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Abstract. Kurosawa showed how one could design multi-receiver en-
cryption schemes achieving savings in bandwidth and computation rel-
ative to the naive methods. We broaden the investigation. We identify
new types of attacks possible in multi-recipient settings, which were over-
looked by the previously suggested models, and specify an appropriate
model to incorporate these types of attacks. We then identify a general
paradigm that underlies his schemes and also others, namely the re-use
of randomness: ciphertexts sent to different receivers by a single sender
are computed using the same underlying coins. In order to avoid case by
case analysis of encryption schemes to see whether they permit secure
randomness re-use, we provide a condition, or test, that when applied to
an encryption scheme shows whether or not the associated randomness
re-using version of the scheme is secure. As a consequence, our test shows
that randomness re-use is secure in the strong sense for asymmetric en-
cryption schemes such as El Gamal, Cramer-Shoup, DHIES, and Boneh
and Franklin’s escrow El Gamal.

Keywords: Encryption, randomness, provable security, broadcast en-
cryption.

1 Introduction

The standard setting for encryption is that a sender, in possession of the encryp-
tion key K of a receiver and a message M that it wants to send privately to this
receiver, computes a ciphertext C by applying an encryption algorithm to K
and M , and sends C to the receiver. We are interested in a setting where there
is one sender but multiple receivers. The sender is in possession of encryption
keys K1, . . . , Kn of receivers 1, . . . , n respectively, and of message M1, . . . , Mn

that it wants to send privately to receivers 1, . . . , n respectively. A multi-recipient
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encryption scheme is just like an encryption scheme except that the encryp-
tion algorithm is replaced by a (randomized) multi-recipient encryption algo-
rithm which, given K1, . . . , Kn and M1, . . . , Mn, outputs ciphertexts C1, . . . , Cn,
with Ci an encryption of Mi under Ki.

There is of course a naive, or obvious way to build a multi-receiver encryption
scheme: for each i simply encrypt Mi under Ki using the encryption algorithm of
a standard scheme. However, viewing the task of producing multiple ciphertexts
as being done by a single process allows one to explore reductions in cost that
might arise from batching. In particular it enables different encryptions to be
based on the same coins.

In this paper we introduce and define a subclass of multi-recipient encryption
sche-mes that we call randomness-reusing multi-recipient encryption schemes.
Let E denote the encryption algorithm of some standard encryption scheme. In
the associated randomness-reusing multi-recipient encryption scheme, one picks
at random coins r for E , and then, for each i, computes Ci = E(Ki, Mi). In other
words, the different ciphertexts are computed using the same coins.

Motivating examples. The definition of randomness-reusing multi-recipient
encryption schemes was motivated by the work of Kurosawa [22]. Here is an
example from his paper. Suppose a sender wants to send message Mi to receiver i
encrypted under the latter’s El Gamal public key gxi (1 ≤ i ≤ n). The naive
procedure would be to separately encrypt each message with new coins, meaning
pick r1, . . . , rn at random, let Ci = (gri , gxiri·Mi), and send Ci to i for 1 ≤ i ≤ n.
Kurosawa [22] considers picking just one r at random and setting Ci = (gr, gxir·
Mi) instead. Kurosawa’s main motivation was to reduce bandwidth in the case
that the ciphertexts were being broadcast or multi-cast by the sender, since in
that case, the transmission would now be C = (gr, gx1r ·M1, . . . , g

xnr ·Mn), which
is about half as many bits as required to transmit the ciphertexts computed by
the naive method. However, he also points out that his suggested scheme halves
the computational cost (number of exponentiations), a more broadly applicable
and perhaps more useful savings than the one in bandwidth. Kurosawa notes
similar savings in using the Cramer-Shoup encryption scheme [13].

We note that the technique underlying Kurosawa’s scheme is randomness re-
use, specifically re-use of r as coins for El Gamal encryption of different messages
under different public keys. Accordingly, we are considering randomness re-use
at a more general level.

Security issues and model. Before we can meaningfully address the security
of specific multi-recipient encryption schemes such as randomness-reusing ones,
we need a model of security. We seek notions of security for multi-recipient
encryption schemes, specifically appropriate definitions of IND-CPA and IND-
CCA in this context.

