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Abstract. We present practical and realistic attacks on some standard-
ized elliptic curve key establishment and public-key encryption protocols
that are effective if the receiver of an elliptic curve point does not check
that the point lies on the appropriate elliptic curve. The attacks combine
ideas from the small subgroup attack of Lim and Lee, and the differen-
tial fault attack of Biehl, Meyer and Müller. Although the ideas behind
the attacks are quite elementary, and there are simple countermeasures
known, the attacks can have drastic consequences if these countermea-
sures are not taken by implementors of the protocols. We illustrate the
effectiveness of such attacks on a key agreement protocol recently pro-
posed for the IEEE 802.15 Wireless Personal Area Network (WPAN)
standard.

1 Introduction

The purpose of public key validation, as enunciated by Johnson [16, 17], is to
verify that a public key possesses certain arithmetic properties. Public key val-
idation is especially important in Diffie-Hellman protocols where an entity B
derives a shared secret k by combining his private key with a public key received
from A, and subsequently uses k in some symmetric-key protocol (e.g., encryp-
tion or message authentication) with A. A dishonest A might select an invalid
public key in such a way that the use of k reveals information about B’s pri-
vate key. Lim and Lee [20] demonstrated the importance of public key validation
by presenting so-called small subgroup attacks on some discrete logarithm key
agreement and encryption protocols that are effective if the receiver of a group
element does not verify that the element belongs to the desired group of high
order (e.g., a subgroup of prime order q of Z

∗
p).

Although public key validation has become recognized as prudent practice,
many cryptographic standards do not mandate that it be performed. In this
paper, we present attacks on some standardized elliptic curve key establishment
and public-key encryption protocols that are effective if the receiver of an el-
liptic curve point does not check that the point lies on the appropriate elliptic
curve. We argue with considerable care that, despite their simplicity, the attacks
are practical and realistic. We illustrate their effectiveness on a key agreement
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protocol recently proposed for the IEEE 802.15 WPAN standard. The attacks
provide further evidence for the necessity of performing public key validation.

The remainder of this paper is organized as follows. Section 2 describes several
standardized elliptic curve cryptographic schemes that will be used to demon-
strate the attacks. Validation of elliptic curve public keys is defined in Section 3.
The invalid-curve attacks are presented and analyzed in Section 4. Some counter-
measures are proposed in Section 5. Finally, we draw our conclusions in Section 6.

2 Elliptic Curve Cryptographic Schemes

We present some elliptic curve schemes that have been included in several stan-
dards and draft standards. The schemes are presented in sufficient detail to
convince the reader that the assumptions made in our attacks are plausible, and
that the attacks can indeed be a significant threat in practice.

In any public-key cryptographic system, the entities may share common data
called domain parameters, and they have key pairs each consisting of a public
key and a corresponding private key. A key pair may be static (long-term) if it
is intended to be used for an extended period of time, or ephemeral (short-term)
if it is only intended to be used for a single run of a protocol.

Domain parameters. For elliptic curve cryptographic schemes, the domain pa-
rameters D include the following:

1. The order q of the underlying finite field Fq.
2. An indication of the representation used for elements of Fq (e.g., the irre-

ducible reduction polynomial if the field has characteristic 2 and a polyno-
mial basis representation is used).

3. The defining equation of the elliptic curve E over Fq.
4. A base point P = (xP , yP ) ∈ E(Fq) of prime order.
5. The order n of P .
6. The cofactor h = #E(Fq)/n.

We assume throughout this paper that elliptic curve domain parameters D have
been selected so that the elliptic curve discrete logarithm problem resists all
known attacks, and that n2 does not divide #E(Fq) whence 〈P 〉 is the unique
subgroup of E(Fq) having order n. Examples of such parameters are the NIST
domain parameters specified in the FIPS 186-2 standard [10]. We shall assume
that all entities have an authentic copy of D.

