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Abstract. A (public key) Trace and Revoke Scheme combines the func-
tionality of broadcast encryption with the capability of traitor tracing.
Specifically, (1) a trusted center publishes a single public key and dis-
tributes individual secret keys to the users of the system; (2) anybody
can encrypt a message so that all but a specified subset of “revoked”
users can decrypt the resulting ciphertext; and (3) if a (small) group of
users combine their secret keys to produce a “pirate decoder”, the center
can trace at least one of the “traitors” given access to this decoder.
We construct the first chosen ciphertext (CCA2) secure Trace and Re-
voke Scheme based on the DDH assumption. Our scheme is also the
first adaptively secure scheme, allowing the adversary to corrupt play-
ers at any point during execution, while prior works (e.g., [14, 16]) only
achieves a very weak form of non-adaptive security even against chosen
plaintext attacks.
Of independent interest, we present a slightly simpler construction that
shows a “natural separation” between the classical notion of CCA2-
security and the recently proposed [15, 1] relaxed notion of gCCA2-
security.

1 Introduction

A broadcast encryption scheme allows the sender to securely distribute data to
a dynamically changing set of users over an insecure channel. Namely, it should
be possible to selectively exclude (i.e., “revoke”) a certain subset of users from
receiving the data. In particular, each user should receive an individualized de-
coder which decrypts only the ciphertexts intended for the given user. Broadcast
encryption has numerous applications, including pay-TV systems, distribution
of copyrighted material, streaming audio/video and many others.

The formal study of broadcast encryption was initiated by Fiat and Naor [8],
who showed a scheme with message overhead roughly O(z2 log2 z logN), where z
is the maximum number of excluded users (so called revocation threshold) and N
is the total number of users. Subsequent works include [12, 10], and, more re-
cently, [13, 11].

Most of the above works primarily concentrate on the centralized setting,
where only the trusted center (the entity who generates all the secret keys) can
� This proceedings version lacks most proof details; for a complete version see [7].
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send messages to the receivers. In the public key setting, studied in this paper,
the center also prepares a fixed public key which allows any entity to play the
role of the sender. The public key setting also allows the center to store secret
keys in a secure place (e.g. off-line), and only use them when a new user join the
system.

The only known public key Broadcast Encryption Schemes have been con-
structed by [14, 16] based on the DDH assumption, and achieve public key and
message overhead O(z). In fact, these schemes are essentially identical: in the
following we will refer to the work of [16], who emphasize more the public key
nature of their scheme.

Despite providing a simple and elegant scheme, the work of [16] has several
noticeable shortcomings. First, the given (informal) notion of security makes
little sense in a revocation setting. Indeed, to show the “security” of revocation,
[16] show the following two claims: (1) the scheme is semantically secure when no
users are revoked; (2) no set of z a-priori fixed users can compute the secret key
of another user. Clearly, these properties do not imply the security notion we
really care about and which informally states: (3) if the adversary controls some
set R of up to z revoked users, then the scheme remains semantically secure.
Actually, the scheme of [16] can be shown to satisfy (3) only when the set R
is chosen by the adversary non-adaptively, and in fact only if it is chosen before
the adversary learns the public key. Such weak non-adaptive security is clearly
insufficient for realistic usages of a public key revocation scheme.

Most importantly, the extended scheme of [16] is proven to be CCA2-secure
when none of the users is corrupted, but stops being such the moment just
a single user is corrupted, even if this user is immediately revoked for the rest of
the protocol. Again, this is too weak — the scheme should remain CCA2-secure
even after many users have been revoked. As we will see, achieving this strong
type of security is very non-trivial, and requires a much more involved scheme
than the one proposed by [16].
Our Contributions. We construct the first adaptive chosen ciphertext (CCA2)
secure public key Broadcast Encryption Scheme under the DDH assumption
(with no random oracles). We remark that no CCA2 schemes were known even
in the symmetric setting. Moreover, it doesn’t seem obvious how to extend cur-
rent symmetric schemes (e.g. [13]) to meet the CCA2 notion. Our public key
scheme is based on the regular Cramer-Shoup encryption [5, 6], but our exten-
sion is non-trivial, as we have to resolve some difficulties inherent to Broadcast
Encryption. Furthermore, we introduce for the first time a precise formalization
of an appropriate notion of adaptive security for Broadcast Encryption (for both
the CPA and the CCA2 setting). We also extend the CPA scheme of [16] to achieve
such higher level of security, while maintaining essentially the same efficiency in
all the parameters (up to a factor of 2).

Of independent interest, we also provide another scheme achieving a slightly
weaker (but still very strong) notion of generalized CCA2 security (gCCA2) [15,
1]. As argued in [1], the gCCA2 security is much more robust to syntactic
changes, while still sufficient for all known uses of CCA2-security. Interestingly,
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all the examples separating CCA2 and gCCA2-secure encryption were “artificial”
in a sense that they made a more complicated scheme from an already existing
CCA2-secure encryption. Our work shows the first “natural” separation, but for
the broadcast public key encryption.
A Note on Traitor Tracing. As first explicitly noticed by Gafni et al. [9],
Broadcast Encryption is most useful when combined with a Traitor Tracing
mechanism [4] by which the center can extract the identity of (at least one)
“pirate” from any illegal decoder produced combining decryption equipments of
a group of legal members (the “traitors”). By slightly modifying standard tracing
algorithms from previous weaker schemes (e.g. [14, 16] ), tracing algorithms
can be added to our schemes, thus yielding fully functional Trace and Revoke
schemes [14]. However, due to space limitations we omit the tracing part, focusing
only on Broadcast Encryption (i.e. revocation), which is also the main novelty
of this paper.