Kurosawa [22] proposed such definitions based on a fairly direct adaptation
of the definitions of encryption security in the multi-user setting [3, 1]. However,
although the latter do explicitly consider the presence of many recipients, they
assume all encryptions are produced under independent coins, which is not true
for multi-recipient schemes. In particular, we show that Kurosawa’s model and
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definitions fail to cover several practical attacks, and thus security proved under
his definitions may not suffice for applications. We remedy this by providing
a model that takes the new attacks into account. In Section 4 we specify the
model and also provide examples of schemes that can be proven secure in the
model of [22] but fall to practical attacks and can be (correctly) shown to be
insecure in our model. Let us now highlight some of the new security issues for
multi-recipient schemes that we consider.

First are rogue-key attacks. The framework is well-known, and consists of an
adversary registering public keys created as a function of public keys of other,
legitimate users. This can be particularly damaging in the context of random-
string re-use, as we illustrate in Section 4 with a rogue-key attack on Kurosawa’s
El Gamal based scheme. It is important to be aware of this attack, but it is for
such reasons that certification authorities require (or should require) that a user
registering a public key prove knowledge of the corresponding secret key. (In
that case, this attack fails.) The assumption we make in this paper is that the
adversary cannot register a public key without knowing the corresponding secret
key. The assumption is built into our formal model by requiring the adversary,
at the time it corrupts a user, to supply not only a public key for that user, but
also a corresponding secret key.

Second are insider attacks. An adversary who is one of the legitimate re-
cipients can decrypt a received ciphertext, and might then obtain the coins r
underlying the encryption. This is not a concern if, as in [1, 3], encryptions to
other recipients use independent coins, and thus these works do not consider
insider attacks. But in a multi-recipient scheme, the ciphertext sent to another
recipient might be based on the same coins r, and thus the adversary might ob-
tain information about the plaintext underlying this ciphertext too. Our model
takes this into account, by allowing the adversary to corrupt some fraction of
the users and choose secret and public keys for them. We present a variant of
Kurosawa’s El Gamal based randomness re-use scheme that is provably secure
in his model but insecure under our model due to insider attacks. The attack is
a practical one, highlighting the value of the enhanced model in capturing real
attacks.

Reproducibility property and theorem. Not all encryption schemes can
securely re-use randomness. An example of a class of schemes that cannot
are RSA embedding schemes such as PKCS#1: we illustrate in Section 3 how
H̊astad’s attacks [19] can be exploited to break these schemes if randomness is
re-used in generation of ciphertexts for three different receivers. Thus, an impor-
tant issue is, given an encryption scheme, determine whether or not it permits
secure randomness re-use.

Looking at the description of the existing encryption scheme it is easy to
decide whether re-use of randomness will allow computational or bandwidth
savings. However, it is not clear how to check whether this can be done securely.
Case by case analysis of the many existing encryption schemes, e.g. following
the proof techniques of [22] although possible, would be prohibitive. One of the
main contributions of this paper is a way to establish that an encryption scheme
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permits secure randomness re-use based on existing security results about the
scheme. It takes two parts: definition of a property of encryption schemes called
reproducibility, and a theorem, called the reproducibility theorem. The latter says
that if an encryption scheme is reproducible and is IND-CPA (resp. IND-CCA)
in the standard, single-receiver setting, then the corresponding randomness re-
using multi-recipient scheme is also IND-CPA (resp. IND-CCA) with respect to
our notions of security for such schemes. It is usually easy to check whether a
given encryption scheme is reproducible, and the test and theorem are valid for
several asymmetric schemes, so numerous applications follow.

Reproducibility itself is quite simply explained. Focusing on the asymmet-
ric case, let pk1, pk2 be public encryption keys, and let C1 = Epk1

(M1, r) be
a ciphertext of a message M1 created under key pk1 based on random string r.
We say that the encryption scheme is reproducible if, given pk1, pk2, C1, any
message M2, and the secret decryption key sk2 corresponding to pk2, there
is a polynomial time reproduction algorithm that returns the ciphertext C2 =
Epk2

(M2, r). It might seem at first as a counter-intuitive property, exploiting
some weakness of the encryption scheme. We show, however, that reproducibil-
ity itself does not compromise security and moreover, permits secure randomness
re-use.

We now discuss applications of the reproducibility test and theorem to various
asymmetric schemes.

El Gamal and Cramer-Shoup. The corresponding randomness re-using sche-
mes are those of Kurosawa [22], which he proved secure under the DDH (Deci-
sional Diffie-Hellman) assumption. As noted above, however, his target notion
of security is weak. Thus one needs to ask whether the schemes remain secure
under our stronger notion of security. This is important because these are the
schemes permitting the computation and broadcast ciphertext size-reductions
noted above.