Key pairs. A user A now selects wA ∈R [1, n − 1] and computes WA = wAP .
A’s static key pair is (WA, wA), where WA is the static public key and wA is the
static private key. B’s static key pair is denoted (WB, wB). We assume that A
and B can obtain authentic copies of each others static public keys, e.g., via
certificates.
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Notation and terminology. If a discrete logarithm protocol takes place in a sub-
groupG1 of prime order of a groupG2, then G1 is called themain group, whileG2

is called the supergroup. For example, in the elliptic curve setting, E(Fq) is the su-
pergroup while 〈P 〉 is the main group. The point at infinity is denoted by ∞, H
denotes a cryptographic hash function, and x(R) denotes the x-coordinate of
a point R. In the ECMQV protocol, if R is a finite point then R is defined to
be the integer (x mod 2�f/2�) + 2�f/2� where x is the integer representation of
x(R), and f = �log2 n�+ 1.

2.1 One-Pass ECDH

One-pass ECDH is a basic elliptic curve Diffie-Hellman protocol that combines
the sender’s ephemeral public key and the receiver’s static public key. Although
it provides very limited authentication, it might be useful in scenarios where
only unilateral authentication is needed, e.g., in the widely deployed SSL/TLS
protocol (see the ECDH ECDSA protocol in [11]) and in SMIME (see [8]). ECDH
is fully specified in ANSI X9.63 [4] and IEEE 1363-2000 [12].

1. A selects rA ∈R [1, n − 1], and computes RA = rAP , K = rAWB and
k = H(x(K)). A sends RA to B.

2. B computes K = wBRA and k = H(x(K)).
3. The shared secret key is k.

2.2 ECIES

The elliptic curve integrated encryption scheme (ECIES) is due to Bellare and
Rogaway [6] who proposed the scheme in the general setting of a group of prime
order. ECIES has been included in several standards and draft standards in-
cluding ANSI X9.63 [4], IEEE P1363a [13], and ISO/IEC 15946-3 [15]. It can be
used to transport a session key (to be used subsequently in some symmetric-key
protocol) or to transmit a confidential message of arbitrary length. ECIES uses
a hash function H , a message authentication algorithm MAC, and a symmetric
encryption scheme SYM. Abdalla, Bellare and Rogaway [1] proved that ECIES
is semantically secure against adaptive chosen-ciphertext attacks under some
variants of the computational Diffie-Hellman assumption, and the assumptions
that MAC and SYM are secure.

Encryption. To send a message m to B, A does:

1. Select rA ∈R [1, n− 1] and compute RA = rAP and K = rAWB.
2. Derive symmetric keys (k1, k2) from H(x(K)).
3. Compute c = SYMk1(m) and t = MACk2(c).
4. Send (RA, c, t) to B.
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Decryption. To decrypt (RA, c, t), B does:

1. Compute K = wBRA.
2. Derive symmetric keys (k1, k2) from H(x(K)).
3. Compute t′ = MACk2(c) and reject the ciphertext if t′ �= t.
4. Compute m = SYM−1

k1
(c).

2.3 One-Pass ECMQV

The one-pass ECMQV key agreement protocol [18] differs from one-pass ECDH
and ECIES in that it combines the static key of the receiver with both the
ephemeral and static keys of the sender. The protocol is specified in the ANSI
X9.63 [4], IEEE 1363-2000 [12] and ISO 15946-3 [15] standards.

1. A selects rA ∈R [1, n− 1], computes RA = rAP , and sends this to B.
2. A computes sA = (rA+RAwA) mod n and K = hsA(WB +WBWB). If K =

∞, then A terminates the protocol run with failure; otherwise A computes
k = H(x(K)).

3. B computes sB = (wB + WBwB) mod n and K = hsB(RA + RAWA). If
K = ∞, then B terminates the protocol with failure; otherwise B computes
k = H(x(K)).

4. The shared secret key is k.

2.4 ECDSA

The elliptic curve digital signature algorithm (ECDSA) is specified in the
ANSI X9.62 [3], IEEE 1363-2000 [12], FIPS 186-2 [10] and ISO 15946-2 [14]
standards.