2 Notations and Basic Facts

Lagrange Interpolation in the Exponent. Let q be a prime and
f(x) a polynomial of degree z over Zq; let j0, . . . , jz be distinct elements
of Zq, and let f0 = f(j0), . . . , fz = f(jz). Using Lagrange Interpolation,
we can express the polynomial as f(x) =

∑z
t=0(ft · λt(x)), where λt(x) =

∏
0≤i�=t≤z

ji−x
ji−jt

, t ∈ [0, z]. Now, define the Lagrange Interpolation Operator as:
LI(j0, . . . , jz ; f0, . . . , fz)(x)

.=
∑z

t=0(ft · λt(x)).
Now, consider any cyclic group G of order q and a generator g

of G. For any distinct j0, . . . , jz ∈ Zq and (non necessarily distinct)
v0, . . . , vz ∈ G, define the Lagrange Interpolation Operator in the Ex-
ponent as: EXP-LI(j0, . . . , jz ; v0, . . . , vz)(x)

.= gLI(j0,...,jz;loggv0,...,loggvz)(x) =
∏z

t=0 g
(loggvt·λt(x)) =

∏z
t=0 v

λt(x)
t . The last expression shows that the func-

tion EXP-LI is poly-time computable, despite being defined in terms of dis-
crete logarithms (which are usually hard to compute). We also remark on an-
other useful property of the above operator: EXP-LI(j0, . . . , jz; vr

0 , . . . , v
r
z)(x) =

[EXP-LI(j0, . . . , jz; v0, . . . , vz)(x)]r . In what follows, we will refer to a function of
the form gf(x), where f(x) is a polynomial, as an EXP-polynomial.
DDH Assumption. The security of our schemes will rely on the Decisional Diffie-
Hellman (DDH) Assumption in the group G: namely, it is computationally hard
to distinguish a random tuple (g1, g2, u1, u2) of four independent elements in G

from a random tuple satisfying logg1
u1 = logg2

u2 (for a survey, see [3]).
A Probabilistic Lemma. The following useful lemma states that to estimate
the difference between two related experiments U1 and U2, it is sufficient to
bound the probability of some event F which “subsumes” all the differences
between the experiments.

Lemma 1. If U1, U2 and F are events such that (U1 ∧ ¬F ) and (U2 ∧ ¬F ) are
equivalent events, then

∣
∣
∣Pr[U1]− Pr[U2]

∣
∣
∣ ≤ Pr[F ].
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3 Definition of Broadcast Encryption Scheme

Since a public-key broadcast encryption is typically used by encrypting a session
key s for the privileged users (this encryption is called the enabling block), and
then symmetrically encrypting the “actual” message with s, we will often say
that the goal of a Broadcast Encryption Scheme is to encapsulate [6] a session
key s, rather than to encrypt a message M .

Definition 1 (Broadcast Encryption Scheme).

A Broadcast Encryption Scheme BE is a 4-tuple of poly-time algorithms (KeyGen,
Reg, Enc, Dec), where:

– KeyGen, the key generation algorithm, is a probabilistic algorithm used by
the center to set up all the parameters of the scheme. KeyGen takes as input
a security parameter 1λ and a revocation threshold z (i.e. the maximum
number of users that can be revoked) and generates the public key PK and
the master secret key SKBE.

– Reg, the registration algorithm, is a probabilistic algorithm used by the center
to compute the secret initialization data needed to construct a new decoder
each time a new user subscribes to the system. Reg receives as input the
master key SKBE and a (new) index i associated with the user; it returns
the user’s secret key SKi.

– Enc, the encryption algorithm, is a probabilistic algorithm used to encapsu-
late a given session key s within an enabling block T . Enc takes as input the
public key PK, the session key s and a set R of revoked users (with |R| ≤ z)
and returns the enabling block T .

– Dec, the decryption algorithm, is a deterministic algorithm that takes as
input the secret key SKi of user i and the enabling block T and returns the
session key s that was encapsulated within T if i was a legitimate user when
T was constructed, or the special symbol ⊥.

3.1 Security of Revocation

Intuitively, we would like to say that even if a malicious adversary A learns the
secret keys of at most z users, and these users are later revoked, then subsequent
broadcasts do not leak any information to such adversary. The security threat
posed by such adversary is usually referred to as Chosen Plaintext Attack (CPA),
and a Broadcast Encryption Scheme withstanding such an attack is said to be
z-Resilient against CPA.

For most realistic usages, however, it is more appropriate to consider the
stronger Chosen Ciphertext Attack (CCA2), in which the adversary is allowed to
“play” with the decryption machinery as she wishes, subject only to the condition
that she doesn’t ask about enabling blocks closely related to the “challenge” T ∗.
In formalizing the notion of “close relationship”, the usual treatment is to impose
a minimal restriction to the adversary, forbidding just direct decryption of the
challenge itself. As noted in [15, 1], such a mild constraint restricts too much
the class of schemes that can be proven secure, excluding even schemes that
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ought to be considered secure under a more intuitive notion. For this reason, it
seems more reasonable to consider a variant of the CCA2, to which we will refer
to as Generalized Chosen Ciphertext Attack (gCCA2), following the terminology
introduced in [1].

In a Generalized Chosen Ciphertext Attack, the set of enabling blocks the ad-
versary is forbidden to ask about is defined in term of an efficiently computable
equivalence relation �(·, ·). In fact, in the case of a broadcast (as opposed to ordi-
nary) encryption, there is no unique decryption machinery, since the decryption
algorithm can be used with the secret key of any legitimate user. Hence, we
need to consider a family of efficient equivalence relations {�i(·, ·)}, one for each
user i. As in the regular case [1], the equivalence relation �i(·, ·) corresponding
to each user i needs to be i-decryption-respecting : equivalent enabling blocks
under �i are guaranteed to have exactly the same decryption according to the
secret data of user i. Finally, this family should form an explicit parameter of
the scheme (i.e., one has to specify some decryption-respecting family {�i} when
proving the gCCA2-security of a given scheme).
Formal Model. We now formalize the above attack scenarios, starting with
the CPA.