We show that the base El Gamal and Cramer-Shoup schemes are both re-
producible, and our reproducibility theorem then says that indeed, Kurosawa’s
schemes remain secure with respect to our more stringent security notions. We
then extend these results by providing reductions of improved concrete secu-
rity. These improvements bypass the reproducibility theorem, instead directly
exploiting the reproducibility property of the base schemes and, as in [3], using
self-reducibility properties of the DDH problem [28, 24, 27].

DHIES. This is a Diffie-Hellman based asymmetric encryption scheme adopted
by draft standards ANSI X9.63EC and IEEE P1363a. It has El Gamal-like cost in
public-key operations while achieving Cramer-Shoup-like security (IND-CCA),
although the proof [2] relies on significantly stronger assumptions than the DDH
assumption used in [13]. Unlike El Gamal and Cramer-Shoup it does not assume
the plaintext is a group element, but handles arbitrary plaintext strings via an
integrated construction involving a symmetric encryption scheme. Randomness
re-use for this scheme is attractive since it results in bandwidth and computa-
tional savings in various applications just as for the El Gamal scheme, so it is
important to assess security.
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We consider the case when the symmetric encryption scheme used in (asym-
metric) DHIES scheme is CBC mode combined with any block cipher, e.g. AES
(the most popular choice in practice) and show that then DHIES is reproducible.
As usual, our reproducibility theorem then implies that the corresponding ran-
domness re-using multi-recipient scheme is IND-CCA under the assumptions
used to establish that DHIES is IND-CCA.

Pairings-based escrow El Gamal. Boneh and Franklin [10] introduced an El
Gamal like scheme with global escrow capabilities, based on the Weil pairing. We
show that this scheme is reproducible. Our reproducibility theorem coupled with
the result of [10] then implies that the corresponding randomness re-using multi-
recipient scheme is IND-CPA in the random oracle model under the Bilinear
Diffie-Hellman assumption. Our reproducibility algorithm exploits properties of
the Weil pairing. Again, as for El Gamal scheme, re-using randomness permits
computational and bandwidth savings.

Randomness re-use in symmetric encryption A novel element of our work
compared to [22, 3] is consideration of the symmetric setting. In the full version
of this paper [4] we show that reproducibility and the corresponding theorem
apply in this setting too. We prove that CBC encryption with random IV, based
on a given block cipher permits secure randomness re-use in the multi-recipient
setting.

Minimal assumptions. In we determine minimal assumptions under which one
can prove the existence of an encryption scheme permitting secure randomness
re-use. We show that there exists an encryption scheme which under randomness
re-use yields an IND-CPA multi-receiver encryption scheme if and only if there
exists a standard IND-CPA encryption scheme. The analog holds for IND-CCA,
and these results hold in both the symmetric and the asymmetric settings.

2 Definitions

We recall the standard definitions. An asymmetric encryption scheme AE =
(G,K, E , D) consists of four polynomial-time algorithms. The randomized com-
mon-key generation algorithm G takes as input a security parameter k ∈ N and
returns a common key I; we write I

R← G(k). I could include a prime num-
ber and a generator of a group, which all parties use to create their keys.) The
randomized key generation algorithm K takes as input the common key I and re-
turns a pair (pk, sk) consisting of a public key and a corresponding secret key; we
write (pk, sk) R← K(I). In our context it is important to make explicit the random
choices underlying the (randomized) encryption algorithm E . On input a public
key pk, a plaintext M , and coin tosses r, it returns the ciphertext C = Epk(M ; r).
The notation C

R← Epk(M) is shorthand for r
R← CoinsE(I, pk) ; C ← Epk(M ; r),

where CoinsE(I, pk) is a set from which E draws its coins. The deterministic
decryption algorithm D takes the secret key sk and a ciphertext C to return
the corresponding plaintext or a special symbol ⊥ indicating that the ciphertext
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was invalid; we write x ← Dsk(C). Associated to each common key I is a mes-
sage space MsgSp(I) from which M is allowed to be drawn. We require that
Dsk(Epk(M)) = M for all M ∈ MsgSp(I). We will use the terms “plaintext” and
“message” interchangeably.