Signature generation. To sign a message m, A does:

1. Select k ∈R [1, n− 1] and compute r = x(kP ). (Check that r �= 0.)
2. Compute e = H(m) and s = k−1(e+ wAr) mod n. (Check that s �= 0.)
3. A’s signature on m is (r, s).

Signature verification. To verify A’s signature (r, s) on m, B does:

1. Reject the signature if r �∈ [1, n− 1] or if s �∈ [1, n− 1].
2. Compute e = H(m), u1 = s−1e mod n and u2 = s−1r mod n.
3. Compute V = u1P + u2WA and v = x(V ) mod n.
4. Accept the signature iff v = r.
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3 Public Key Validation

Validation of an elliptic curve public key W ensures that W is a point of order n
in E(Fq), where Fq, E and n are specified by the associated domain parameters.

Definition 1 A pointW = (xW , yW ) (static or ephemeral) associated with a set
of domain parameters D is valid if the following four conditions are satisfied:

1. W �= ∞.
2. xW and yW are properly represented elements of Fq (e.g., integers in the

interval [0, q − 1] if Fq has prime order).
3. W satisfies the defining equation of the elliptic curve E.
4. nW = ∞.

If any one of these conditions is violated, then W is invalid.

There may be ways of verifying condition 4 of Definition 1 that are much
faster than performing an expensive point multiplication nW . For example, if
h = 1 (which is usually the case for elliptic curves over prime fields that are
used in practice), then condition 4 is implied by the other three conditions. In
some protocols the check that nW = ∞ may either be embedded in the protocol
computations or replaced by the check that hW �= ∞ (which guarantees that W
is not in a small subgroup of E(Fq) of order dividing h).

Small subgroup attacks. Lim and Lee [20] presented attacks on some discrete
logarithm key agreement and encryption protocols to demonstrate the impor-
tance of checking that group elements received from another entity belong to the
main group, and not to some small subgroup of the supergroup. Their attacks
are effective if the cofactor h (the index of the main group in the supergroup)
has many small factors—the attacker can then determine the victim’s static key
modulo these small factors and combine the results using the Chinese remainder
theorem. This is often the case in the ordinary discrete logarithm setting where
the main group is a subgroup of prime order q of the multiplicative group Z

∗
p. In

practice, one may have q ≈ 2160 and p ≈ 21024, and the cofactor h = (p − 1)/q
may have many small factors.

In the elliptic curve setting, the cofactor h is typically very small, (e.g.,
h ∈ {1, 2, 4} for the 15 elliptic curves in FIPS 186-2 [10]). In this case, the small
subgroup attacks are not effective in determining private keys since an adversary
has very limited choices for small subgroup elements and therefore can learn at
most a few bits of the victim’s private key.

Differential fault analysis. Biehl, Meyer and Müller [7] presented several differ-
ential fault attacks [9] on elliptic curve cryptographic schemes. The main obser-
vation in their attacks is that the usual formulae for adding points (in either
affine coordinates or in projective coordinates) on an elliptic curve given by the
general Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)



216 Adrian Antipa et al.

do not involve a6. Similarly, the addition formulae given in IEEE 1363-2000 [12]
for elliptic curves over prime fields with reduced equation

y2 = x3 + ax+ b (2)

and for non-supersingular elliptic curves over characteristic two finite fields with
reduced equation

y2 + xy = x3 + ax2 + b (3)

do not involve b. Thus the addition formulae are the same for two curves of the
form (2) (or of the form (3)) whose defining equations have the same a coefficient
but different b coefficients. In the attack, the adversary sends a point Q that has
small order l on some elliptic curve whose defining equation has a different co-
efficient b (but the same coefficient a) as the victim’s elliptic curve. Now, if the
victim does not check whether Q is a point on his elliptic curve, then the victim
would proceed to compute wQ where w is her private key. Since wQ has order
dividing l, subsequent use of wQ may reveal w mod l to the adversary. By repeat-
ing the attack with points Q of orders l that are pairwise relatively prime, the
adversary can eventually recover w by the Chinese Remainder Theorem. Biehl,
Meyer and Müller [7] described their attack on the basic ElGamal encryption
scheme which was already known to be insecure against active attacks.

