28.1%. The performance is lower due to the fact
that inversion is cheaper over such fields. For ECC over fields of characteristic
> 3, under similar assumptions, the performance of our algorithm compares
favourably against all SCA-resistant algorithms. The speed up is around 10% in
the best scenario (window-size = 5).

2 Preliminaries

We first present a brief overview of hyperelliptic curves. For details, readers can
refer to [10], [15], [11] or [3]. Let K be a field and let K be the algebraic closure
of K. A hyperelliptic curve C of genus g (> 1) over K is an equation of the
form C : v? + h(u)v = f(u) where h(u) in K[u] is a polynomial of degree at
most g, f(u) in K[u] is a monic polynomial of degree 29 + 1, and there are no
“singular points”. FElliptic curves are hyperelliptic curves of genus 1.

A divisor D is an element of the free abelian group generated by all the points
of the curve C over K. Let D stand for the set of all divisors. The degree of a
divisor is defined to be the sum of all integer coefficients of the points occuring
in the divisor. The set D° of all divisors of degree 0 forms a subgroup of D.

The set D° can be partitioned into equivalence classes of divisors, each of
which contains and hence is represented by an unique special type of divisor,
called reduced divisors. Reduced divisors have a beautiful cannonical represen-
tation by means of two polynomials [a(u),b(u)] of small degree over K. This is
called Mumford’s representation. The reduced divisors can be effectively added
using Cantor’s algorithm [3]. This group of reduced divisors is called the Jaco-
bian of the curve C. It is generally denoted by Jo(K). The discrete logarithm
problem on the Jacobian of hyperelliptic curves of lower genus (g < 4) over suit-
able finite fileds K, is believed to be hard. This opens the possibility of realising
different cryptographic primitives over it.

2.1 Point Arithmetic in (H)ECC

Let [¢],[m] and [s] denote the amount of time required to compute an inversion,
a multiplication and a squaring respectively in the underying field. We will use
the notation i to denote the ratio [¢]/[m], which represents the relative cost of an



inversion compared to a multiplication. The value of i depends on the choice of
the underlying field. For binary fields this value has been reported to be between
3 and 10 and for prime fields it is somewhere between 30 and 40 (see [5]). In
prime fields the cost of a squaring is known to be somewhat less than the cost
of a multiplication. For simplicity, in the current work we assume [m] = [s].

Elliptic Curve Arithmetic We only consider elliptic curves over prime fields.
The equation of an elliptic curve over such a field is y? = 2% + az + b where
a,b € K and 4a® + 27> # 0. The cost of addition (ECADD) and doubling
(ECDBL) algorithms for ECC in affine co-ordinates are 1[i] + 1[m] + 1[s] and
1[¢] + 2[m] + 1[s] respectively.

Hyperelliptic Curve Arithmetic For addition of divisors in the Jacobian
of hyperlliptic curves, use of explicit formulae has been proved to be the most
efficient method. Many such formulae have been proposed in the literature by
various authors. In this work, we will mostly concentrate on hyperlliptic curves
of genus 2. For these curves Lange has provided a set of efficient formulae for
addition and doubling in [12], [13]. The formulae proposed in [12] involve inver-
sions in the underlying field. We will refer to these formulae as affine arithmetic.
The formulae proposed in [13] do not involve inversions. We will refer to these
as inversion-free arithmetic. For genus 3 and genus 4 curves affine formulae are
proposed by Pelzl et al [19], [20]. Our proposed algorithm can also be used for
curves of genera 2 and 3, which require 1 inversion each for divisor addition
and doubling. In the current paper we will concentrate on curves of genus 2.
Table 1 describes the complexity of addition and doubling formulae, proposed
in [12], [13].