First, (PK,SKBE) ← BE.KeyGen(1λ, z) is run and the adversary A is given
the public key PK. Then A enters the user corruption stage, where she is given
oracle access to the User Corruption Oracle CorSKBE

(·). This oracle receives as
input the index i of the user to be corrupted, computes SKi ← BE.Reg(SKBE, i)
and returns the user’s secret key SKi. This oracle can be called adaptively for
at most z times. Let us say that at the end of this stage the set R of at most z
users is corrupted.

In the second stage, a random bit σ is chosen, and A can query the Encryp-
tion Oracle (sometimes also called the left-or-right oracle) EPK,R,σ(·, ·) on any
pair of session keys s0, s1.1 This oracle returns Enc(PK, sσ,R). Without loss of
generality (see [2]), we can assume that the encryption oracle is called exactly
once, and returns to A the challenge enabling block T ∗. At the end of this second
stage, A outputs a bit σ∗ which she thinks is equal to σ. Define the advantage
of A as AdvCPA

BE,A(λ)
.= |Pr(σ∗ = σ)− 1

2 |.
Additionally, in the case of a Chosen Ciphertext Attack (generalized or not),

A has also access to a Decryption Oracle DSKBE
(·, ·), which she can query on

any pair 〈i, T 〉, where i is the index of some user and T is any enabling block
of her choice. A can call this oracle at any point during the execution (i.e., both
in the first and in the second stage, arbitrarily interleaved with her other oracle
calls). To prevent the adversary from directly decrypting her challenge T ∗, the
decryption oracle first checks whether �i(T , T ∗) holds2: if so, D outputs ⊥; if
not, D computes SKi ← BE.Reg(SKBE, i) and uses it to output BE.Dec(i, T ).
1 For the sake of generality, we could have allowed A to interleave the calls to

CorSKBE(i) and EPK,R,σ (where A can choose any i’s and R’s only subject to i �∈ R).
However, this clumsier definition is easily seen to be equivalent to the one we present.

2 This preliminary check applies to the standard Chosen Ciphertext Attack as well,
which corresponds to all the �i’s being the equality relation.
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As before, we define the corresponding advantages AdvgCCA2
BE,A (λ) and AdvCCA2

BE,A(λ).

Definition 2 (z-Resilience of a Broadcast Encryption Scheme).

Let µ ∈ {CPA, gCCA2,CCA2}. We say that a Broadcast Encryption Scheme
BE is z-resilient against a µ-type attack if the advantage, Advµ

BE,A(λ), of any
probabilistic poly-time algorithm A is a negligible function of λ.

4 Revocation Schemes

In this section, we present three Broadcast Encryption Schemes, achieving z-
resilience in an adaptive setting for the case of a CPA, gCCA2 and CCA2 attack
respectively. Subsequent schemes build on the previous one, in a incremental
way, so that it is possible to obtain increasing security at the cost of a slight
efficiency loss.

Considering the subtlety of the arguments, our proofs follow the structural
approach advocated in [6] defining a sequence of attack games G0, G1, . . . , all
operating over the same underlying probability space. Starting from the actual
adversarial game G0, we incrementally make slight modifications to the behavior
of the oracles, thus changing the way the adversary’s view is computed, while
maintaining the view’s distributions indistinguishable among the games. While
this structural approach takes more space to write down, it is much less error-
prone and much more understandable than a slicker “direct argument” (e.g.,
compare [5] and [6]).

4.1 z-Resilience against CPA Attack

As a warm-up before addressing the more challenging case of chosen ciphertext
security, we describe a simpler CPA-secure scheme. Our scheme naturally builds
upon previous works [14, 16], but achieves a much more appropriate notion of
adaptive security, which those previous schemes do not enjoy.
The Key Generation Algorithm. The first step in the key generation al-
gorithm KeyGen(1λ, z) is to define a group G of order q, for a random λ-
bit-long prime q such that p = 2q + 1 is also prime, in which the DDH as-
sumption is believed to hold. This is accomplished selecting a random prime q
with the above two properties and a random element g1 of order q modulo p:
the group G is then set to be the subgroup of Z∗

p generated by g1, i.e. G =
{gi

1 mod p : i ∈ Zq} ⊂ Z∗
p. A random w ←R Zq is then chosen and used to

compute g2 = gw
1 . (In what follows, all computations are mod q in the expo-

nent, and mod p elsewhere.) Then, the key generation algorithm selects two
random z-degree polynomials3 Z1(ξ) and Z2(ξ) over Zq, and computes the val-
ues: h0

.= gZ1,0
1 ·gZ2,0

2 , . . . , hz
.= gZ1,z

1 ·gZ2,z

2 . Finally, the pair (PK,SKBE) is given
in output, where PK .= 〈g1, g2, h0, . . . , hz〉 and SKBE

.= 〈Z1, Z2〉.
3 For conciseness, we will use the following notation: Z1,i

.
= Z1(i) and Z2,i

.
= Z2(i).
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Encryption algorithm Enc(PK, s,R) Decryption algorithm Dec(i, T )
E1. r1 ←R Zq D1. Hi ← u

Z1,i

1 · uZ2,i

2

E2. u1 ← gr1
1 D2. s← S

EXP-LI(j1,..,jz,i;Hj1 ,..,Hjz ,Hi)(0)

E3. u2 ← gr1
2

E4. Ht ← hr1
t , t ∈ [0, z]

E5. for t = 1 to z do
Hjt ← EXP-LI(0, .., z;H0, .., Hz)(jt)

E6. end for
E7. S ← s ·H0

E8. T ← 〈S,u1, u2, (j1, Hj1), .., (jz, Hjz )〉
Fig. 1. Encryption and decryption algorithms for the CPA scheme

The Registration Algorithm. Each time a new user i > z (in all our
schemes, we reserve the indices [0, z] for “special purposes”) decides to sub-
scribe to the system, the center provides him with a decoder box containing the
secret key SKi

.= 〈i, Z1,i, Z2,i〉.
The Encryption Algorithm. The encryption algorithm Enc is given in Fig. 1.
It receives as input the public key PK, a session key s and a set R = {j1, . . . , jz}
of revoked users and returns the enabling block T . If there are less than z revoked
users, the remaining indices are set to 1 . . . (z−|R|), which are never given to
any “real” user.
The Decryption Algorithm. To recover the session key embedded in the
enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz)〉 a legitimate user i can
proceed as in Fig. 1. If i is a revoked user (i.e. i ∈ {j1, . . . , jz}), the algorithm fails
in step D2, since the interpolation points j1, . . . , jz, i are not pairwise distinct.
Security. As shown in the theorem below, the z-resilience of the above scheme
relies on the Decisional Diffie-Hellman (DDH) assumption.