4 Invalid-Curve Attacks

In this section, we combine the small subgroup attack of Lim and Lee and the
differential fault attack of Biehl, Meyer and Müller to obtain attacks that are
effective on the one-pass ECDH, ECIES, and one-pass ECMQV protocols if the
receiver of an elliptic curve point does not verify that the point does indeed lie on
the elliptic curve specified by the domain parameters. In essence, the attacks use
the observations of Biehl, Meyer and Müller to extend the small subgroup attacks
to elliptic curves different from the one specified by the domain parameters.
We call these attacks invalid-curve attacks. We illustrate the effectiveness of
such attacks on a key agreement protocol that was recently proposed for the
IEEE 802.15 WPAN standard.

The invalid-curve attacks we are going to describe fail if the receiver of
a point W checks that nW = ∞ by performing a point multiplication operation.
We argue, however, that it is plausible that an implementor may have elected
not to perform this operation. First, in the case where the cofactor is small, it is
not known how small subgroup attacks on the one-pass ECDH, ECIES, and one-
pass ECMQV protocols can be effectively mounted to determine static private
keys and hence the check nW = ∞ might have been omitted. Second, an im-
plementor may have elected to verify that nW = ∞ using a faster method, e.g.,
simply checking that W �= ∞ in the case that h = 1 (and neglected to check
that W is on the curve). Indeed, none of the ANSI X9.63, IEEE 1363-2000,
IEEE P1363a, ISO 15946-2 and ISO 15946-3 standards mandate that public key
validation be performed. ANSI X9.63 does mandate that some form of public
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key validation be performed, but this can include simply receiving the assurance
(in some unspecified way) that the owner generated the public key itself using
trusted routines; hence explicit public key validation as specified in Definition 1
is not mandated. We note, however, that some standards such as ANSI X9.63
specify a conversion routine from octet strings to elliptic curve points that ex-
plicitly verifies that the recovered point is on the elliptic curve. Thus, if public
keys are represented using octet strings and these conversion routines are used,
then the invalid-curve attacks we are going to describe are thwarted.

Definition 2 Let E be an elliptic curve defined over the finite field Fq with
defining equation (1) in Weierstrass form. Then an invalid curve (relative to E)
is an elliptic curve E′ defined over Fq whose Weierstrass equation differs from E’s
only in the coefficient a6.

Note that E(Fq) ∩E′(Fq) = {∞}. If Q ∈ E′(Fq) and Q �= ∞, then a private
key w such that Q = wP does not exist. We assume henceforth that the addition
formulae used for E do not involve a6. Hence, if Q ∈ E′(Fq), t is an integer, and
the addition formulae for E are used in any point multiplication algorithm to
compute R = tQ, then R is indeed equal to tQ as points in E′(Fq).

4.1 Invalid-Curve Attack on One-Pass ECDH

Suppose that one-pass ECDH is used by A to establish a shared secret k with B,
and that k is subsequently used by B to send messages authenticated with
a message authentication algorithm MAC to A. A selects an invalid curve E′

such that E′(Fq) contains a point Q of small order l, and sends Q to B. B
computes K = wBQ and k = H(x(K)). Later, when B sends A a message m
and its tag t = MACk(m), A can determine the correct K up to sign1 by finding
a K ′ ∈ 〈Q〉 satisfying t = MACk′(m), where k′ = H(x(K ′)). Since Q has
order l, the expected number of trials before A succeeds is l/2, whereafter A
has determined wl = ±wB mod l. Hence A knows that w2

l ≡ w2
B (mod l). By

repeating the attack with points Q (on perhaps different invalid curves) having
orders that are pairwise relatively prime, A can eventually recover z = w2

B mod
N for some N > n2 by the Chinese Remainder Theorem. Since w2

B < n2 < N ,
we have z = w2

B, and hence A can compute wB =
√
z. Observe that B is unaware

that the attack has taken place.
In many applications, such as email, the sender A will send its ephemeral

public key RA together with a message encrypted or authenticated with k. In
this scenario, an invalid-curve attack similar to the one on ECIES described in
Section 4.2 can be mounted.