Table 1. Complexity of Explicit Formulae described in [12, 13]

Name/Proposed in Cost(Add) Cost(Double)
Lange [12] 1[z] + 22[m] + 3[s]|1[3] + 22[m] + 5[s]
Lange [13] 40[m] + 6[s] 47[m] + 4s]

2.2 Computing Inverses Simultaneously

Our scalar multiplication algorithm derives its efficiency from the fact that inver-
sions of several field elements can be computed simultaneously by one inversion
and some extra multiplications. One well known technique for doing this is Mont-
gomery’s trick [22], [17] which works as follows. Let z1, - - -, 2, be the elements to
be inverted. The algorithm first computes a1 = x1,a2 = 122, -, 4, = X1 -+ * Ty,
by (n — 1) multiplications. Then it inverts a,. Now, z! is computed by mul-

n
tiplying a,,' by an—1. Also, a,‘lil = a,'r, and x,ﬁl is a;ilan_g. Similarly, it



computes inverse of other elements. It is not difficult to see that the algorithm
uses only 3(n — 1) multiplications and one inversion. We will denote the cost of
computing the inverses of n field elements by Z(n). Montgomery’s trick shows
that we can take Z(n) = 1[i] + 3(n — 1)[m].

2.3 Side Channel Attacks

In this subsection we discuss variuos countermeasures proposed in literature to
resist side-channel attacks on (H)ECC.

Countermeasures Against SPA The usual binary algorithm for scalar mul-
tiplication is not secure against side channel attacks. To resist SPA, two ap-
proaches are generally resorted to in ECC. The first one is to make the compu-
tation independent of the bit pattern representing the scalar multiplier. Several
countermeasure against SPA fall in this category. The simplest one is Coron’s
dummy addition method, i.e. to carry out one dummy addition if the corre-
sponding bit is 0. Other approaches are based on various addition chains and
window based methods. Particularly, for ECC, the Montgomery’s ladder along
with z-coordinate only encapsulated add-and-double algorithm proposed by Izu
and Takagi and window-based methods proposed by Moller are very efficient and
secure against SPA. The second approach uses indistinguishable algorithms for
point addition and doubling. Certain elliptic curves like Hess and Jacobi form
elliptic curves admit such algorithms. For a detailed treatment of these methods
reader can refer to [8].

There is no result specific to HECC proposed in the literature to immu-
nize the scalar multiplication algorithm against SPA. However, Coron’s dummy
addition method can easily be carried over to HECC.

Countermeasures Against DPA Several remedies have been proposed for
immunising ECC from DPA. We briefly mention one such method — the Joye-
Tymen countermeasure [9]. Let z be a random nonzero field element. The steps
are as follows.

3 ,4 ,6

1. Compute 22, 23, 24, 25.
2. Transform the base point P(z,y) to (22z, 23y).

3. Transform the curve coefficients (a, b) to a' = z%a, b’ = 2%b.
4

5

. Compute scalar multiplication with the new point on the new curve.

. Transform the result (z,y) back to the original curve using (z,y) — (z/22,y/2%).

The additional cost of obtaining DPA resistance is 4[m] for Step 1; 2[m] for Step
2; 2[m] for Step 3 and finally 1[i] + 2[m] for Step 5.

Recently, Avanzi [1] has generalised these techniques for HECC. Briefly, we
describe the curve randomisation countermeasure which we will use in our al-
gorithm. Let the underlying curve C of the cryptosystem be y? + h(z)y = f(z)
where h(z) = hyx® +hyz+ho and f(x) = 2°+ faz + fsz® + fox + fiz + fo. Let
D = [u(z),v(x)] be the base divisor in C' and let z be a random field element.



1. Compute 271,272,273 274,275 276 2% and 2710,

Transform h(z) and f(z) into h(z) and f(z) as follows:
%(w) =27 hox? + 27 3hyz + 27 %hg and
fl@) =% + 2724zt + 274 fs2® + 276 fou® + 278 frz + 2710 4.