Let Advcpa
AE,Acpa

(·) (resp. Advcca
AE,Acca

(·)) denote the advantage of adversary
Acpa (resp. Acca) in breaking the scheme AE under a chosen-plaintext (resp.
chosen-cipher-text) attack, as per the usual standard notions of security IND-
CPA and IND-CCA. (We recall the formal definitions in [4] ).

multi-recipient encryption schemes. In order to allow consideration of
methods of producing multiple ciphertexts based on the same randomness,
this paper introduces a primitive that we call a multi-recipient encryption
scheme. Formally an asymmetric multi-recipient encryption scheme AE =
(G,K, E ,D) consists of four algorithms. The common-key generation algorithm
G, the key generation algorithm K, and the decryption algorithm D are as in
a standard asymmetric encryption scheme above. On input a public-key vec-
tor pk = (pk[1], . . . ,pk[n]), a plaintext vector M = (M[1], . . . ,M[n]), and
coin tosses r, the multi-encryption algorithm E returns the ciphertext vector
C = (C[1], . . ., C[n]) = Epk(M). The notation C R← Epk(M) is shorthand for
r

R← CoinsE(I,pk) ; C← Epk(M; r), where CoinsE(I,pk) is a set from which E
draws its coins. Associated with a common key I is a message space MsgSp(I)
from which the components of M are allowed to be drawn. We require that for
all M with components in the message space, the following experiment returns 1
with probability 1:

For i = 1, . . . , n do (pk[i], sk[i]) R← K(k) EndFor; C R← Epk(M) ;
i

R← {1, . . . , n} ; If (Dsk[i]C[i]) = M[i] then return 1 else return 0

SRS mutli-receiver encryption scheme. We are interested in a specific
multi-receiver encryption scheme, obtained from a given asymmetric encryption
scheme by using the same coins to encrypt the different messages in the message
vector.

Definition 1. The same random string (SRS) multi-receiver encryption scheme
associated to a given asymmetric encryption scheme AE = (G,K, E ,D) is the
multi-recipient encryption scheme AE = (G,K, E ,D) in which the common key
generation, key generation algorithms and decryption algorithms are that of AE
and the multi-recipient encryption algorithm is defined as follows:

Epk(M)
Let n be the number of components of M [ and also of pk]
r

R← CoinsE(I,pk) ;
For i = 1, . . . n do C[i]← Epki(M[i]; r) EndFor Return C.

We refer to AE as the base scheme of AE .

We do not specify how C[i] is communicated to user i. It could be that the whole
ciphertext vector C is sent via a broadcast or multi-cast channel and, if all C[i]



Randomness Re-use in Multi-recipient Encryption Schemeas 91

have a common part due to a randomness re-use, this part can be sent only once.
It could also be that C[i] is sent to party i directly. This issue depends on the
specific application and is not relevant for security of the scheme. For examples
of SRS schemes see Section 6.

3 Not Every SRS Scheme is Secure

We consider general embedding schemes which first apply a randomized invert-
ible transform to a message and then apply a trapdoor permutation to the result.
The example of such schemes is RSA-PKCS#1 [25] that has been proven to be
IND-CCA secure (in the random oracle model) [16] and hence is also IND-CCA
secure in a multi-user setting [1, 3]. Nonetheless, the associated SRS scheme is
insecure. The attack is as follows. Let Ni be the public modulus of user i and
assume all users have encryption exponent 3. Suppose the sender wants to send
a single message M to three receivers, namely M = (M, M, M). Under the SRS
scheme, it will pick a random string r, using M and a random r will compute
a transform x, set C[i] = x3 mod Ni, and send C[i] to i. An adversary given C
can use H̊astad’s attack (based on the fact that the modulii are relatively prime)
to recover x, and them recover M by inverting the transform. The same attack
applies regardless of embedding method, since the latter must be an invertible
transform.

This indicates that secure randomness re-use is not possible for all base
encryption schemes: there exist base encryption schemes that are secure, yet
the associated the SRS multi-recipient encryption scheme is not secure. As we
will see later, no encryption scheme where the random string used in encryp-
tion algorithm is a by-product of decryption can be a base of a secure SRS
scheme,however, there are large classes of base encryption schemes for which the
associated SRS scheme is secure. Before we can get there, we need to discuss
what “secure” means.

4 Security of Multi-recipient Schemes

We provide the definition and follow it with a discussion illustrating how it takes
into account the various security issues mentioned in the introduction.