4.2 Invalid-Curve Attack on ECIES

The attack on ECIES is somewhat more complicated than the attack on one-
pass ECDH since the attacker A has to demonstrate possession of the shared
1 Recall that two points on an elliptic curve have the same x-coordinate if and only if
they are negatives of each other.
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secret point K by producing the proper MAC tag t on the ciphertext c. As with
the attack on ECDH, A selects a point Q of order l on an invalid curve E′. A
then makes a guess wl ∈ [0, l−1] for wB mod l and computes K = wlQ (instead
of K = rBWA). A transmits Q (instead of RA) to B, who computes K ′ =
wBQ. With overwhelming probability, the key k′

2 derived from K ′ satisfies t =
MACk′

2
(c) if and only if wl ≡ ±wB (mod l). If A is able to determine whether

or not B accepted the ciphertext, then A is expected to determine ±wB mod l
after about l/4 iterations. As before, the attack can be repeated to recover wB .
Unlike the case of one-pass ECDH, the victim B may be aware than an invalid-
curve attack on ECIES is being launched if he notices that he is receiving many
invalid ciphertexts from A.

We comment that this invalid-curve attack on ECIES does not contradict its
provable security since the protocol and proof in [1] assume that received points
are always in the main group.

4.3 Invalid-Curve Attack on One-Pass ECMQV

As with one-pass ECDH, suppose that one-pass ECMQV is used by A to es-
tablish a shared secret k with B, and that k is subsequently used by B to send
messages authenticated with a message authentication algorithm MAC to A.
The attack on one-pass ECMQV is more complicated than the attack on one-
pass ECDH since the victim B uses A’s static and ephemeral public keys to
derive the shared secret.

A selects an invalid curve E′ such that E′(Fq) contains a point QA of small
prime order l with gcd(l, h) = 1. A selects QA as its static public key and
obtains a certificate for it (see below). A next selects TA ∈ 〈QA〉, TA �= ∞, such
that TA +TAQA �= ∞, and sends TA to B (instead of RA). Since TA +TAQA ∈
〈QA〉, the point K that B computes is also in 〈QA〉. (If K = ∞ and B terminates
the protocol then it must be the case that sB ≡ 0 (mod l).) As with the attack
on one-pass ECDH, A can deduce ±sB mod l. Repeating the attack gives sB

and wB = sB(1 +WB)−1 mod n.

Certifying invalid public keys. Suppose that A wishes to have a point Q of (small)
order l that is on an invalid curve E′ certified by a Certification Authority (CA).
In practice, as dictated by PKI standards such as [2, Section 2.3] and [22, Section
4], the CA does not validate Q. Rather, the CA performs a proof of possession
(POP) of a private key test whereby A has to submit a signature generated with
respect to Q on some message m of a predetermined format (perhaps chosen by
the CA), and the signature is thereafter verified by the CA. We show that if
the signature scheme used is ECDSA (Section 2.4), then A is able to generate
a signature on m that is accepted by the CA. A does the following:

1. Select arbitrary s, u′
2 ∈ [1, n− 1].

2. Compute e = H(m) and u1 = s−1e mod n.
3. Compute T1 = u1P ∈ E(Fq), T2 = u′

2Q ∈ E′(Fq), V = T1 + T2, and
r = x(V ). (Note that V is computed using the addition formulae for E, and
is in neither E(Fq) nor E′(Fq).)
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4. Compute u2 = s−1r mod n.
5. If u2 �≡ u′

2 (mod l) then go to step 1.
6. Output the signature (r, s).

A straightforward heuristic argument shows that the expected number of itera-
tions of the main loop before A terminates is about l. The CA will accept the
signature since u2 ≡ u′

2 (mod l) and hence u2Q = u′
2Q.