Theorem 1. If the DDH problem is hard in G, then the above Broadcast En-
cryption Scheme is z-resilient against chosen plaintext attacks.

Proof. We define a sequence of “indistinguishable” games G0, . . ., where G0 is
the original game, and the last game clearly gives no advantage to the adversary.
Game G0. In game G0,A receives the public key PK and adaptively queries the
corruption oracle CorSKBE

(·). Then, she queries the encryption oracle EPK,R,σ(·,·)
on (s0, s1), where R must contain all users that A compromised through the
oracle CorSKBE

(·);A receives back the enabling block T ∗. At this point,A outputs
her guess σ∗ ∈ {0, 1}. Let T0 be the event that σ = σ∗ in game G0.
Game G1. Game G1 is identical to game G0, except that step E4 of the en-

cryption algorithm in Fig. 1, is changed in: E4′. Ht←uZ1,t

1 · uZ2,t

2 , t ∈ [0, z] .
By the properties of the Lagrange Interpolation in the Exponent, it is clear that
step E4′ computes the same values {Ht}zt=0 as step E4. The point of this change
is just to make explicit any functional dependency of the above quantities on u1

and u2. Let T1 be the event that σ = σ∗ in game G1; clearly, it holds that
Pr[T0] = Pr[T1].
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Game G2. To turn game G1 into game G2 we again modify the encryption
oracle used in G1, replacing step E1 with E1′. r1←R Zq, r2←R Zq\{r1} and

step E3 with E3′. u2←gr2
2 . Let T2 be the event that σ = σ∗ in game G2. No-

tice that while in G1 the values u1 and u2 are obtained using the same value r1,
in G2 they are independent subject to r1 �= r2. Therefore, using a standard
reduction argument, any non-negligible difference in behavior between G1 and
G2 can be used to construct a PPT algorithm A1 that is able to distinguish
Diffie-Hellman tuples from totally random tuples with non negligible advantage.
Hence,

∣
∣Pr[T2]− Pr[T1]

∣
∣ ≤ ε1 for some negligible ε1.

Game G3. To define game G3, we make another change to the encryption oracle
in game G2, substituting step E6 with: E6′. e←R Zq, S←ge

1 . Let T3 be
the event that σ = σ∗ in game G3. Because of this last change, the challenge
no longer contains σ, nor does any other information in the adversary’s view;
therefore, we have that Pr[T3] = 1

2 . Moreover, we can prove (see Lemma 3
in [7]), that the adversary has the same chances to guess σ in both games G2

and G3, i.e. Pr[T3] = Pr[T2].
Finally, combining all the intermediate results together, we can conclude that

adversary A’s advantage is negligible; more precisely: AdvCPA
BE,A(λ) ≤ ε1.

4.2 z-Resilience against gCCA2 Attack

Once we have constructed a Broadcast Encryption Scheme z-resilient against
CPA attacks, it is natural to try to devise an extension achieving adaptive cho-
sen ciphertext security. This was already attempted by [16], but they do not
elaborate (neither formally nor informally) on what an “adaptive chosen cipher-
text attack” on a Broadcast Encryption Scheme exactly is. As a consequence, in
their security theorem (Theorem 3 of [16]), the authors only show the security
of their scheme against an adversary that does not participate to the system,
while their scheme is certainly not CCA2-secure with respect to even a single
malicious revoked user.

To achieve CCA2-security, we will first try to apply the standard technique
of [5, 6] to the scheme presented in Section 4.1. Unfortunately, this natural
approach does not completely solve the CCA2 problem; still it leads us to an in-
teresting scheme that achieves the (sligthly weaker) notion of generalized chosen
ciphertext security.
The Key Generation Algorithm. As before, the first task of the key gen-
eration algorithm is to select a random group G ⊂ Z∗

p of prime order q and two
random generators g1, g2 ∈ G. Then, KeyGen selects six random z-degree poly-
nomials4 X1(ξ), X2(ξ), Y1(ξ), Y2(ξ), Z1(ξ) and Z2(ξ) over Zq, and computes the
values ct

.= gX1,t

1 · gX2,t

2 , dt
.= gY1,t

1 · gY2,t

2 and ht
.= gZ1,t

1 · gZ2,t

2 , for t ∈ [0, z].
Finally, KeyGen chooses at random a hash function H from a family F of

collision resistant hash functions,5 and outputs the pair (PK,SKBE), where

4 For conciseness, we will use the following notation: X1,i
.
= X1(i), X2,i

.
= X2(i), Y1,i

.
=

Y1(i), Y2,i
.
= Y2(i), Z1,i

.
= Z1(i) and Z2,i

.
= Z2(i).
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Encryption algorithm Enc(PK, s,R) Decryption algorithm Dec(i, T )
E1. r1 ←R Zq D1. α←H(S,u1, u2, (j1, Hj1), .., (jz, Hjz ))

E2. u1 ← gr1
1 D2. v̄i ← u

X1,i+Y1,iα

1 · uX2,i+Y2,iα

2

E3. u2 ← gr1
2 D3. vi ← EXP-LI(0, .., z; v0, .., vz)(i)

E4. Ht ← hr1
t , t ∈ [0, z] D4. if vi = v̄i then

E5. for t = 1 to z do D5. Hi ← u
Z1,i

1 · uZ2,i

2

Hjt ← EXP-LI(0, .., z;H0, .., Hz)(jt) D6. s← S
EXP-LI(j1,..,jz,i;Hj1 ,..,Hjz ,Hi)(0)