Model and definition. Let AE = (G,K, E ,D) be an asymmetric, multi-
recipient encryption scheme. (We are particularly interested in the case where
this is an SRS scheme, but the definition is not restricted to this case.) Let n
be a polynomial. For atk ∈ {cpa, cca} and for an adversary B attacking the
scheme we define the experiment Expn-mr-atk-b

AE,B
(k) as follows. B runs in three

stages. In the select stage the adversary is given an initial information string
and outputs l such that 1 ≤ l ≤ n, which indicates that it wants to corrupt n− l
users, assumed without loss of generality to be users l + 1, . . . , n. In the find
stage the adversary is given I and the public keys of the honest users 1, . . . , l. It
outputs two l-vectors of messages corresponding to choices for the honest users;
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one (n− l)-vector of messages corresponding to choices for the corrupted users;
a (n − l)-vector of public keys for the corrupted users; and a (n − l)-vector of
corresponding secret keys (see the discussion below.) Based on a challenge bit b,
one of the two l-vectors is selected, and the components of the (n− l)-vector of
messages are appended to yield a challenge n-vector of messages M. The latter
is encrypted via the multi-encryption algorithm to yield a challenge ciphertext
C that is returned to the adversary, now in its guess stage. It wins if it returns
a bit d that equals the challenge bit b. In each stage the adversary will output
state information that is returned to it in the next stage. When atk = cca, the
adversary gets oracles Dski(·) for 1 ≤ i ≤ l with the restriction of not querying
them on the corresponding components of the challenge ciphertext vector.

Definition 2. Let AE = (G,K, E ,D) be a multi-recipient encryption scheme,
let n be a polynomial and let atk ∈ {cpa, cca}. Then for any security parameter k
ind-atk advantage of an adversary B is

Advn-mr-atk
AE,B

(k) = Pr
[
Expn-mr-atk-0

AE,B
(k) = 0

]
− Pr

[
Expn-mr-atk-1

AE,B
(k) = 0

]
.

Definition 3. Let AE = (G,K, E ,D) be a multi-recipient encryption scheme.
We say that it is IND-CPA (resp. IND-CCA) secure if the function
Advn-mr-cpa

AE,B
(·) (respectively Advn-mr-cca

AE,B
(·)) is negligible for any polynomial-time

adversary B and any polynomial n.

It is convenient to introduce a notion of security for base encryption schemes
based on the security of the corresponding SRS scheme. We stress that the
following is a notion of security for (standard) asymmetric encryption schemes,
not for multi-recipient encryption schemes.

Definition 4. Let AE be an asymmetric encryption scheme. We say that it
is SRS-IND-CPA (resp. SRS-IND-CCA) secure (or, briefly SRSS) if the SRS
multi-recipient asymmetric encryption scheme AE associated to AE is IND-CPA
(resp. IND-CCA) secure.

Discussion and comparison with the model of security of [22]. Pre-
vious works [1, 3, 22] only considered outsider attacks, meaning the adversary
was not one of the receivers. A novel element of our model relative to [1, 3, 22]
is the consideration of insider attacks. The adversary is allowed to corrupt some
fraction of the users and choose secret and public keys for them.

We argue that it is necessary for a model of security of multi-recipient schemes
to take into account insider attacks. The model of [22] does not address this
problem and we show that there exist multi-recipient encryption schemes which
can be proven secure using the model of [22] but are obviously insecure and can
easily be shown insecure using our model of security.

It is proved in [22] that El Gamal scheme permits secure randomness re-use
in the multi-recipient setting. Now consider a modified encryption scheme which
differs from El Gamal in that its encryption algorithm when invoked on one
particular public key (e.g. g3) in addition to a ciphertext returns randomness
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used to compute it. Assume this fact is known to the adversary. When this
scheme used in a multi-recipient setting with randomness re-use the adversary
can certify this public key and later after receiving a ciphertext can obtain the
random string used to compute the ciphertexts of other users and thus break
the scheme. Under our model the advantage of such adversary in breaking this
scheme will be 1. But in the model of [22] all the public keys assumed to be
random, and the scheme can be proven secure.

Consider another example which exploits a different weakness of the model
of [22]. Let AE ′ = (G′,K′, E ′,D′) be some IND-CPA secure encryption scheme.
Consider a multi-recipient scheme AE with user i’s public key pki = (gxi , pk′

i),
where gxi is a public key for El Gamal encryption and pk′

i is a public key of AE ′.
Let the encryption algorithm of AE ′ be as follows. It first draws a random value r
at random. Then it computes C[i] as (gr, (gxi)rM [i], C′[i]) where C′[i] = E ′pk′

i
(r).

In other words each ciphertext consists of an El Gamal ciphertext computed with
common randomness and of encryption of this common randomness under some
fixed encryption scheme. We claim that there exists an attack on AE but the
scheme can be proven secure under the model of [22]. We first show that AE
is insecure in practice by presenting an attack. An adversary A “corrupts” the
first user and chooses pk1 = (gx1 , pk′

1) in normal way so that it knows x1, sk
′
1.