4.4 Analysis

We first note that the restriction that a is fixed in equations (2) and (3) is without
much loss of generality since approximately half of all isomorphism classes of
elliptic curves over Fq will have a representative with the given a coefficient.
Since the orders of elliptic curves over Fq are almost uniformly distributed among
the admissible orders in the Hasse interval [q + 1− 2

√
q, q + 1+ 2

√
q] (see [19]),

we can expect to quickly find an elliptic curve E where #E(Fq) is divisible by a
specified small prime l. Table 1 lists some elliptic curves defined over the prime
field Fp, where p = 2192 − 264 − 1, that have points of small prime order l. This
field is the smallest of the five prime fields recommended by NIST [10]. The
curves in Table 1, and also the NIST curve over Fp, all have a = −3 in their
defining equations (2).

Let pi denote the ith prime number, and suppose that the attacker uses
points of orders l = p1, p2, p3, . . . , ps. The attacker needs N > n2 ≈ q2, so s
should be the smallest positive integer such that

N =
s∏

i=1

pi > q2.

Let T =
∑s

i=1 pi/4. Then the attack on one-pass ECDH requires about s interac-
tions (partial protocol runs) with the victim, and about 2T MAC computations
by the attacker. The attack on ECIES requires about T interactions with the
victim. The attack on one-pass ECMQV requires certification of about s invalid
public keys, s interactions with the victim, and about 2T MAC computations by
the attacker. The parameters s and T for the five NIST prime fields in FIPS 186-2
are presented in Table 2.

Optimizations of the invalid-curve attacks. By selecting larger primes pi, the
attacker in the one-pass ECDH and one-pass ECMQV scenarios can decrease the
number of interactions with the victim at the expense of an increased number
of MAC computations. The number of interactions with the victim can also be
decreased by using elliptic curves having points whose orders are divisible by
powers of small primes. Consider, for example, an implementation of ECIES
using the NIST elliptic curve over Fp where p = 2521 − 1. Now, if p is a prime
satisfying p ≡ 3 (mod 4), and if a is a quadratic residue modulo p, then it is
known that the (supersingular) elliptic curve

E : y2 = x3 + ax
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Table 1. Elliptic curves E : y2 = x3 − 3x+ b over Fp where p = 2192 − 264 − 1
having points of small prime order l

b l #E(Fp)

7 17 6277101735386680763835789423152579575769728003507816940176
8 29 6277101735386680763835789423134254969503970241284573199712
12 7, 103 6277101735386680763835789423330235564423778417310050448358
20 11 6277101735386680763835789423241857284589896488855666951129
21 53,83 6277101735386680763835789423280657011091039330875664478827
24 109 6277101735386680763835789423338875685246211614336097240571
25 2,3,23,79 6277101735386680763835789423122144658648828167097184768836
28 131 6277101735386680763835789423268748257445578040429701148868
30 127 6277101735386680763835789423210775104109650069520558949736
31 37, 107 6277101735386680763835789423204441525191330010353698233123
32 43 6277101735386680763835789423258617709088937800879867650520
34 19 6277101735386680763835789423250038640299327488215705493600
35 41 6277101735386680763835789423231000109287096932320643629080
39 31 6277101735386680763835789423184749274510329350288277847727
40 5, 47 6277101735386680763835789423362437408900078197305511428080
42 97 6277101735386680763835789423100126242413526789909842794735
43 71 6277101735386680763835789423348140981991719874891656011856
59 13, 59 6277101735386680763835789423214305021449488084661039666632
68 101 6277101735386680763835789423152535895119425594340719306505
69 73 6277101735386680763835789423316686344024991599507825887793
74 89 6277101735386680763835789423207521611646327664801082254174
82 151 6277101735386680763835789423205224777875334437065750522006
104 139 6277101735386680763835789423352646215168136324998796285949
107 113 6277101735386680763835789423073056697678061416724633187404
119 137 6277101735386680763835789423312863477238674670518689754010
142 61 6277101735386680763835789423320128694158340103743426909958
166 67 6277101735386680763835789423259116488526354652819809060300
201 149 6277101735386680763835789423174207583130851129966653984609

over Fp has order p+ 1 and E(Fp) is cyclic [21, Example 2.18]. For the case of
the NIST prime p = 2521 − 1, we have p ≡ 3 (mod 4) and a = −3 is a quadratic
residue modulo p. Thus the group of Fp-rational points on