3. Transform D to D = [i(z),(z)], where D is defined as follows :
If deg(u) = 2 and u(x) = 2% + w1z + up and v(z) = v1x + vo then
(x) = 22 + 27 2u1x + 2 *ug and T(z) = 2 3v1z + 2 Bwy.

If deg(u) = 1 and u(z) = z + ug and v(x) = vy then @(x) = x + 2~ 2up and v(x)

4. Compute scalar multiplication using the new curve and the new divisor.

= 27 5%,.

5. The result is transformed back to the original curve using the inverse of Step 3 and the

relevant powers of z (rather than z71).

The additional cost of attaining DPA resistance is as follows: 1[i] + 7[m] for
Step 1; 8[m] for Step 2; maximum 4[m] for Step 3 and 8[m] for Step 5. If the
characteristic of the field is odd, then the polynomial h(x) can be taken to be
zero and hence the cost of Step 2 would come down to 5[m].

2.4 Scalar Multiplication Methods for HECC

Many scalar multiplication algorithms immunized against SCA have been pro-
posed for ECC. We discuss some specific methods for genus 2 HECC using
Lange’s formula (see Table 1) along with their costs below.

(a) The usual add and double algorithm: For an n-bit multiplier such an algo-
rithm requires n doublings and n/2 additions on the average (though this com-
putation is not SCA resistant). So cost of computing the scalar multiplication
using [13] is n x 46[m] + (n/2) x 51[m] = 71.5n[m]. Using affine arithmetic [12]
the cost of n doublings and n/2 additions is n x (1[{] + 22[m] + 5[s]) + (n/2) x
(1[¢] +22[m]+3[s]) = ((3/2)i+39.5)n[m]. However, this computation is not SCA
resistant.

(b) To make the computation SPA resistant we can resort to Coron’s counter-
measure for ECC. That is we can make some dummy additions if the correspond-
ing bit in the binary representation is 0. In this case, we have to compute n addi-
tions and n doublings. Cost of the computation in inversion-free arithmetic will
be 51n[m]+ 46n[m] = 97n[m]. This computation is costlier than that of (a), but
is SPA resistant. But, again in binary fields the affine arithmetic will be prefer-
able. In binary fields, the cost will be n(1[i]+22[m]+5[s]) +n(1[i]+22[m]+3[s]) =
(21+52)n[m]. It can be made resistant against DPA using the methods described
above.

(c) We can encapsulate the addition and doubling formula of affine co-ordinates
to obtain a more efficient formula. Suppose, we wish to compute an addition
an doubling simultaneously. In affine co-ordinates, both will involve one in-
version. Instead of computing two inversions, we can compute them by Mont-
gomery’s trick with 1 inversion and 3 multiplications. So cost of one addition
and doubling is 1[i] + 3[m] + 52[m] ~ (i + 55)[m]. We can now use this al-
gorithm in Montgomery’s ladder type scalar multiplication algorithm to com-
pute the scalar multiplication. The method involves one doubling at the outset.



Amount of computations involved in computing the scalar multiplication would
be ((i+ 55)n + i+ 27)[m]. Again the computation will be SPA resistant. It can
also be made resistant against DPA.

We produce the summary of this discussion in Table 2. In the table we have
considered two specific values of i, 8 and 30. It is clear from the Table that, (c) is
better than (b). Although, the average case complexity of (a) is better than (c),
the former is not SCA resistant. Note that both (b) and (c¢) can be made DPA
resistant (at an additional cost) by using Avanzi’s countermeasure as discussed
in Section 2.3.

Table 2. Complexity of different algorithms for HECC.

ALGORITHM|i |COMPLEXITY
(a) 30|71.5n[m] (avg case)
8 [51l.5n[m
(b) 30|97n[m
8 |68n|m
(c) 30((84n + 57)[m
8 [(63n + 35)[m

3 New Algorithm for Scalar Multiplication

Before describing the proposed algorithm, let us have a close look at the addition
and doubling algorithms in affine co-ordinates.