When A receives a ciphertext vector C it decrypts C′[1] using sk′
1 and obtains r.

Now A can test whether particular messages were encrypted under the public
keys of other users. Under our model of security A would have advantage 1. We
now show that AE is secure under the model of [22]. Let B be an adversary
attacking AE under the model of [22]. Then it is possible to construct an ad-
versary D which attacks SRS El Gamal multi-recipient scheme. But [22] proves
the latter scheme is secure, so this would imply that AE is secure. D simply
provides all the public keys it is given to B and outputs message vectors that B
outputs. D then receives a challenge ciphertext vector CD, picks a random r′

and computes a challenge CB for B such that CB[i] = (CD[i], E ′pk′
i
(r′)). Since

AE ′ is IND-CPA then the view of B in the simulated experiment is indistin-
guishable from the real experiment. Therefore the advantage of B is at most the
advantage of D, but it is proven in [22] that the latter is negligible.

Moreover, the model of [22], as well as of [3, 1] do not take into account the
possibility of rogue-key attack. This can be particularly damaging in the context
of random-string re-use. For example, suppose the adversary registers public keys
(gx)2 = g2x and (gx)3 = g3x where gx is the key of a legitimate user. Suppose
that symmetric session keys K1, K, K are El Gamal encrypted with the same
randomness r under public keys gx, g2x, g3x and broadcast to the users. Thus
the adversary sees the three corresponding ciphertexts (gr, grx ·K1), (gr, g2rx ·
K), (gr, g3rx ·K). From them it can compute K1 = [grx ·K1]·[g2rx ·K]·[g3rx ·K]−1

and obtain the session key of the legitimate user. As a consequence, the adversary
will be able to decrypt the secret information encrypted under this session key
addressed to the legitimate user.

As we mentioned in the introduction, to prevent attacks of this type we put
some limitation on the adversary in this regard, in particular to disallow it from
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creating public keys whose corresponding secret keys it does not know. The
model incorporates this by requiring the adversary to supply, along with public
keys for the corrupted users, corresponding secret keys. This models the effect of
appropriate proofs of knowledge of the secret key that are assumed to be done
as part of the key certification process. The alternative is to explicitly consider
the certification process in the model, and then, in proofs of security, use the
extractors, guaranteed by the proof of knowledge property [6], to extract the
secret keys from the adversary. This being quite a complication of the model,
we have chosen to build in the intended effects of the proofs of knowledge.

5 Reproducibility Test and Theorem

We provide a condition under which a given encryption scheme can be a base of
the secure SRS scheme. Informally speaking, the condition is satisfied for those
encryption schemes for which it is possible, using a public key and ciphertext of
a random message, to create ciphertexts for arbitrary messages under arbitrary
keys, such that all ciphertexts employ the same random string as that of the
given ciphertext.

Definition 5. Fix a public-key encryption scheme AE = (G,K, E ,D). Let n be
polynomial in k, and let R be an algorithm that takes as input a public key and
ciphertext of a random message, another random message together with a public-
secret key pair, and returns a ciphertext. Consider the following experiment.

Experiment Exprepr
AE,R(k)

I
R← G(k) ; (pk, sk) R← K(I) ; M

R← MsgSp(I) ; r
R← CoinsE(I, pk)

C ← Epk(M, r) ; (pk′, sk′) R← K(I) ; M ′ R← MsgSp(I)
If (Epk′(M ′, r) = R(pk, C, M ′, pk′, sk′)) then Return 1 else Return 0 EndIf

We say that AE is reproducible if for any k there exists a probabilistic, poly-time
algorithm R called the reproduction algorithm such that Exprepr

AE,R(k) outputs 1
with the probability 1.

Later we will show that many popular discrete-log-based encryption schemes are
reproducible. It is an open question whether there exist reproducible encryption
schemes of other types.

We now state the main reproducibility theorem. It implies that if an encryp-
tion scheme is reproducible and is IND-CPA (resp. IND-CCA) secure, then it is
also SRS-IND-CPA (resp. SRS-IND-CCA) secure. The proof is in the full version
of this paper [4].