E6. end for D7. return s
E7. S ← s ·H0 D8. else return ⊥
E8. α←H(S,u1, u2, (j1, Hj1), .., (jz, Hjz )) D9. end if
E9. vt ← cr1

t · dr1α
t , t ∈ [0, z]

E10.T ← 〈S, u1, u2, (j1, Hj1), .., (jz, Hjz ),
v0, .., vz〉

Fig. 2. Encryption and decryption algorithms for the gCCA2 scheme

PK
.= 〈g1, g2, c0, . . . , cz, d0, . . . , dz , h0, . . . , hz,H〉 and SKBE

.=〈X1, X2, Y1, Y2,
Z1, Z2〉.
The Registration Algorithm. Each time a new user i > z decides to sub-
scribe to the system, the center provides him with a decoder box containing the
secret key SKi

.= 〈i,X1,i, X2,i, Y1,i, Y2,i, Z1,i, Z2,i〉.
The Encryption Algorithm. Using the idea of [5, 6], in order to obtain
non-malleable ciphertexts, we “tag” each encrypted message so that it can be
verified before proceeding with the actual decryption. In the broadcast encryp-
tion scenario, where each user has a different decryption key, the tag cannot be
a single point — we need to distribute an entire EXP-polynomial V(x). This is
accomplished appending z + 1 tags to the ciphertext: each user i first computes
the tag vi using his private key and then verifies the validity of the ciphertext
by checking the interpolation of the z + 1 values in point i against its vi.

The encryption algorithm Enc receives as input the public key PK, the ses-
sion key s to be embedded within the enabling block and a set R = {j1, . . . , jz}
of revoked users. It proceeds as described in Fig. 2, and finally it outputs T .
The Decryption Algorithm. To recover the session key embedded in the
enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz ), v0, . . . , vz〉, a legitimate
user i can proceed as in Fig. 2. If i is a revoked user, the algorithm fails in
step D6, since the interpolation points j1, . . . , jz, i are not pairwise distinct.
Security. As mentioned above, the presence of many decryption keys leads
to the use of an EXP-polynomial V(x) to tag the encryption of the message.
This in turn makes the ciphertext malleable: since each user i can verify the
value of V(x) only in one point, the adversary can modify the vj ’s values and
construct a different EXP-polynomial V ′(x) intersecting V(x) at point i — thus
fooling user i to accept as valid a corrupted ciphertext. In the next section we
show a non-trivial solution to this problem; here, we assess the z-resilience of
5 Recall, it is hard to find x �=y such that H(x)=H(y) for a random member H of F .
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the Broadcast Encryption Scheme presented above against a gCCA2 attack. As
already discussed in Section 3.1, to this aim it is necessary to introduce a family
of equivalence relations {�i}: intuitively, two ciphertexts T and T ′ are equivalent
for user i if they have the same “data” components, and the tag “relevant to
user i” is correctly verified, i.e. vi = v′i (even though other “irrelevant” tags could
be different). Clearly, this relation is efficiently computable and i-decryption-
respecting.

Definition 3 (Equivalence Relation).
Consider the EXP-polynomials V(x) = EXP-LI(0, . . . , z; v0, . . . , vz)(x) and
V ′(x) = EXP-LI(0, . . . , z; v′0, . . . , v′z)(x). Given a user i, and the two en-
abling blocks T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz ), v0, . . . , vz〉 and T ′ =
〈S, u1, u2, (j1, Hj1), . . . ,
(jz , Hjz ), v′0, . . . , v′z〉, we say that T is equivalent to T ′ with respect to user i,
and we write �i(T , T ′), if the two EXP-polynomials V(x) and V ′(x) intersect at
point i, i.e. vi = V(i) = V ′(i) = v′i.

Theorem 2. If the DDH Problem is hard in G and H is chosen from
a collision-resistant hash functions family F , then the above Broadcast Encryp-
tion Scheme is z-resilient against generalized chosen ciphertext attacks, under
the family of equivalence relations {�i}.

Proof. To prove this theorem, we pursue the same approach as in the proof of
Theorem 1, where the starting scenario of the sequence of games is defined as in
the definition of the adaptive gCCA2 attack.
Game G0. In game G0, A receives the public key PK and adaptively in-
terleaves queries to the corruption oracle CorSKBE

(·) and to the decryption
oracle DSKBE

(·, ·). Then, she queries the encryption oracle EPK,R,σ(·, ·) on
(s0, s1), where R must contain all users that A compromised through the oracle
CorSKBE

(·); A receives back the enabling block T ∗. Then, A can again query the
decryption oracle DSKBE

(i, T ), restricted only in that ¬�i(T , T ∗). Finally, she
outputs her guess σ∗ ∈ {0, 1}. Let T0 be the event that σ = σ∗ in game G0.
Game G1. Game G1 is identical to game G0, except that steps E4, E8 of the

encryption algorithm in Fig. 2, are changed in: E4′. Ht←uZ1,t

1 · uZ2,t

2 , t ∈ [0, z]

and E8′. vt←uX1,t+Y1,tα
1 · uX2,t+Y2,tα

2 , t ∈ [0, z] . By the properties of the La-
grange Interpolation in the Exponent, it is clear that step E4′ computes the
same values {Hjt}zt=0 as steps E4; similarly, step E8′ computes the same val-
ues {vt}zt=0 as step E8. The point of these changes is just to make explicit any
functional dependency of the above quantities on u1 and u2. Let T1 be the event
that σ = σ∗ in game G1. Clearly, it holds that Pr[T0] = Pr[T1] .
Game G2. To turn game G1 into game G2 we again modify the encryption
oracle used in G1, replacing step E1 with E1′. r1←R Zq, r2←R Zq\{r1} and

step E3 with E3′. u2←gr2
2 . Let T2 be the event that σ = σ∗ in game G2. No-

tice that while in G1 the values u1 and u2 are obtained using the same value r1,
in G2 they are independent subject to r1 �= r2. Therefore, using a standard
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reduction argument, any non-negligible difference in behavior between G1 and
G2 can be used to construct a PPT algorithm A1 that is able to distinguish
Diffie-Hellman tuples from totally random tuples with non negligible advantage.
Hence,

∣
∣Pr[T2]− Pr[T1]

∣
∣ ≤ ε1 for some negligible ε1.