3.1 Addition and Doubling in Affine Co-ordinates

Let us consider the addition (HCADD) and doubling (HCDBL) algorithms for
HECC in [12] in the most general and frequent case. These can be divided into
three parts. In part one, some multiplications and squarings of the underlying
field elements are carried out. In part two, a field element, generated in part one
is inverted. The inverse so obtained in part two is used in part three along with
some more multiplications and squarings of field elements. The output of part
three provides the required divisor. See Figure 1.

Let us name the modules of these algorithms as A;, Az, A (parts of addition
algorithms) and Dy, Dy, D3 (parts of doubling algorithms). In each of Ay and
D2, we compute only one inverse. Let the number of multiplications and squar-
ings required in Aj, Az, D; and D3 be a;, ag, d; and d3 respectively. We will
use the notation a for a; + ag and d for d; +ds. By A1(D1, D2), we will mean
the field element a created in module A, of the addition algorithm and which is
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Fig.1. HCADD and HCDBL algorithms proposed in [12]

inverted in Ag. Similarly, by D1(D;), we will mean the field element 3 created
in module D, of the doubling algorithm and which is inverted in module D,.
By A3(Dy,Ds,a™t) (resp. D3(D;,37!)) we mean the divisor produced by the
module Az (resp. D3) as sum of Dy and Dy (resp. D).

The same can be said about addition and doubling algorithms for ECC in
affine co-ordinates. In ECC, the values of aj,ag,a etc will be much smaller.

3.2 The Proposed Algorithm

Let w > 2 be a positive integer. We express m in the base 2. Let m = ¢g +
c12¥ 4 -+ + ¢—12*=1) | where each ¢; € {0,...,2% — 1}. Then mD = ¢oD +
€12%D + -+ + ¢_12%¢~DD. For all j,0 < j < t — 1 we precompute 2/*D and
store it in a table T'[]. Thus T[j] = 2*D for 0 < j < t — 1. This table is used
to simultaneously compute coD,c12¥D, - - -, c;—1 2%V D using the right-to-left
binary method. (A similar algorithm can also be developed using the left-to-right
binary method.) Finally we add them to obtain mD.

Let the n-bit representation of m be m,_;...mg. Note that t = [(n/w)].
We express ¢; in binary, i.e., we write ¢; = ¢ +¢}2+ - -+c;-"_12“’_1, where ¢! =
Myj+i- We require 2¢ 4 1 point type variables Ry, ..., R;—1 and Qo, @1,. .., Q:.
The variable R; is initialized to 2/ D. Starting from the least significant bit of
ci, we scan a bit in each iteration. If the scanned bit is 1, then we add R; to
Qj+1; if the scanned bit is 0, then we add R; to Qo; in either case we double
R;. After w iterations, Q41 is ch“’jD. For 0 < j <t —1, we compute all
the expressions ¢;2%/D simultaneously. Each of the additions and doublings
in each iteration will involve one inversion. While doing these additions and
doublings, we carry out all the inversions simultaneously by Montgomery’s trick.
This yields an efficient algorithm for scalar multiplication. Our algorithm calls a
routine INVERT, which simultaneously inverts a number of field elements using
Montgomery’s trick. Recall that by Z(n) we denote the cost of inversion of n
elements using INVERT and Z(n) = 1[i] + 3(n — 1)[m].



Algorithm EFF-SCLR-MULT
Input: m,t,co,c1,---,¢c¢1,D.
Output: mD.