Theorem 1. Fix a public-key encryption scheme AE = (G,K, E ,D) and a poly-
nomial n(·). Let AE = (G,K, E ,D) be the associated SRS scheme. If AE is repro-
ducible then for any poly-time adversary Batk, there exists a poly-time adversary
Aatk, where atk = {cpa, cca}, such that for any k

Advn-mr-atk
AE,Batk

(k) ≤ n(k) · Advatk
AE,Aatk

(k).
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6 Analysis of Specific Schemes

In this section we show that many popular encryption schemes are reproducible.
Using the known results about security of these schemes and the result of
Theorem 1 this would imply that these schemes are also SRSS.

We first consider three DDH-based schemes which work over a group of prime
order. A prime-order-group generator is a probabilistic algorithm that on input
the security parameter k returns a pair (q, g) satisfying the following conditions: q
is a prime with 2k−1 < q < 2k; 2q + 1 is a prime; and g is a generator of Gq.

El Gamal. Let G be a prime-order-group generator. This is the common key
generation algorithm of the El Gamal scheme EG = (G,K, E ,D), the rest of the
algorithms are as follows:

K(q, g):
x

R← Zq ; X ← gx

pk ← (q, g,X) ; sk ← (q, g, x)
Return (pk, sk)

Epk(M):

r
R← Zq ; Y ← gr

T ← Xr ; W ← TM
Return (Y,W )

Dsk(Y,W ):

T ← Y x

M ←WT−1

Return M

Lemma 1. The El Gamal encryption scheme EG = (G,K, E ,D) is reproducible.

Proof. On input (gx, (gr, grx ·M), M ′, gx′
, x′) a polynomial time reproduction

algorithm R returns (gr, (gr)x′ ·M ′). It is easy to see that R always outputs
a valid ciphertext which is created using the same random string as the given
ciphertext and therefore the experiment Exprepr

EG,R(k) always outputs 1.

The El Gamal scheme in a group of prime order is known to be IND-CPA
under the assumption that the decision Diffie-Hellman (DDH) problem is hard.
(This is noted in [12, 24, 13, 29]). Let Advddh

G,D() denote the advantage of D
in solving the Decisional Diffie-Hellman (DDH) problem for G. We say that
the DDH problem is hard for G if the function Advddh

G,D(·) is negligible for every
algorithm D whose time-complexity is polynomial in k. (We recall the full formal
definition for the DDH problem in [3].) Theorem 1 and Lemma 1 imply that it
is also SRS-IND-CPA or, equivalently, EG is IND-CPA secure and the security
degrades linearly as the number of users n increases. The following theorem
shows that it is possible to obtain a tighter relation than the one implied by
Theorem 1.

Theorem 2. Let G be a prime-order-group generator, EG = (G,K, E ,D) the as-
sociated El Gamal encryption scheme, and EG = (G,K, E ,D) the associated SRS
multi-recipient encryption scheme as per Construction 1. Let n be a polynomial.
Then for any adversary B there exists a distinguisher D such that for any k

Advn-mr-cpa

EG,B
(k) ≤ 2 · Advddh

G,D(k) +
1

2k−2
,

where the running time of D is one of B plus O(n(k) · k3).

The proof of the above theorem is in the full version of this paper [4]. [22] proves
a similar result but for a weaker notion of security of multi-recipient schemes.
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G(k):
(q, g1)

R← G
g2

R← Gq

K
R← GH(k)

Return (q, g1,
g2,K)

K(q, g1, g2,K):

x1, x2, y1, y2, z
R← Zq

c← gx1
1 gx2

2 ; d← gy1
1 gy2

2

h← gz
1

pk ← (g1, g2, c, d, h,K)
sk ← (x1, x2, y1, y2, z)
Return (pk, sk)

Epk(M):

r
R← Zq

u1 ← gr
1 ; u2 ← gr

2

e← hrM
α← EHK(u1, u2, e)
v ← crdrα

Return (u1, u2, e, v)

Dsk(u1, u2, e, v):

α← EHK(u1, u2, e)
If u1

x1+y1αu2
x2+y2α = v

then M ← e/u1
z

else M ← ⊥
EndIf
Return M

Fig. 1. Cramer-Shoup scheme

Cramer-Shoup. We now consider an SRS encryption scheme based on the
Cramer-Shoup scheme [13] in order to get IND-CCA security properties. We
first recall the Cramer-Shoup scheme. Let G be a prime-order-group generator.
The algorithms of the associated Cramer-Shoup scheme CS = (G,K, E ,D) are
depicted in Figure 1. The proof of the following lemma is in [4].

Lemma 2. The Cramer-Shoup encryption scheme CS = (G,K, E ,D) is repro-
ducible.