E : y2 = x3 − 3x

is cyclic of order 2521. This group can be used in the invalid-curve attack with
the attacker iteratively querying the victim with points of order 2, 4, 8, .... Only
about 521 interactions with the victim are needed, versus the 11548 interactions
in Table 2.
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Table 2. Attack parameters for the five NIST prime fields Fp

prime p s T

2192 − 264 − 1 61 1996
2224 − 296 + 1 68 2548
2256 − 2224 + 2192 + 296 − 1 76 3275
2384 − 2128 − 296 + 232 − 1 105 6735
2521 − 1 134 11548

4.5 Invalid-Curve Attack on a Key Agreement Protocol Proposed
to IEEE 802.15

IEEE 802.15 is a working group developing standards for Wireless Personal
Area Networks (WPANs) for short-distance wireless networks. A WPAN can be
comprised of as many as 256 devices, one of which is designated by the devices
as the controller. One of the controller’s tasks is to consider requests from new
devices to enter the network. If the controller approves the request, then it
securely transports data keys to the device. The data keys can then be used by
the device to securely communicate with other devices in the WPAN.

Bailey, Singer and Whyte [5] proposed the following key agreement protocol
based on ECIES for this purpose. The elliptic curve chosen is the NIST curve
over the prime field Fp with p = 2256 − 2224 + 2192 + 296 − 1. Suppose that each
legitimate device has a certificate for its elliptic curve public key. If a device A
wishes to enter the network, it transports a session key kA to the controller B
using ECIES (and B’s public key). Similarly, the controller transports a session
key kB to A using ECIES (and A’s public key). Both devices now derive two
shared keys from kA and kB, one of which is used in a key confirmation stage
and the other to transport data keys.

The proposal [5] explicitly mentions that public key validation is optional.
If validation if not performed, then a rogue device A, using some other device’s
public key certificate, can launch the invalid-curve attack for ECIES on the
controller. Since B terminates the run of the key agreement protocol if ciphertext
received from A is not valid, A easily learns whether its guess wl for wB mod l
is correct. The roughly 3275 (see Table 2) interactions required with B is quite
feasible given that the controller is expecting frequent interactions with the many
other devices in the network. We conclude that the attack is very effective in
this scenario.

5 Preventing Invalid-Curve Attacks

The simplest way to prevent the invalid-curve attacks is to check that a received
point does indeed lie on the legitimate elliptic curve.

There are many other techniques that can potentially guard against the
invalid-curve attacks. For example, one may use formulas for the addition law
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that use both coefficients a and b of the equation of the legitimate elliptic curve—
it is then unlikely that the addition law is valid for any other elliptic curve. The
invalid-curve attacks may also fail on some classes of elliptic curves that use spe-
cial, faster forms of point multiplication. For example, the fast point multiplica-
tion algorithms [23] for Koblitz curves (elliptic curves whose coefficients belong
to F2) repeatedly apply the Frobenius map τ : (x, y) �→ (x2, y2). If Q ∈ E′(F2m)
where E′ is not a Koblitz curve, then τ(Q) is generally not in E′(F2m). Hence the
fast point multiplication algorithms with inputs an integer k and Q ∈ E′(F2m)
generally will not compute kQ.

6 Conclusions

We have presented invalid-curve attacks on some elliptic curve key establishment
and public-key encryption protocols. The simplest and most effective way to
prevent these attacks is to check that a received point Q indeed lies on the right
elliptic curve. Preferably, the receiver should perform a full validation on Q.
The attacks reinforce the importance of performing validation on public keys in
protocols where a public key is combined with the receiver’s static private key.
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