1. Forj=0tot—-1{R; =T[j];
2. If ¢} = 0 then b=0,t, = j + 1
elseb=j+1,t, =0, Qp = Rj; }
For j =0tot—1let §; = D1(R;);
Let (ﬁ()_la T 7/315_—11) = INVERT(ﬂO: e 7ﬂt71)
For j = 0tot—1let R; = Dg(R;,5;");
Fori=1tow—2
For j=0tot—1 { o = Al(Rj,Qj_H); ,Bj = Dl(Rj);}
9. Let (aala o '5a;j17 0_15 ot ;;8;,11;) = INVERT(aO o 'at—I;BOJ ot 7/875—1)
10. For j=0tot—1 {Qcé(j—i—l) = A3(Rj,Qj+1,aj_1); R; = D3(Rj,ﬂj_1);}
13. end do.
14. For j=0tot—11let aj = A1 (R}, Qj+1);
15. Let (ag',--+,0;Y)) = INVERT (g, - - -, 1)
16. For j=0tot—1 let QC;u—l(j_,’_l) = A3(Rj;Qj+1,aj_1);
17. Let RES = TreeADD(Q1,---,Q;)
18. Return (RES)

S Ot W

Proposition 1. The cost of the above algorithm is [t(w — 1)(a + d) + ta][m] +
(w —1)Z(2t) + Z(t)+ cost(TreeADD), where cost(TreeADD) is the cost of the
TreeADD algorithm invoked by the algorithm.

The algorithm TreeADD adds a number of points efficiently. It uses a tree struc-
ture for computation. Suppose Dg, D1, ---,Dy_1 are the input points. For sim-
plicity, assume k = 2". Imagine a tree of depth r with the input points at the leaf
nodes. We pairwise add the points at the nodes with a common parent and put
the sum at the parent node of each pair. There are 2"~! nodes at level r — 1 and
to get the points at these nodes we have to perform 27! additions. Note that,
each of these additions needs one inversion. Instead of computing 2"~ inversions
separately, we can compute them with 1 inversion and (3 x 2"~! — 1) multipli-
cations using Montgomery’s algorithm. This process is carried out at each level
to the root. The root then contains the sum of all the points.

Algorithm TreeADD

Input: Dg,---,Dor_y

Output: Do + D1 + -+ -+ Dor_4

1. For i = 0to 2t —11let D\” = D;.

2.Forj=1tok

3. let (DS, DY,..., DY) ; ) =ADD(MDY™", DY, ..., DU, )
4. Return (D(()k))

TreeADD invokes the algorithm ADD, which takes as input 2k points, Dy, Dy, - - -

and returns Dy + D1, D5 + D3, -+, Dsp_o + Dsop_1. ADD computes k additions
at one invocation. Hence, the inversions at Ay step of all these additions can be
done simultaneously using the Montgomery’s algorithm.

»Dog—1



Algorithm ADD

Input: Do, R ,ngfl.

Output: Do + Dy,---,Dop_o + Dap_1.

1.Fori=0to k — 1, let a; = Al(DQi,DQz’J'_l).

2. Let (aal,afl, .- -,oz,;_ll) = INVERT(ag, a1, -, qp—1)-
3.Fori=0tok—1let Ez = A3(D2,~,D2i+1,a;1).

4. Return (E(), El, ey, Ek—l)-

Proposition 2. ADD takes 2"a[m]+Z(2") computations to compute the k = 27
sums of 2k = 2"t! input points.

With Z(n) = 1[i] + 3(n — 1)[m] (see Subsection 2.2), the cost of ADD becomes,
((2ra+3(2" — 1)[m] + 1[i].

Now we can compute the complexity of the algorithm TreeADD. TreeADD
repeatedly calls the algorithm ADD, first with 2" points, then with 2"~! points
and so on. Let the cost of ADD with k input points be [kA]. Then, cost of
TreeADD with 27 points is [2"A4] + [2"7'A] + --- + [14]. By Proposition 2,
[204] = 2¢ La[m]+Z(2¢ ). Hence computational cost of TreeADD is 37—, [2¢ 4]
= Y 2 tapn] + Z2Y) = (2 - Dalm] + Y5 T2, With Z(n) =
1[7] + 3(n — 1)[m], we have:

Proposition 3. TreeADD takes (2" — 1)a[m] + Y7_ T(2%) = [(2" — 1)a+ 3 x

2" — 3r — 3][m] + r[i] computations to compute the sum of 2" input points.