Let Advcr
H,C(k) denote the advantage of an adversary C breaking collision-

resistance of H (the full version [4] recalls the formal definition of collision re-
sistance). If the DDH problem is hard for G and if H is collision-resistant then
CS is IND-CCA secure [13]. Theorem 1 and Lemma 2 imply that it is also SRS-
IND-CCA or, equivalently, CS is IND-CCA secure. We match the result of [22]
in getting a better security result than the one implied by Theorem 1 but we
do it for a stronger notion of security of multi-recipient schemes. The following
theorem states our improvement. The proof is in [4].

Theorem 3. Let G be a prime-order-group generator, CS = (G,K, E ,D) the as-
sociated Cramer-Shoup encryption scheme and CS = (G,K, E ,D) the associated
SRS multi-recipient encryption scheme as per Construction 1. Let n be a poly-
nomial. Then for any adversary B, which makes qd decryption oracle queries,
there exists an adversary A, a distinguisher D and an adversary C such that for
any k

Advn-mr-cca
CS,B

(k) ≤ 2Advddh
G,D(k) + 2Advcr

H,C(k) +
qd(k) + 2

2k−3
,

and the running time of D and C is that of B plus O(n(k) · k3).

DHIES. We consider another DDH-based encryption scheme, DHIES [2], which
is in several draft standards. It combines public and symmetric key encryption
methods, a message authentication code and a hash function and provides se-
curity against chosen-ciphertext attacks. Let SE = (K, E, D) be a symmetric
encryption scheme with key length kl and let MAC = (T ,V) be a message au-
thentication code with key length ml, tagging algorithm T and verification algo-
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E(q,g,X)(M):

r
R← Zq ; Y ← gr ; K ← H(Xr)

Let skm be the first ml bits of K
Let ske be the last kl bits of K

C
R← Eske(M) ; T ← Tskm(C)

Return (Y,C, T )

Dx(Y,C, T ):

K ← H(Y x)
Let skm be the first ml bits of K
Let ske be the last kl bits of K
M ← Dske(C)
If Vskm (M,T ) = 1 then Return M
else Return ⊥ EndIf

Fig. 2. DHIES

rithm V . Let H : {0, 1}gl → {0, 1}ml+kl be a function. We assume MAC is deter-
ministic. The common key and key generation algorithms of DHIES[SE,H,MAC]
= (G,K, E ,D) are the same as the ones of El Gamal encryption scheme. The rest
of the algorithms are in Figure 2. The proof of the following is in [4].

Lemma 3. Let the symmetric encryption scheme used by DHIES scheme be any
block cipher such as AES in CBC mode (we will refer to it as CBC encryption
scheme.) Then DHIES [CBC, H, MAC] = (G,K, E ,D) is reproducible.

Escrow El Gamal. Boneh and Franklin [10] suggested the El Gamal encryp-
tion scheme with global escrow capabilities. The EEG = (G,K, E ,D) scheme uses
Weil pairing and is defined as follows. The algorithm G on input the security pa-
rameter k chooses a k-bit prime p such that p ≡ 2 mod 3 and p ≡ 6q−1 for some
prime q ≥ 3. Let E be the elliptic curve defined by y2 = x3 + 1 over Fp. Then it
chooses a random P ∈ E/Fp of order q, computes Q = sP for a random s ∈ Z∗

q

and chooses a hash function H : Fp2 → {0, 1}m. The message space is {0, 1}m.
The escrow key is s. G outputs (p, m, P, Q, H). The rest of the algorithms are as
follows:

K(p,m, P,Q,H):

x
R← Z∗

q ; X ← xP
pk ← (p,P, Q,X) ;
sk ← (p, P,Q, x)
Return (pk, sk)

Epk(M):

r
R← Z∗

q

g ← ê(pk, Q)
Return (rP,M ⊕H(gr))

Dsk(U,V ):

M ← V ⊕H(ê(U, xQ))
Return M

We do not define the decryption using the escrow key since it is not relevant for
our goal. The proof is in [4].

Lemma 4. The escrow El Gamal encryption scheme EEG = (G,K, E ,D) is re-
producible.

A standard argument shows that EEG is IND-CPA secure in the random
oracle model assuming Bilinear Diffie-Hellman assumption (see [10] for proper
definitions). The results of Theorem 1 and Lemma 4 can be easily adjusted for
the random oracle model and they would imply that EEG is also SRS-IND-
CPA or, equivalently, the corresponding multi-recipient scheme EEG is IND-CPA
secure, both in the random oracle model.
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