Game G3. To define game G3 we modify the decryption oracle, changing steps
D2, D4, D5 with

D2′. v̄i←u(X1,i+Y1,iα)+(X2,i+Y2,iα)·w
1 , D4′. if (u2 = uw

1 ∧ vi = v̄i) then ,

D5′. Hi←uZ1,i+Z1,i·w
1 . The rationale behind these changes is that we want

to strengthen the condition that the enabling block has to meet in order to be
considered valid and hence to be decrypted. This will make it easier to show
the security of the scheme; however, for these changes to be useful, there should
be no observable difference in the way invalid enabling blocks are “caught” in
games G2 and G3. To make it formal, let T3 be the event that σ = σ∗ in game
G3, and let R3 be the event that A submits some decryption query that would
have been decrypted in game G2 but is rejected in game G3; in other words, R3

is the event that some decryption query that would have passed the test in step
D4 of the decryption oracle used in G2, fails to pass the test in step D4′ used in
G3. Clearly, G2 and G3 are identical until event R3 occurs; hence, if R3 never
occurs, the adversary has the same chances to win in both the two games, i.e.
(using Lemma 1) T3 ∧ ¬R3 ≡ T2 ∧ ¬R3 ⇒

∣
∣Pr[T3]− Pr[T2]

∣
∣ ≤ Pr[R3] .

To bound the last probability, we consider two more games, G4 and G5.
Game G4. To define game G4, we change step E6 of the encryption oracle as
follows: E6′. e←R Zq, S ← ge

1 . Let T4 be the event that σ = σ∗ in game
G4. Because of this last change, the challenge no longer contains the bit σ,
nor does any other information in the adversary’s view; therefore, we have that
Pr[T4] = 1

2 .
Let R4 be the event that A submits some decryption query that would have

been decrypted in game G2 but is rejected in game G4; in other words, R4 is the
event that some decryption query that would have passed the test in step D4 of
the decryption oracle used in G2, fails to pass the test in step D4′ used in G4.
In [7], we prove (Lemma 4 ) that those events happen with the same probability
as the corresponding events of G3, i.e. Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3] .
Game G5. We again modify the decryption algorithm, adding a special rejec-
tion rule, to prevent A from submitting illegal enabling blocks to the decryp-
tion oracle, once she has received her challenge T ∗ = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1 ), . . . ,
(j∗z , Hj∗z ), v

∗
0 , . . . , v

∗
z〉:

After adversaryA receives the challenge T ∗, the decryption oracle rejects
any query 〈i, T 〉, with T = 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz ), v0, . . . , vz〉
and 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz )〉 �= 〈S∗, u∗1, u

∗
2, (j

∗
1 , Hj∗1 ), . . . ,

(j∗z , Hj∗z )〉, but α = α∗, and it does so before executing the test in D4′.

Notice that in the gCCA2 setting the adversary is not allowed to query the
decryption oracle Dec(i, T ) on enabling blocks �i-equivalent to the challenge T ∗.
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Therefore, when the special rejection rule is applied, we already know that it
holds ¬�i(T , T ∗).

Let C5 be the event that the adversary submits a decryption query that
is rejected using the above special rejection rule; let R5 be the event that A
submits some decryption query that would have passed the test in step D4 of
the decryption oracle used in G2, but fails to pass the test in step D4′ used in
G5. Notice that this implies that such a query passed the �i-equivalence test
and the special rejection rule, because otherwise step D4′ wouldn’t have been
executed. Clearly, games G4 and G5 are identical until event C5 occurs, i.e. by
Lemma 1: R5 ∧ ¬C5 ≡ R4 ∧ ¬C5 ⇒

∣
∣Pr[R5]− Pr[R4]

∣
∣ ≤ Pr[C5].

Our final task is to show that events C5 and R5 occur with negligible proba-
bility: while the argument to bound event C5 is based on the collision resistance
assumption for the family F (using a standard reduction argument, we can con-
struct a PPT algorithm A2 that breaks the collision resistance assumption with
non negligible advantage), the argument to bound event R5 hinges upon the
fact that the adversary is not allowed to submit queries that are “�i-related”
to her challenge, and upon information-theoretic considerations (as proven in
Lemma 5 of [7] ). From these considerations, we obtain that Pr[C5] ≤ ε2 and
Pr[R5] ≤ QA(λ)

q , where ε2 is a negligible quantity and QA(λ) is an upper bound
on the number of decryption queries made by the adversary.

Finally, combining the intermediate results, we can conclude that adversary
A’s advantage is negligible; more precisely: AdvgCCA2

BE,A (λ) ≤ ε1 + ε2 +QA(λ)/q.

4.3 z-Resilience against CCA2 Attack

In Section 4.2, we saw how a direct application of the standard technique of [5, 6]
does not provide a complete solution to the CCA2 problem, but only suffices
for gCCA2 security. As proven in Lemma 5 of [7], the restriction imposed
by the gCCA2 attack (namely, forbidding the adversary to submit decryption
queries 〈i, T 〉 such that �i(T , T ∗) holds) is essential for the security of the
previous Broadcast Encryption Scheme. Indeed, given a challenge T ∗ with tag
sequence v0 . . . vz, it is trivial to come up with a different sequence v′0 . . . v′z
such that vi = v′i, resulting in a “different” enabling block T ′ �= T ∗: however,
Dec(i, T ∗) = Dec(i, T ′), allowing the adversary to “break” the CCA2-security.