We now compute the complexity of the algorithm EFF-SCLR-MULT. In the
Steps 2—4 we double ¢ points, inverting ¢t elements by INVERT. In each iteration
of the loop in Steps 5-13, we add ¢ points and double ¢ points. So in each iteration
we invoke INVERT with 2¢ field elements. In the Steps 14-16 we add ¢ points,
inverting ¢ elements by INVERT. Finally in Step 17 the TreeADD algorithm is
invoked.

Proposition 4. EFF-SCLR-MULT takes (w+r)[i]+[2"(w—1)(a+d+6)—3w+
(2" —1)a+ 3 x 2" — 3r — 3]|[m] computations to compute the scalar multiplication
mD where, m is an n-bit integer, w is the window size and t = [n/w] = 2".

The algorithm uses a table which must be precomputed. Online computation
will be very costly. The table will store ¢ points. An elliptic curve point is an
ordered pair of field elements. Each field element is of 160 bits. So a point occupies
320 bits of memory. Similarly, a divisor of a hyperelliptic curve of genus 2 is a
4-tuple of field elements, where each field element is of around 80 bits. So, a
divisor also occupies almost the same amount of memory. The algorithm needs
to store ¢t points means, it requires about 320t bits of storage.

4 Resistance Against SCA

In this section we discuss the resistance of our algorithm to side-channel attacks
and the cost involved in achieving such resistance.



4.1 Resistance Against SPA

Algorithm EFF-SCLR-MULT is resistant against simple power attacks, the rea-
son being the following. At each iteration in steps 2 to 10, we are scanning ¢
bits from the binary representation of m and computing some additions and
doublings. The numbers of additions and doublings are fixed and independent
of the actual bit pattern scanned. Similarly in steps 12 to 17, the same number
of additions are being computed irrespective of the actual bits scanned. Hence
we conclude that the computations are resistant against SPA.

4.2 Resistance Against DPA

We discuss a method for making the algorithm resistant against DPA. Recall
that we use a look-up table T[] of ¢ points. The steps for the counter-measure
for both ECC and HECC are as follows.

Choose a random nonzero field element z.

Compute the relevant powers of z. (see Subsection 2.3

Transform the curve parameters.

Transform each of the ¢ points of T'[].

Perform scalar multiplication using Algorithm EFF-SCLR-MULT.
6. Transform the result back to the original curve.

CU W =

The specific transformations are different for ECC and HECC. For ECC we use
Joye-Tymen transformation while for HECC we use Avanzi’s transformation.
Accordingly the costs are also different. From the discussion in Section 2.3 we
get the following costs.

ECC 2 1[d] + 4[s] + (4 + 2t)[m] = 1[i] + (8 + 2t)[m] assuming [m] = [s].
HECC  : 1[i] + (23 + 4¢)[m] (1[¢] + (20 + 4¢)[m] for odd characteristic).

5 Results and Comparison

In this section, we present some results of our algorithm and compare it with
other algorithms. We do it separately for HECC of genus 2 and ECC.

5.1 HECC

We compare the performance of Algorithm EFF-SCLR-MULT to the algorithms
(a), (b) and (c) described in Section 2.4. Table 3 displays these calculations. In
Table 3, columns (a)-(c) refer to the algorithms listed in rows (a)-(c) of Table 2.
Cost of DPA resistance has been added to the cost of (b) and (c¢). Column (d)
stands for our algorithm. The column n stands for the bit size of the multiplier m.
The parameter w stands for the window size. The complexity of the algorithms
(a)-(c) do not vary with w as they are not window-based. The parameter ¢ stands
for the size of the look up table and is equal to the number of points required



Table 3. HECC: Comparison of the number of multiplications for different values of
the number of bits n required to represent the scalar multiplier m.

Parameters i=38 i=30

n_|jwit |(a) |[(b) |(c) |(d) |(a) |(b) |(c) |(d)
160(5 [32 (8240({10896|10129|8501|11440|15539|13665|8743
160(10|16 |8240|{10896|10129|8937(11440{15539(13665|9267
160{20|8 8240(10896(10129|9190({11440|15539|13665|9718
160(40(4 8240(10896(10129|9389(11440|15539|13665({10335
160|80|2  [8240(10896|10129|9690|11440(15539|13665|11440

to be stored. One can easily observe that, for certain window sizes over prime
fields, the proposed algorithm (d) is better than even average case complexity of
double-and-add (column (a)), which is not SPA resistant. In the best scenario,
the new algorithm achieves a speed-up of around 77 percent if i = 30 over
usual SPA resistant double and always add approach (b). Over binary fields, the
performance enhancement is lower, only 28.1%, due to the fact that i is lower.
For other values of i similar comparisons can be made. We have observed that
as 1 increases from 30 to 40, the cost of (b) goes up by around 10%, whereas the
cost of our algorithm goes up by about 1% only.

5.2 Efficiency for elliptic curves

The algorithm EFF-SCLR-MULT can also be used for ECC over prime fields.
This is because ECADD and ECDBL algorithms in affine co-ordinates have a
structure similar to that of Figure 1. For 160 bits scalar multiplier, the amount
of computation required by the algorithm to compute the scalar multiplication
is shown in Table 4. To compare the performance of the algorithm with other

Table 4. ECC: Number of multiplications required by EFF-SCLR-MULT assuming
i=30.

n |w |t |Complexity
160[5 |32(2222[m]

160[10|16(2410[m]
160(20(8 |2693[m]
160(40(4 |3226[m]

oo}
D N

~

algorithms proposed in the literature we show Table 5 which is taken from [8].
It shows efficiency of some other SCA resistant methods. Note that the table
does not exactly matches with the table presented in [8], as we have not taken
additions into account and have taken [s] = [m]. Table 5 shows that for efficient
and secure computation of scalar multiplication, Improved Moller’s method with



Table 5. ECC: Number of multiplications required by previous algorithms under the
assumptions [i] = 30 and [m] = [s].

Method (160-bit ECC)
Coron’s dummy addition 3375[m]
Coron’s dummy addition with a = —3  |3057[m]
Improved Moller with w = 2 3220[m]
Improved Moller with w = 2 and a = —3|3064[m)]
Improved Moller with w =3 2543[m]
Improved Moller with w = 3 and a = —3|2429[m)]
Improved Izu-Takagi 2758[m)]
Improved Izu-Takagi with a = —3 2439[m]
window size 3 and a = —3 is the best. It takes 2429[m] computations. Our

algorithm takes 2222[m] in the best situation, when the window size is 5, nearly
10% performance enhancement.

5.3 Memory Requirement

The parameter ¢ in Table 3 determines the size of the look-up table. It is equal
to the number of points to be stored in the look-up table. It is natural that the
efficiency of the algorithm goes up as we invert more and more elements together.
If a window size of 5 is chosen then the table size will be 32. In hyperelliptic
curve cryptosystem with reasonable security, a point size is around 320 bits. So,
the table will occupy around 1.2 kilobyte of memory.

Additionally Algorithm EFF-SCLR-MULT requires some more intermediate
points and field elements. The calculation for these is as follows.

— 2t+1 intermediate points including one dummy point (Qo) for Coron’s trick.
— 2t field elements (o, . . ., a¢—1) and (Bo, . . ., Bt—1) for applying Montgomery’s
trick.

This memory requirement might be costly for memory constrained applications
(as in smart card applications). In such situations our algorithm cannot be used.
However, we note that in situations where the amount of memory is not a con-
straint (as in desktops), our algorithm provides a speed-up over the known al-
gorithms (for fixed base point).
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