Although we feel that gCCA2-security is enough for most applications of
Broadcast Encryption Schemes, it is possible to non-trivially modify the Broad-
cast Encryption Scheme presented in Section 4.2 to obtain CCA2 security (with
only a slight efficiency loss). The modified scheme, presented in this section,
maintains the same Key Generation and Registration algorithms described be-
fore; the essential modifications involve the operations used to construct the
enabling block. In particular, to achieve CCA2 security, it is necessary to come
up with some trick to make the tag sequence v0, . . . , vz non-malleable. To this
aim, we will use any secure (deterministic) message authentication code (MAC)
to guarantee the integrity of the entire sequence. In fact, we only need any one-
time MAC, satisfying the following simple property: given a (unique) correct
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Encryption algorithm Enc(PK, s,R) Decryption algorithm Dec(i, T )
E1. r1 ←R Zq D1. α←H(S, u1, u2, (j1, Hj1), .., (jz, Hjz ))

E2. u1 ← gr1
1 D2. v̄i ← u

X1,i+Y1,iα

1 · uX2,i+Y2,iα

2

E3. u2 ← gr1
2 D3. vi ← EXP-LI(0, .., z; v0, .., vz)(i)

E4. Ht ← hr1
t , t ∈ [0, z] D4. if vi = v̄i then

E5. for t = 1 to z do D5. Hi ← u
Z1,i

1 · uZ2,i

2

E6. Hjt ← EXP-LI(0, .., z;H0, .., Hz)(jt) D6. s‖k← S
EXP-LI(j1,..,jz ,i;Hj1 ,..,Hjz ,Hi)(0)

E7. end for D7. extract s and k from s ‖ k
E8. k ←R K D8. if τ �= MACk(v0, .., vz) then
E9. S ← (s ‖ k) ·H0 D9. return ⊥
E10.α←H(S,u1, u2, (j1, Hj1), .., (jz, Hjz )) D10. else return s
E11. vt ← cr1

t · dr1α
t , t ∈ [0, z] D11. end if

E12. τ ← MACk(v0, .., vz) D12.else return ⊥
E13. T ←〈S,u1, u2, (j1, Hj1), .., (jz, Hjz ), D13.end if

v0, .., vz, τ 〉

Fig. 3. Encryption and decryption algorithms for the CCA2 scheme

value MACk(M) for some message M (under key k), it is infeasible to come up
with a correct (unique) value of MACk(M ′), for any M ′ �=M .
The Encryption Algorithm. The encryption algorithm Enc receives as input
the public key PK, the session key s to be embedded within the enabling block
and a set R = {j1, . . . , jz} of revoked users. To construct the enabling block T ,
the encryption algorithm (defined in Fig. 2) operates similarly to the gCCA2 en-
cryption algorithm: the main difference is that now a MAC key k, randomly
chosen from the MAC key space K, is used to MAC the tag sequence v0, . . . , vz ,
and is encapsulated within T along with the session key s.
The Decryption Algorithm. To recover the session key embedded in the
enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz), v0, . . . , vz, τ〉 a legitimate
user i can proceed as in Fig. 3. If i is a revoked user, the algorithm fails in step
D6, since the interpolation points j1, . . . , jz, i are not pairwise distinct.
Security. The security analysis for this scheme is very subtle, because there
is the risk of circularity in the use of the MAC key k. Namely, k is part of the
ciphertext (since it is encapsulated, along with the session key s, within S); this
means that α, the hash of the ciphertext, depends on k (at least Information-
Theoretically), and thus the sequence of tags depends on k. In other words,
we are MAC-ing something that depends on the MAC key k, which could be a
problem. Luckily, the Information-Theoretic nature of the structural approach
to the security analysis that we are pursuing (following [6]) allows us to prove
that actually k is completely hidden within S, so that MAC-ing the resulting tag
with k is still secure.

The solution to the CCA2 problem for Broadcast Encryption Schemes and
the relative security analysis can be viewed as the main technical contribution
of this paper; at the same time, the capability to resolve the apparent circularity
in the use of the MAC demonstrates the importance of providing a formal model
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and precise definitions, without which it would have been much harder to devise
a correct proof of security for the above scheme.

Theorem 3. If the DDH Problem is hard in G, H is chosen from a collision-
resistant hash functions family F and MAC is a one-time message authentication
code, then the above Broadcast Encryption Scheme is z-resilient against chosen
ciphertext attacks.

Proof. The proof proceeds defining a sequence of games similar to that presented
in Theorem 2. The definition of games G0, . . . , G5 closely follow the exposition
given in Theorem 2: however, the statements of all lemmas (and their proofs)
need to be changed to accommodate for the use of the MAC. In particular, we
can easily state and prove a lemma analogous to Lemma 4 in [7], where the only
difference is the presence of information about the MAC key k in the challenge
(see Lemma 6 of [7]). More importantly, to bound the probability Pr[R5] we
introduce a new game G6 to deal with the use of the MAC in the enabling block,
while a lemma similar to Lemma 5 is used to bound the probability of event R6

defined in game G6 (see [7] for the details).
Game G6. We again modify the decryption algorithm, adding a second special
rejection rule to detect illegal enabling blocks submitted by A to the decryp-
tion oracle, once she has received her challenge T ∗ = 〈S∗, u∗1, u

∗
2, (j

∗
1 , Hj∗1 ), . . . ,

(j∗z , Hj∗z ), v
∗
0 , . . . , v

∗
z , τ

∗〉. Notice that, while the special rejection rule, defined in
game G5, is used to reject adversary’s queries aiming at exploiting any weakness
in the collision-resistant hash family F , the second special rejection rule is used
to reject ciphertexts aiming at exploiting any weakness in the MAC scheme.

After adversaryA receives the challenge T ∗, the decryption oracle rejects
any query 〈i, T 〉, with T =〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz ), v0, . . . , vz, τ〉
and 〈S, u1, u2, (j1, Hj1), . . . , (jz , Hjz )〉 = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1 ), . . . ,
(j∗z , Hj∗z )〉 and (v0, . . . , vz) �= (v∗0 , . . . , v

∗
z), but τ = MACk∗(v0, . . . , vz),

and it does so before executing the test in D4′, and before applying the
special rejection rule.

Let M6 be the event that the adversary submits a decryption query that is
rejected in game G6 using the second special rejection rule; let C6 be the event
that the adversary submits a decryption query that is rejected in game G6 using
the special rejection rule; let R6 be the event that A submits some decryption
query that would have passed both the test in step D4 and in step D8 of the
decryption oracle used in game G2, but fails to pass the test in step D4′ used
in game G6. Notice that this implies that such a query passed both the second
special rejection rule and the special rejection rule, because otherwise step D4′

wouldn’t have been executed at all.
Event M6 is closely related to the security of the one time MAC used in the

scheme; in particular, any difference in behavior between game G5 and game
G6 can be used to construct a PPT algorithm A3 that is able to forge a legal
authentication code under a one-message attack with non-negligible probability,
thus breaking the MAC scheme. Hence, Pr[M6] ≤ ε3, for some negligible ε3.
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Moreover, since G5 and G6 are identical until event M6 occurs, if it doesn’t
occur at all, they will proceed identically; by Lemma 1: C6∧¬M6 ≡ C5∧¬M6 ⇒∣
∣Pr[C6]− Pr[C5]

∣
∣ ≤ Pr[M6] and R6 ∧ ¬M6 ≡ R5 ∧ ¬M6 ⇒

∣
∣Pr[R6]− Pr[R5]

∣
∣ ≤

Pr[M6] .
Our final task is to bound the probability that events C6 and R6 occur: the

argument to bound Pr[C6] is based on the collision resistance assumption for the
family F , while the argument to bound Pr[R6] hinges upon information-theoretic
considerations (as proven in Lemma 7 of [7]). From those facts, we obtain that
Pr[C6] ≤ ε2 and Pr[R6] ≤ QA(λ)

q , where ε2 is a negligible quantity and QA(λ)
is an upper bound on the number of decryption queries made by the adversary.

Finally, combining the intermediate results, we can conclude that adversary
A’s advantage is negligible; more precisely: AdvCCA2

BE,A(λ) ≤ ε1+ε2+2ε3+QA(λ)/q.

Acknowledgments

We wish to thank Jonathan Katz, Yevgeniy Kushnir, Antonio Nicolosi and Victor
Shoup for helpful observations on an preliminary version of the paper and the
anonymous referees for useful comments.

References

[1] J.H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and En-
cryption. In Advances in Cryptology - EuroCrypt ’02, pages 83–107, Berlin, 2002.
Springer-Verlag. LNCS 2332. 100, 101, 103, 104

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DESModes of Operation. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science - FOCS ’97,
pages 394–403, 1997. 104

[3] D. Boneh. The Decision Diffie-Hellman Problem. In Algorithmic Number Theory
- ANTS-III, pages 48–63, Berlin, 1998. Springer-Verlag. LNCS 1423. 102

[4] B. Chor, A. Fiat, and N. Naor. Tracing Traitors. In Advances in Cryptology -
Crypto ’94, pages 257–270, Berlin, 1994. Springer-Verlag. LNCS 839. 102

[5] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In Advances in Cryptology - Crypto
’98, pages 13–25, Berlin, 1998. Springer-Verlag. LNCS 1462. 101, 105, 107, 108,
111

[6] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption
Scheme Secure against Adaptive Chosen Ciphertext Attack. Manuscript, 2001.
101, 103, 105, 107, 108, 111, 112

[7] Y. Dodis and N. Fazio. Public Key Trace and Revoke Scheme Secure against
Adaptive Chosen Ciphertext Attack. Full version of this paper, available at
http://eprint.iacr.org/, 2002. 100, 107, 110, 111, 113, 114

[8] A. Fiat and M. Naor. Broadcast Encryption. In Advances in Cryptology - Crypto
’93, pages 480–491, Berlin, 1993. Springer-Verlag. LNCS 773. 100

[9] E. Gafni, J. Staddon, and Y. L. Yin. Efficient Methods for Integrating Traceability
and Broadcast Encryption. In Advances in Cryptology - Crypto ’99, pages 372–
387, Berlin, 1999. Springer-Verlag. LNCS 1666. 102



Public Key Trace and Revoke Scheme 115

[10] A Garay, J. Staddon, and A. Wool. Long-Lived Broadcast Encryption. In Ad-
vances in Cryptology - Crypto 2000, pages 333–352, Berlin, 2000. Springer-Verlag.
LNCS 1880. 100

[11] D. Halevy and A. Shamir. The LSD Broadcast Encryption Scheme. In Advances
in Cryptology - Crypto ’02, pages 47–60, Berlin, 2002. Springer-Verlag. LNCS
2442. 100

[12] M. Luby and J. Staddon. Combinatorial Bounds for Broadcast Encryption. In
Advances in Cryptology - EuroCrypt ’98, pages 512–526, Berlin, 1998. Springer-
Verlag. LNCS 1403. 100

[13] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless
Receivers. In Advances in Cryptology - Crypto ’01, pages 41–62, Berlin, 2001.
Springer-Verlag. LNCS 2139. 100, 101

[14] M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In Financial Cryp-
tography - FC 2000, pages 1–20, Berlin, 2000. Springer-Verlag. LNCS 1962. 100,
101, 102, 105

[15] V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption.
Manuscript, 2001. 100, 101, 103

[16] W.G. Tzeng and Z. J. Tzeng. A Public-Key Traitor Tracing Scheme with Re-
vocation Using Dynamics Shares. In Public Key Cryptography - PKC ’01, pages
207–224, Berlin, 2001. Springer-Verlag. LNCS 1992. 100, 101, 102, 105, 107


	Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack
	Introduction
	Notations and Basic Facts
	Definition of Broadcast Encryption Scheme
	Security of Revocation

	Revocation Schemes
	z-Resilience against CPA Attack
	z-Resilience against gCCA2 Attack
	z-Resilience against CCA2 Attack

	Acknowledgments
	References


